JPH07237971A - Production of silicon nitride reaction sintered compact - Google Patents
Production of silicon nitride reaction sintered compactInfo
- Publication number
- JPH07237971A JPH07237971A JP6051373A JP5137394A JPH07237971A JP H07237971 A JPH07237971 A JP H07237971A JP 6051373 A JP6051373 A JP 6051373A JP 5137394 A JP5137394 A JP 5137394A JP H07237971 A JPH07237971 A JP H07237971A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- silicon nitride
- silicon
- sintering
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は窒化珪素反応焼結体の製
造方法に関し、特に、室温及び高温における焼肌強度
(焼結後に表面研磨を行わない時の強度)の良好な窒化
珪素反応焼結体を製造する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride reaction-sintered body, and particularly to a silicon nitride reaction-sintered body having good burn surface strength (strength when surface polishing is not performed after sintering) at room temperature and high temperature. The present invention relates to a method for producing a tie.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】窒化珪
素系セラミック焼結体は、高強度、高耐熱性、高耐熱衝
撃性、高耐摩耗性、耐酸化性などの点から、ガスタービ
ン部材等、高温での使用条件が苛酷な構造用セラミック
スとしての利用が期待されている。2. Description of the Related Art A silicon nitride ceramic sintered body is a gas turbine member because of its high strength, high heat resistance, high thermal shock resistance, high wear resistance, oxidation resistance and the like. For example, it is expected to be used as a structural ceramic that is used under severe conditions at high temperatures.
【0003】窒化珪素系セラミック焼結体の製造方法に
は、窒化珪素粉末及び焼結助剤を用いて所望の形状の成
形体を作製し、これを焼結する方法があるが、これとは
別の方法として、珪素粉末を用いて成形体を作製し、こ
の成形体を窒化することにより窒化珪素焼結体とするい
わゆる反応焼結による方法もある。この後者の方法によ
れば、焼結に際してみられる収縮を低く抑えることがで
き、比較的寸法精度の良い焼結体を得ることができる。
また、原料コストが低いので、各種エンジニアリングセ
ラミック部材を安価に製造できる。そのため、この反応
焼結法に関する種々の提案がなされている。As a method for producing a silicon nitride-based ceramic sintered body, there is a method in which a molded body having a desired shape is produced using silicon nitride powder and a sintering aid, and this is sintered. As another method, there is a so-called reactive sintering method in which a compact is produced using silicon powder and the compact is nitrided to obtain a silicon nitride sintered body. According to this latter method, the shrinkage seen during sintering can be suppressed to a low level, and a sintered body with relatively high dimensional accuracy can be obtained.
Further, since the raw material cost is low, various engineering ceramic members can be manufactured at low cost. Therefore, various proposals have been made regarding this reaction sintering method.
【0004】たとえば、特開昭54─160410号は、粒径が
0.1〜44μmの珪素粉末と、MgO、Y2 O3 、C
eO2 、ZrO2 、BeO、Mg3 N2 、AlN、Mg
Si、MgAl2 O4 、La2 O3 及びFeから選ばれ
る焼結添加剤との混合物から1.3g/cm3 の密度を有
する成形体を作製し、1500℃以下の窒素雰囲気下で
前記圧縮体を窒化したのち、窒素雰囲気下1500℃で
焼結する方法を開示している。しかし、この方法では圧
縮により成形体の密度を大きくし、高強度、高密度の焼
結体を得ようとしているが、珪素粉末の粒径及びその分
布領域を考慮していないため、成形体の密度は理論値の
67%程度であり、十分に大きくはない。For example, JP-A-54-160410 discloses a silicon powder having a particle diameter of 0.1 to 44 μm, MgO, Y 2 O 3 and C.
eO 2 , ZrO 2 , BeO, Mg 3 N 2 , AlN, Mg
A compact having a density of 1.3 g / cm 3 was prepared from a mixture with a sintering additive selected from Si, MgAl 2 O 4 , La 2 O 3 and Fe, and the compact was compacted under a nitrogen atmosphere at 1500 ° C. or lower. It discloses a method of nitriding a body and then sintering at 1500 ° C. in a nitrogen atmosphere. However, in this method, the density of the compact is increased by compression to obtain a high-strength, high-density sintered body, but since the particle size of the silicon powder and its distribution region are not taken into consideration, The density is about 67% of the theoretical value, which is not sufficiently large.
【0005】また、特開昭56─22678 号は、最大粒径2
5μm以下の金属Siと焼結助剤の混合物を成形し、得
られた成形体を窒素含有雰囲気下で反応焼結し、次に窒
素含有雰囲気下にて1600〜2200℃で再焼結する
方法を開示している。しかし、この方法では、焼結時の
雰囲気圧力の制御により表面の窒化珪素の分解及び蒸発
を防止してはいるものの、十分な焼肌強度を達成できて
いない。Further, JP-A-56-22678 discloses that the maximum particle size is 2
A method of molding a mixture of metal Si having a size of 5 μm or less and a sintering aid, subjecting the obtained molded body to reaction sintering in an atmosphere containing nitrogen, and then re-sintering at 1600 to 2200 ° C. in an atmosphere containing nitrogen. Is disclosed. However, in this method, although the decomposition and evaporation of silicon nitride on the surface are prevented by controlling the atmospheric pressure at the time of sintering, sufficient burn surface strength cannot be achieved.
【0006】ところが、このような方法により得られる
焼結品の場合、焼結時に表面の窒化珪素が分解し蒸発す
るため、表面に凹凸ができ(いわゆる肌荒れ現象が生
じ)、強度の低下が起こる。そこで、この表面の荒れを
除去するために、一般には焼結品の表面を研磨しなけれ
ばならない。However, in the case of a sintered product obtained by such a method, since silicon nitride on the surface is decomposed and evaporated during sintering, unevenness is formed on the surface (so-called rough skin phenomenon occurs), and strength is reduced. . Therefore, in order to remove the roughness of the surface, it is generally necessary to polish the surface of the sintered product.
【0007】したがって本発明の目的は、焼結後の表面
研磨を行わなくとも室温及び高温で良好な強度を有する
窒化珪素反応焼結体を製造する方法を提供することであ
る。Therefore, it is an object of the present invention to provide a method for producing a silicon nitride reaction sintered body having good strength at room temperature and high temperature without performing surface polishing after sintering.
【0008】[0008]
【課題を解決するための手段】以上の目的に鑑み鋭意研
究の結果、本発明者等は、実質的に異なる粒径分布領域
を有する2種類以上の珪素粉末の混合物に、Y2 O
3 と、MgO、CeO2 、BeO、AlN、La
2 O3 、ZrO2 、Fe及びFeO3 から選ばれた少な
くとも1種からなる焼結助剤を添加して反応焼結を行え
ば、寸法精度及び強度が向上するとともに、焼肌強度が
向上した焼結体が得られることを発見し、本発明を完成
した。As a result of earnest research in view of the above objects, the present inventors have found that Y 2 O can be added to a mixture of two or more kinds of silicon powders having substantially different particle size distribution regions.
3 , MgO, CeO 2 , BeO, AlN, La
If reaction sintering is carried out by adding a sintering aid composed of at least one selected from 2 O 3 , ZrO 2 , Fe and FeO 3 , the dimensional accuracy and the strength are improved and the burnt surface strength is improved. It was discovered that a sintered body was obtained, and the present invention was completed.
【0009】すなわち、本発明の窒化珪素焼結体の製造
方法は、(a) 実質的に異なる粒径分布領域を有する2種
類以上の珪素粉末を混合してなる平均粒径が5〜300
μmの珪素粉末混合物に、Y2 O3 と、MgO、CeO
2 、BeO、AlN、La2O3 、ZrO2 、Fe及び
FeO3 から選ばれた少なくとも1種との組み合わせか
らなる焼結助剤を添加し、(b) 得られた粉末混合物から
理論密度の少なくとも70%の密度を有する成形体を作
製し、(c) 前記成形体を窒素含有雰囲気下において15
00℃未満の温度で加熱することにより窒化処理を行
い、(d) 次いで、窒化処理した成形体を1500℃〜2
000℃で焼結することを特徴とする。That is, according to the method for producing a silicon nitride sintered body of the present invention, (a) an average particle diameter of 5 to 300 is obtained by mixing two or more kinds of silicon powders having substantially different particle diameter distribution regions.
Y 2 O 3 , MgO, and CeO were added to the silicon powder mixture of μm.
2 , a BeO, AlN, La 2 O 3 , ZrO 2 , Fe and a sintering additive consisting of a combination with at least one selected from FeO 3 is added, and (b) the theoretical density of the obtained powder mixture is calculated. A molded body having a density of at least 70% is produced, and (c) the molded body is subjected to a nitrogen-containing atmosphere for 15 minutes.
Nitriding is performed by heating at a temperature of less than 00 ° C, and (d) the nitriding formed body is then heated to 1500 ° C to 2 ° C.
It is characterized by being sintered at 000 ° C.
【0010】以下、本発明を詳細に説明する。 〔1〕出発原料(a) 珪素粉末 粒径分布領域が実質的に異なる2種以上の珪素粉末を混
合して用いる。たとえば、図1(a) 及び(b) に示すよう
な粒径分布を有する珪素粉末を用いる。図1(a) におい
ては、大きな粒径を有する分布1と、小さな粒径を有す
る分布2とからなり、分布1と分布2のカーブの裾は実
質的に重ならないのが好ましい。分布1と分布2とが大
きく重なり合うと(図中のVの領域に粒子が多量に存在
すると)、グリーン密度が低下する。好ましい一実施例
では、分布1の粒径は10〜80μmの範囲内で、平均
粒径は20〜50μmであり、分布2の粒径は1〜20
μmの範囲内で、平均粒径は2〜5μmである。The present invention will be described in detail below. [1] Starting Material (a) Two or more kinds of silicon powders having substantially different particle size distribution regions of silicon powder are mixed and used. For example, silicon powder having a particle size distribution as shown in FIGS. 1 (a) and 1 (b) is used. In FIG. 1 (a), it is preferable that the distribution 1 has a large particle diameter and the distribution 2 having a small particle diameter, and the tails of the curves of the distribution 1 and the distribution 2 do not substantially overlap. When the distribution 1 and the distribution 2 largely overlap each other (when a large amount of particles exist in the region V in the figure), the green density decreases. In a preferred embodiment, the particle size of distribution 1 is in the range of 10-80 μm, the average particle size is 20-50 μm, and the particle size of distribution 2 is 1-20.
Within the range of μm, the average particle size is 2-5 μm.
【0011】このような2つの分布領域を有する珪素粉
末を用いる場合、粒径が大きい分布1の珪素粉末と粒径
が小さい分布2の珪素粉末との重量比は5:5〜9:1
が好ましく、より好ましくは7:3〜8:2とする。好
ましい一実施例では7:3程度である。When the silicon powder having such two distribution regions is used, the weight ratio of the silicon powder of distribution 1 having a large particle diameter to the silicon powder of distribution 2 having a small particle diameter is 5: 5 to 9: 1.
Is preferable, and more preferably 7: 3 to 8: 2. In a preferred embodiment, it is about 7: 3.
【0012】また、図1(b) においては、3つの分布
1、2、3を有する。この場合でも、各分布は実質的に
重ならないのが好ましい。好ましい一実施例では、分布
1の粒径は20〜80μmの範囲内で、平均粒径は30
〜50μmであり、分布2の粒径は5〜20μmの範囲
内で、平均粒径は10〜15μmであり、分布3の粒径
は0.5〜5μmの範囲内で、平均粒径は1〜2μmで
ある。粉末の混合比率は全体を100%として、分布1
の珪素粉末を60〜80%、分布2の珪素粉末を10〜
30%、分布3の珪素粉末を5〜20%とするのが好ま
しい。より好ましくは、分布1の珪素粉末を65〜75
%、分布2の珪素粉末を15〜25%、分布3の珪素粉
末を5〜15%とする。Further, in FIG. 1B, there are three distributions 1, 2, and 3. Even in this case, it is preferable that the distributions do not substantially overlap. In a preferred embodiment, the particle size of distribution 1 is in the range of 20-80 μm and the average particle size is 30.
˜50 μm, the particle size of distribution 2 is in the range of 5 to 20 μm, the average particle size is 10 to 15 μm, the particle size of distribution 3 is in the range of 0.5 to 5 μm, and the average particle size is 1 ~ 2 μm. The powder mixing ratio is 100%, and the distribution is 1
60 to 80% of the silicon powder of 10 to 10% of the silicon powder of distribution 2
It is preferable that the silicon powder of 30% and the distribution 3 is 5 to 20%. More preferably, the silicon powder of distribution 1 is 65-75.
%, The silicon powder of distribution 2 is 15 to 25%, and the silicon powder of distribution 3 is 5 to 15%.
【0013】上記珪素粉末混合物の平均粒径は5〜30
0μmである必要がある。平均粒径が5μm未満となる
と成形体の密度が低下して焼結による収縮率が大きくな
り、良好な寸法精度が得られない。また、得られる焼結
体の強度及び靭性も低下する。一方、平均粒径が300
μmを越す珪素粉末を用いると、窒化に時間を要すると
ともに、成形性も低下する。好ましくは、珪素粉末の平
均粒径を5〜50μmとする。The average particle size of the above silicon powder mixture is 5 to 30.
It must be 0 μm. If the average particle size is less than 5 μm, the density of the molded product is reduced and the shrinkage rate due to sintering is increased, so that good dimensional accuracy cannot be obtained. Further, the strength and toughness of the obtained sintered body are also reduced. On the other hand, the average particle size is 300
If a silicon powder having a particle size of more than μm is used, it takes a long time for nitriding and the moldability is deteriorated. Preferably, the silicon powder has an average particle size of 5 to 50 μm.
【0014】また、珪素粉末混合物の最大粒径は50〜
600μmの範囲にあるのが好ましい。最大粒径が50
μm未満の珪素粉末を用いると成形体の密度が低下しや
すく、焼結による収縮が大きくなりやすい。一方、最大
粒径が600μmを超すような珪素粉末を用いると、窒
化しにくく、かつ成形性も劣るので好ましくない。珪素
粉末の最大粒径のより好ましい範囲は50〜100μm
である。The maximum particle size of the silicon powder mixture is 50 to 50.
It is preferably in the range of 600 μm. Maximum particle size is 50
If a silicon powder having a particle size of less than μm is used, the density of the compact tends to decrease, and shrinkage due to sintering tends to increase. On the other hand, if a silicon powder having a maximum particle size of more than 600 μm is used, nitriding is difficult and moldability is poor, which is not preferable. The more preferable range of the maximum particle size of the silicon powder is 50 to 100 μm.
Is.
【0015】また、珪素粉末混合物の成形性を良くする
ために、0.1〜1μm、好ましくは0.2〜0.5μ
mの平均粒径を有するα−Si3 N4 粉末を添加しても
よい。α−Si3 N4 添加量は、前述の珪素粉末100
重量部に対してα−Si3 N4 を10〜30重量部とす
るのが好ましく、より好ましくは15〜20重量部とす
る。In order to improve the moldability of the silicon powder mixture, 0.1 to 1 μm, preferably 0.2 to 0.5 μm.
α-Si 3 N 4 powder having an average particle size of m may be added. The amount of α-Si 3 N 4 added is 100
The amount of α-Si 3 N 4 is preferably 10 to 30 parts by weight, more preferably 15 to 20 parts by weight, based on parts by weight.
【0016】(b) 焼結助剤 焼結助剤としてY2 O3 と、MgO、CeO2 、Be
O、AlN、La2 O3、ZrO2 、Fe及びFeO3
から選ばれた少なくとも1種との組み合わせ、或いは、
これらとAl2 O3 との組み合わせを添加する。この焼
結助剤を用いれば、低温で焼結しても十分な高温強度を
達成することができる。また、低温焼結により高温で焼
結した場合に起こる焼結体表面の窒化珪素の分解及び蒸
発が防止できるため、表面の荒れが防止され、焼肌強度
(焼結したまま研磨しない状態の強度)が向上する。こ
れらの焼結助剤の平均粒径は0.1〜5μm程度とする
のが好ましい。また、好ましい焼結助剤としてはY2 O
3 とMgO、あるいはY2 O3 とAl2 O3 とMgOの
組み合わせが挙げられる。 (B) Sintering aid Y 2 O 3 as a sintering aid, MgO, CeO 2 , Be
O, AlN, La 2 O 3 , ZrO 2 , Fe and FeO 3
Or a combination with at least one selected from
A combination of these and Al 2 O 3 is added. By using this sintering aid, sufficient high temperature strength can be achieved even if sintering is performed at a low temperature. In addition, since decomposition and evaporation of silicon nitride on the surface of the sintered body that occurs when sintering at high temperature due to low-temperature sintering can be prevented, surface roughness is prevented, and burnt surface strength (strength in a state where it is not polished as it is sintered) ) Is improved. The average particle size of these sintering aids is preferably about 0.1 to 5 μm. Further, as a preferable sintering aid, Y 2 O is used.
3 and MgO, or a combination of Y 2 O 3 , Al 2 O 3 and MgO may be mentioned.
【0017】珪素粉末(Si3 N4 に換算した重量)と
焼結助剤とSi3 N4 粉末(添加した場合)との合計を
100重量%として、Y2 O3 を3〜10重量%するの
が好ましく、より好ましくは5〜7重量%とする。ま
た、MgO、CeO2 、BeO、AlN、La2 O3 、
ZrO2 、Fe及びFe2 O3 から選ばれた少なくとも
1種を1〜7重量%とするのが好ましく、より好ましく
は3〜6重量%する。なお、焼結助剤の合計量は5〜1
5重量%とするのが好ましく、より好ましくは8〜13
重量%とする。各焼結助剤の量が上記した範囲の下限値
未満であると焼結性が劣る。一方、上記の範囲の上限値
を超す量の焼結助剤を添加すると、焼結体の高温強度が
低下するので好ましくない。3% to 10% by weight of Y 2 O 3 with the total of silicon powder (weight converted to Si 3 N 4 ), sintering aid and Si 3 N 4 powder (when added) as 100% by weight. Is preferable, and more preferably 5 to 7% by weight. In addition, MgO, CeO 2 , BeO, AlN, La 2 O 3 ,
Is preferably at least one of a 1-7% by weight selected from ZrO 2, Fe and Fe 2 O 3, more preferably 3 to 6 wt%. The total amount of the sintering aid is 5 to 1
It is preferably 5% by weight, more preferably 8 to 13
Weight% If the amount of each sintering aid is less than the lower limit value of the above range, the sinterability is poor. On the other hand, it is not preferable to add a sintering additive in an amount exceeding the upper limit of the above range, because the high temperature strength of the sintered body will decrease.
【0018】〔2〕窒化珪素焼結体の製造方法(イ)成形体の作製 まず、上記(a) 、(b) の成分を前述の配合比となるよう
に混合する。この混合物は、上記したセラミックス成分
の他に、各種の有機バインダーを含有することができ
る。このような有機バインダーとしては、たとえばエチ
ルシリケート、ポリエチレングリコール、ポリビニルア
ルコール(PVA)、アクリルエマルジョン、ポリウレ
タンエマルジョン等が挙げられる。また、無機バインダ
ーも添加することができる。[2] Method for manufacturing silicon nitride sintered body (a) Preparation of molded body First, the components (a) and (b) are mixed so as to have the above-mentioned mixing ratio. This mixture can contain various organic binders in addition to the above-mentioned ceramic components. Examples of such an organic binder include ethyl silicate, polyethylene glycol, polyvinyl alcohol (PVA), acrylic emulsion, polyurethane emulsion and the like. Also, an inorganic binder can be added.
【0019】成分(a) 、(b) 及びバインダー(必要に応
じ)等の混合は、公知の方法、例えばボールミル、ニー
ダー等により行うことができる。なおボールミルによる
混合では、乾式法の他に、粉末混合物に水、エタノー
ル、ブタノール等の分散媒体を加えた湿式法を用いても
よい。The components (a), (b), the binder (if necessary) and the like can be mixed by a known method such as a ball mill or a kneader. In addition, in the mixing by the ball mill, a wet method in which a dispersion medium such as water, ethanol or butanol is added to the powder mixture may be used in addition to the dry method.
【0020】成形体の作製は、従来公知の各方法、たと
えば、金型成形、冷間静水圧プレス(CIP)、スリッ
プキャスティング成形、射出成形等を採用することがで
きるが、複雑な形状の成形体を作製するにはスリップキ
ャスティング成形や射出成形が好ましい。Each of the conventionally known methods such as die molding, cold isostatic pressing (CIP), slip casting, and injection molding can be used for producing the molded body, but molding of a complicated shape is possible. Slip casting and injection molding are preferred for producing the body.
【0021】(ロ)窒化処理 次に、成形体を窒素含有雰囲気下、好ましくは窒素ガス
雰囲気下で加熱し、成形体中の珪素粉末を窒化する。 (B) Nitriding treatment Next, the compact is heated in a nitrogen-containing atmosphere, preferably in a nitrogen gas atmosphere, to nitride the silicon powder in the compact.
【0022】窒化処理では、好ましくは成形体中の珪素
の90%以上、より好ましくは95%以上が窒化されて
窒化珪素となるように、処理温度、窒素含有雰囲気の圧
力及び処理時間を設定する。なお、本明細書において窒
化の度合いは百分率で表すが、これは成形体の重量変化
(成形体中のSiがSi3 N4 に変化するのに伴う重量
変化)から計算したものである。In the nitriding treatment, the treatment temperature, the pressure of the nitrogen-containing atmosphere and the treatment time are set so that 90% or more, and more preferably 95% or more of the silicon in the compact is nitrided into silicon nitride. . In the present specification, the degree of nitriding is expressed as a percentage, which is calculated from the weight change of the molded body (the weight change associated with the change of Si in the molded body to Si 3 N 4 ).
【0023】窒化処理の諸条件は、成形体の厚さ等によ
り多少変更する必要があるが、処理温度は1250℃以
上1500℃未満とする。また、窒素含有雰囲気の圧力
は1kg/cm2 以上とするのが好ましい。温度が1250
℃未満、又は窒素含有雰囲気の圧力が1kg/cm2 未満で
あると成形体中の珪素粉末の窒化が良好に進まない。一
方、1500℃以上の加熱温度とすると、Siが溶出し
たり、Siの気化が起こったりするので好ましくない。
窒化処理の時間は、成形体の厚さ、窒化処理温度等によ
り多少変化するが、一般に1〜10時間程度とする。よ
り好ましくは、窒化処理の温度は1350〜1450℃
であり、窒素含有雰囲気の圧力は5〜2000kg/cm2
である。The various conditions of the nitriding treatment need to be changed to some extent depending on the thickness of the molded body and the like, but the treatment temperature should be 1250 ° C. or higher and less than 1500 ° C. The pressure of the nitrogen-containing atmosphere is preferably 1 kg / cm 2 or more. Temperature is 1250
If the temperature is lower than 0 ° C or the pressure of the nitrogen-containing atmosphere is lower than 1 kg / cm 2 , nitriding of the silicon powder in the molded body does not proceed well. On the other hand, if the heating temperature is 1500 ° C. or higher, Si is eluted and vaporization of Si occurs, which is not preferable.
The nitriding time varies depending on the thickness of the compact, the nitriding temperature, etc., but is generally about 1 to 10 hours. More preferably, the temperature of the nitriding treatment is 1350 to 1450 ° C.
And the pressure of the nitrogen-containing atmosphere is 5 to 2000 kg / cm 2
Is.
【0024】以上の条件で窒化処理を行うと、成形体中
の珪素粒子は窒化されてα−Si3 N4 を含むSi3 N4 が
生成される。珪素粒子が窒化され窒化珪素が生成される
と成形体中の粒子は膨張し、これにより、成形体中に存
在した空孔(粉末粒子間の空隙部)は大幅に減少する。When the nitriding treatment is performed under the above conditions, the silicon particles in the compact are nitrided to produce Si 3 N 4 containing α-Si 3 N 4 . When the silicon particles are nitrided and silicon nitride is generated, the particles in the compact expand, and the pores (voids between the powder particles) existing in the compact are greatly reduced.
【0025】(ハ)焼結 本発明においては、さらに、上述の窒化処理後の成形体
を1500℃以上、好ましくは1500〜2000℃の
温度で、さらに好ましくは1700〜2000℃の温度
で焼結する。焼結温度が1500℃未満であると、焼結
体の強度及び靭性が低下する。焼結は非酸化性雰囲気
下、好ましくは窒素ガス雰囲気下で行う。このとき、雰
囲気ガス圧は5〜2000kg/cm2 程度とするのが好ま
しい。また、焼結時間(1500℃以上に保持する時
間)は1〜5時間程度とするのが好ましい。 (C) Sintering In the present invention, the molded body after the above nitriding treatment is further sintered at a temperature of 1500 ° C. or higher, preferably 1500 to 2000 ° C., more preferably 1700 to 2000 ° C. To do. If the sintering temperature is less than 1500 ° C, the strength and toughness of the sintered body will decrease. Sintering is performed in a non-oxidizing atmosphere, preferably a nitrogen gas atmosphere. At this time, the atmospheric gas pressure is preferably about 5 to 2000 kg / cm 2 . Further, the sintering time (time kept at 1500 ° C. or higher) is preferably about 1 to 5 hours.
【0026】上述の温度範囲内で焼結を行うことによ
り、先の窒化処理により生成されたα−Si3 N4 粒子が
針状のβ−Si3 N4 結晶粒子に変化する。このように針
状のβ−Si3 N4 結晶粒子が密に生成すると、焼結体の
強度、靭性が大幅に向上することになる。By performing the sintering within the above temperature range, the α-Si 3 N 4 particles produced by the above nitriding treatment are changed into acicular β-Si 3 N 4 crystal particles. When the acicular β-Si 3 N 4 crystal particles are densely formed in this manner, the strength and toughness of the sintered body are significantly improved.
【0027】本発明においては、肌荒れ防止用粉末の中
に前述の窒化処理後の成形体を埋没した状態で、焼結を
行ってもよい。焼結体肌荒れ防止用粉末としては、窒化
珪素粉末と珪素粉末との混合物を用いるのが好ましい。
また、焼結助剤及び窒化ほう素等の添加物を混合しても
よい。それらの粉末の平均粒径は0.1〜50μmであ
るのが好ましく、より好ましくは0.1〜30μmであ
る。また、肌荒れ防止用粉末の混合割合は、肌荒れ防止
用粉末全体を100重量%として、窒化珪素粉末を70
〜99重量%、珪素粉末を1〜30重量%とするのが好
ましい。より好ましくは、窒化珪素粉末を90〜99重
量%、珪素粉末を1〜10重量%とする。また、焼結助
剤及び窒化ほう素等を混合した場合は、肌荒れ防止用粉
末全体を100重量%として、窒化珪素粉末を40〜8
9重量%、珪素粉末を1〜30重量%、添加物10〜3
0重量%とするのが好ましい。より好ましくは、窒化珪
素粉末を65〜84重量%、珪素粉末を1〜10重量
%、添加物15〜25重量%とする。好ましい一実施例
では、窒化珪素粉末と珪素粉末との重量比を9:1とす
る。この肌荒れ防止用粉末中で焼結することにより、成
形体表面の窒化珪素の分解及び蒸発を防止することがで
きるため、焼結品の表面の凹凸の形成が防止され、焼肌
強度が向上する。この場合、他の焼結の条件は前述の焼
結と同じでよい。In the present invention, sintering may be performed in a state in which the above-mentioned nitriding-formed compact is buried in the rough skin preventing powder. It is preferable to use a mixture of silicon nitride powder and silicon powder as the powder for preventing roughening of the sintered body.
Further, a sintering aid and an additive such as boron nitride may be mixed. The average particle size of these powders is preferably 0.1 to 50 μm, more preferably 0.1 to 30 μm. In addition, the mixing ratio of the rough skin preventing powder is such that the total amount of the rough skin preventing powder is 100% by weight, and the silicon nitride powder is 70% by weight.
˜99 wt% and silicon powder is preferably 1 to 30 wt%. More preferably, the silicon nitride powder is 90 to 99% by weight and the silicon powder is 1 to 10% by weight. When a sintering aid, boron nitride and the like are mixed, the entire surface roughening prevention powder is set to 100% by weight and the silicon nitride powder is added in an amount of 40 to 8%.
9% by weight, 1 to 30% by weight of silicon powder, additives 10 to 3
It is preferably 0% by weight. More preferably, the silicon nitride powder is 65 to 84% by weight, the silicon powder is 1 to 10% by weight, and the additive is 15 to 25% by weight. In a preferred embodiment, the weight ratio of silicon nitride powder to silicon powder is 9: 1. By sintering in the powder for preventing skin roughening, decomposition and evaporation of silicon nitride on the surface of the molded body can be prevented, so that the formation of irregularities on the surface of the sintered product is prevented and the burnt surface strength is improved. . In this case, other sintering conditions may be the same as the above-mentioned sintering.
【0028】[0028]
【実施例】以下、本発明を具体的実施例によりさらに詳
細に説明するが、本発明はこれに限定されるものではな
い。実施例1 平均粒径が33.6μmで粒径範囲が20〜80μmの
珪素粉末と、平均粒径が3.5μmで粒径範囲が1〜2
0μmの珪素粉末との混合物に、平均粒径が0.4〜
0.5μmのα−Si3 N4 粉末及び焼結助剤として平
均粒径が1.4μmのY2 O3 粉末と、平均粒径が0.
3〜0.5μmのMgO粉末を下表1の割合で配合し
た。EXAMPLES The present invention will now be described in more detail with reference to specific examples, but the present invention is not limited thereto. Example 1 Silicon powder having an average particle size of 33.6 μm and a particle size range of 20 to 80 μm, and an average particle size of 3.5 μm and a particle size range of 1 to 2
A mixture with 0 μm of silicon powder has an average particle size of 0.4-
0.5 μm α-Si 3 N 4 powder, Y 2 O 3 powder having an average particle size of 1.4 μm as a sintering aid, and an average particle size of 0.
3 to 0.5 μm of MgO powder was blended in the ratio shown in Table 1 below.
【0029】表1成分 割合(重量%)珪素及び窒化珪素粉末 大粒径粉末(平均粒径33.6μm) 55.4(1) 小粒径粉末(平均粒径 3.5μm) 23.8(1) α-Si 3 N 4 粉末 8.8焼結助剤 Y2 O3 粉末 7 MgO粉末 5 注(1) :珪素粉末の重量%はSi3 N4 換算値である。Table 1 Component ratio (wt% ) Silicon and silicon nitride powder Large particle size powder (Average particle size 33.6 μm) 55.4 (1) Small particle size powder (Average particle size 3.5 μm) 23.8 (1) α-Si 3 N 4 powder 8.8 Sintering aid Y 2 O 3 powder 7 MgO powder 5 Note (1): The weight% of silicon powder is the Si 3 N 4 conversion value.
【0030】この粉末混合物100重量部にエタノール
80重量部を加え、ポリエチレン製のポットにミル用ボ
ールを1個入れたボールミルを使用し、170rpmで
18時間のボールミル混合を行った。80 parts by weight of ethanol was added to 100 parts by weight of this powder mixture, and ball mill mixing was carried out at 170 rpm for 18 hours using a ball mill in which one mill ball was placed in a polyethylene pot.
【0031】得られた混合物をロータリーエバポレータ
により乾燥し、金型プレス及びCIP(3000kg/cm
2 ) により、30mm×50mm×5mmの大きさに成形し
た。The obtained mixture was dried by a rotary evaporator, and was pressed by a mold and CIP (3000 kg / cm).
2 ), and molded into a size of 30 mm × 50 mm × 5 mm.
【0032】得られた成形体を乾燥させたのち、9kg/
cm2 の窒素雰囲気下で1450℃、4時間の窒化処理を
行った。After drying the obtained molded body, 9 kg /
Nitriding was performed at 1450 ° C. for 4 hours in a nitrogen atmosphere of cm 2 .
【0033】窒化処理後冷却し、成形体を肌荒れ防止用
粉末中に埋没して、温度を1700℃に上げて4時間保
持し、9kg/cm2 の窒素雰囲気下で焼結を行った。な
お、肌荒れ防止用粉末としては、平均粒径26.2μm
の珪素粉末と、平均粒径が0.4〜0.5μmのα−S
i3 N4 粉末とを1:9の重量比で混合したものを用い
た。After the nitriding treatment, it was cooled, the molded body was embedded in powder for preventing rough skin, the temperature was raised to 1700 ° C. and kept for 4 hours, and sintering was carried out in a nitrogen atmosphere of 9 kg / cm 2 . The powder for preventing rough skin has an average particle size of 26.2 μm.
Silicon powder and α-S having an average particle size of 0.4 to 0.5 μm
A mixture of i 3 N 4 powder and a weight ratio of 1: 9 was used.
【0034】得られた焼結体に表面研磨を施さないで、
室温及び1300℃における焼肌強度をセラミックス3
点曲げJIS 法に準拠して測定した。成形体の密度、仮焼
体(窒化処理後の成形体)の窒化度及び焼結体の焼肌強
度の測定結果を、焼結条件とともに表6に示す。The surface of the obtained sintered body was not polished,
Ceramics 3 for burnt surface strength at room temperature and 1300 ° C
The point bending was measured according to the JIS method. Table 6 shows the measurement results of the density of the molded body, the nitriding degree of the calcined body (molded body after nitriding treatment), and the burn surface strength of the sintered body together with the sintering conditions.
【0035】実施例2 実施例1と同じ珪素粉末混合物に、平均粒径が0.4〜
0.5μmのα−Si3 N4 粉末及び焼結助剤としてY
2 O3 粉末とMgO粉末を下表2の割合で配合し、実施
例1と同様にしてボールミル混合、乾燥、成形、窒化処
理及び焼結を行い、窒化珪素反応焼結体を得た。 Example 2 The same silicon powder mixture as in Example 1 was used, but with an average particle size of 0.4 to
0.5 μm α-Si 3 N 4 powder and Y as a sintering aid
2 O 3 powder and MgO powder were mixed in the proportions shown in Table 2 below, and ball mill mixing, drying, molding, nitriding and sintering were carried out in the same manner as in Example 1 to obtain a silicon nitride reaction sintered body.
【0036】得られた焼結体について、実施例1と同様
にして室温及び1300℃における焼肌強度を測定し
た。成形体の密度、仮焼体の窒化度及び焼結体の焼肌強
度の測定結果を、焼結条件とともに表6に示す。With respect to the obtained sintered body, burnt strength at room temperature and 1300 ° C. was measured in the same manner as in Example 1. Table 6 shows the measurement results of the density of the molded body, the nitriding degree of the calcined body, and the burnt surface strength of the sintered body together with the sintering conditions.
【0037】表2成分 割合(重量%) 珪素及び窒化珪素粉末 大粒径粉末(平均粒径33.6μm) 56.7(1) 小粒径粉末(平均粒径 3.5μm) 24.3(1) α−Si3 N4 粉末 9焼結助剤 Y2 O3 粉末 5 MgO粉末 5 注(1) :珪素粉末の重量%はSi3 N4 換算値である。Table 2 Component ratio (wt%) Silicon and silicon nitride powder Large particle size powder (Average particle size 33.6 μm) 56.7 (1) Small particle size powder (Average particle size 3.5 μm) 24.3 (1) α-Si 3 N 4 powder 9 Sintering aid Y 2 O 3 powder 5 MgO powder 5 Note (1): The weight% of silicon powder is a Si 3 N 4 conversion value.
【0038】比較例1 実施例1と同様にして、平均粒径26.2μmの珪素粉
末に、平均粒径が0.4〜0.5μmのα−Si3 N4
粉末及び焼結助剤としてY2 O3 粉末とAl2O3 粉末
を下表3の割合で配合した。この混合物を用い実施例1
と同様にして、ボールミル混合、成形、窒化処理を行っ
た。その後、1900℃、窒素雰囲気下(窒素ガス圧:
9kg/cm2 )で焼結を4時間行い、窒化珪素焼結体を得
た。 Comparative Example 1 In the same manner as in Example 1, silicon powder having an average particle size of 26.2 μm was added to α-Si 3 N 4 having an average particle size of 0.4 to 0.5 μm.
As a powder and a sintering aid, Y 2 O 3 powder and Al 2 O 3 powder were blended in a ratio shown in Table 3 below. Example 1 using this mixture
Ball mill mixing, molding, and nitriding were performed in the same manner as in. Then, at 1900 ° C. in a nitrogen atmosphere (nitrogen gas pressure:
Sintering was performed for 4 hours at 9 kg / cm 2 ) to obtain a silicon nitride sintered body.
【0039】得られた焼結体について、実施例1と同様
にして室温及び1300℃における焼肌強度を測定し
た。成形体の密度、仮焼体の窒化度及び焼結体の焼肌強
度の測定結果を、焼結条件とともに表6に示す。 表3成分 割合(重量%) 珪素及び窒化珪素粉末 珪素粉末(平均粒径26.2 μm) 86.8(1) α−Si3 N4 粉末 9.7焼結助剤 Y2 O3 粉末 2.5 Al2 O3 粉末 1.0 注(1) :珪素粉末の重量%はSi3 N4 換算値である。With respect to the obtained sintered body, burnt strength at room temperature and 1300 ° C. was measured in the same manner as in Example 1. Table 6 shows the measurement results of the density of the molded body, the nitriding degree of the calcined body, and the burnt surface strength of the sintered body together with the sintering conditions. Table 3 Component ratio (wt%) Silicon and silicon nitride powder Silicon powder (average particle size 26.2 μm) 86.8 (1) α-Si 3 N 4 powder 9.7 Sintering aid Y 2 O 3 powder 2 .5 Al 2 O 3 powder 1.0 Note (1): The weight% of silicon powder is the Si 3 N 4 conversion value.
【0040】比較例2 実施例1と同様にして、平均粒径5.9μmの珪素粉末
に、平均粒径が0.4〜0.5μmのα−Si3 N4 粉
末及び焼結助剤としてY2 O3 粉末とAl2 O3 粉末を
下表4の割合で配合した。この混合物を用い実施例1と
同様にして、ボールミル混合、成形、窒化処理を行っ
た。その後、1900℃、窒素雰囲気下(窒素ガス圧:
9kg/cm2 )で焼結を4時間行い、窒化珪素焼結体を得
た。 Comparative Example 2 In the same manner as in Example 1, silicon powder having an average particle diameter of 5.9 μm, α-Si 3 N 4 powder having an average particle diameter of 0.4 to 0.5 μm and a sintering aid were used. Y 2 O 3 powder and Al 2 O 3 powder were blended in the proportions shown in Table 4 below. Using this mixture, ball mill mixing, molding and nitriding were performed in the same manner as in Example 1. Then, at 1900 ° C. in a nitrogen atmosphere (nitrogen gas pressure:
Sintering was performed for 4 hours at 9 kg / cm 2 ) to obtain a silicon nitride sintered body.
【0041】得られた焼結体について、実施例1と同様
にして室温及び1300℃における焼肌強度を測定し
た。成形体の密度、仮焼体の窒化度及び焼結体の焼肌強
度の測定結果を、焼結条件とともに表6に示す。With respect to the obtained sintered body, burnt strength at room temperature and 1300 ° C. was measured in the same manner as in Example 1. Table 6 shows the measurement results of the density of the molded body, the nitriding degree of the calcined body, and the burnt surface strength of the sintered body together with the sintering conditions.
【0042】表4成分 割合(重量%) 珪素及び窒化珪素粉末 珪素粉末(平均粒径5.9μm) 86.8(1) α−Si3 N4 粉末 9.7焼結助剤 Y2 O3 粉末 2.5 Al2 O3 粉末 1.0 注(1) :珪素粉末の重量%はSi3 N4 換算値である。Table 4 Component ratio (wt%) Silicon and silicon nitride powder Silicon powder (average particle size 5.9 μm) 86.8 (1) α-Si 3 N 4 powder 9.7 Sintering aid Y 2 O 3 Powder 2.5 Al 2 O 3 powder 1.0 Note (1): The weight% of silicon powder is the Si 3 N 4 conversion value.
【0043】比較例3 実施例1と同じ珪素粉末混合物に、平均粒径が0.4〜
0.5μmのα−Si3 N4 粉末と焼結助剤としてY2
O3 粉末及びAl2 O3 粉末を下表5の割合で配合し
た。その後実施例1と同様にして、ボールミル混合、成
形、窒化処理を行った。その後、1900℃、窒素雰囲
気下(窒素ガス圧:9kg/cm2 )で焼結を4時間行い、
窒化珪素焼結体を得た。 Comparative Example 3 The same silicon powder mixture as in Example 1 was used, but with an average particle size of 0.4 to
0.5 μm α-Si 3 N 4 powder and Y 2 as a sintering aid
O 3 powder and Al 2 O 3 powder were blended in the proportions shown in Table 5 below. Thereafter, in the same manner as in Example 1, ball mill mixing, molding, and nitriding treatment were performed. Then, sintering is performed at 1900 ° C. in a nitrogen atmosphere (nitrogen gas pressure: 9 kg / cm 2 ) for 4 hours,
A silicon nitride sintered body was obtained.
【0044】得られた焼結体について、実施例1と同様
にして室温及び1300℃における焼肌強度を測定し
た。成形体の密度、仮焼体の窒化度及び焼結体の焼肌強
度の測定結果を、焼結条件とともに表6に示す。With respect to the obtained sintered body, burnt strength at room temperature and 1300 ° C. was measured in the same manner as in Example 1. Table 6 shows the measurement results of the density of the molded body, the nitriding degree of the calcined body, and the burnt surface strength of the sintered body together with the sintering conditions.
【0045】 表5 成分 割合(重量%) 珪素及び窒化珪素粉末 大粒径粉末(平均粒径33.6μm) 60.8(1) 小粒径粉末(平均粒径 3.5μm) 26.0(1) α−Si3 N4 粉末 9.7 焼結助剤 Y2 O3 粉末 2.5 Al2 O3 粉末 1.0 注(1) :珪素粉末の重量%はSi3 N4 換算値である。Table 5 Component ratio (wt%) Silicon and silicon nitride powder Large particle size powder (average particle size 33.6 μm) 60.8 (1) Small particle size powder (average particle size 3.5 μm) 26.0 (1) α-Si 3 N 4 powder 9.7 Sintering aid Y 2 O 3 powder 2.5 Al 2 O 3 powder 1.0 Note (1): The weight% of silicon powder is the Si 3 N 4 conversion value.
【0046】 表6 仮焼体 焼肌強度 (3) 焼結条件 成形体密度(1) 窒化度(2) 室温 1300℃ 温度 時間 例NO. (%) (%) (MPa) (MPa) ( ℃) (HR) 実施例1 70.7 96 610 405 1700 4 実施例2 71.3 98 590 415 1700 4 比較例1 66.0 95 420 287 1900 4 比較例2 65.2 98 436 − 1900 4 比較例3 70.4 95 492 350 1900 4 注(1) :対理論密度 (2) :成形体の重量変化で測定 (3) :焼結した後、表面研磨をせずに測定した強度をセ
ラミックス3点曲げJIS 法に準拠して測定Table 6 Calcined Surface Burning Strength (3) Sintering Conditions Compact Density (1) Nitriding Degree (2) Room Temperature 1300 ° C Temperature Time Example NO. (%) (%) (MPa) (MPa) (° C ) (HR) example 1 70.7 96 610 405 1700 4 example 2 71.3 98 590 415 1700 4 Comparative example 1 66.0 95 420 287 1900 4 Comparative example 2 65.2 98 436 - 1900 4 Comparative example 3 70. 4 95 492 350 1900 4 Note (1): Theoretical density (2): Measured by weight change of molded body (3): Strength measured without sintering surface after sintering 3 points of ceramics Bending Measured according to JIS method
【0047】表6から明らかなように、大粒径の珪素粉
末と小粒径の珪素粉末との混合物を原料珪素粉末として
用い、Y2 O3 とMgO等とからなる焼結助剤を用いた
ことにより、焼結体の焼肌強度が大幅に向上した。As is clear from Table 6, a mixture of a silicon powder having a large particle diameter and a silicon powder having a small particle diameter is used as a raw material silicon powder, and a sintering aid composed of Y 2 O 3 and MgO is used. As a result, the burnt surface strength of the sintered body was significantly improved.
【0048】[0048]
【発明の効果】以上詳述したように、本発明の方法によ
れば、焼結による表面の窒化珪素の分解及び蒸発が防止
でき、表面の平滑性が向上するため、十分な室温及び高
温の焼肌強度を有する窒化珪素焼結体を得ることができ
る。本発明の方法により製造された窒化珪素反応焼結体
は、焼結による収縮が小さく、ニアネットシェイプに成
形して作製することができるので、特に複雑な形状のセ
ラミックス部材に適している。As described above in detail, according to the method of the present invention, decomposition and evaporation of silicon nitride on the surface due to sintering can be prevented, and the smoothness of the surface can be improved. It is possible to obtain a silicon nitride sintered body having burnt surface strength. The silicon nitride reaction-sintered body produced by the method of the present invention has a small shrinkage due to sintering and can be formed into a near-net shape, so that it is particularly suitable for a ceramic member having a complicated shape.
【図1】本発明の成形体の製造に用いる珪素粉末混合物
の粒度分布を概略的に示すグラフであり、(a) は二山分
布を示し、(b) は三山分布を示す。FIG. 1 is a graph schematically showing a particle size distribution of a silicon powder mixture used for producing a molded body of the present invention, (a) showing a two-peak distribution and (b) showing a three-peak distribution.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 102 H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location 102 H
Claims (5)
る2種類以上の珪素粉末を混合してなる平均粒径が5〜
300μmの珪素粉末混合物に、Y2 O3 と、MgO、
CeO2 、BeO、AlN、La2 O3 、ZrO2 、F
e及びFeO3 から選ばれた少なくとも1種との組み合
わせからなる焼結助剤を添加し、(b) 得られた粉末混合
物で理論密度の少なくとも70%の密度を有する成形体
を作製し、(c) 前記成形体を窒素含有雰囲気下において
1500℃未満の温度で加熱することにより窒化処理を
行い、(d) 次いで、窒化処理した成形体を1500℃〜
2000℃で焼結することを特徴とする窒化珪素反応焼
結体の製造方法。1. (a) An average particle size obtained by mixing two or more kinds of silicon powders having substantially different particle size distribution regions is 5 to 5.
In a 300 μm silicon powder mixture, Y 2 O 3 , MgO,
CeO 2 , BeO, AlN, La 2 O 3 , ZrO 2 , F
e and a sintering aid consisting of a combination with at least one selected from FeO 3 are added, and (b) a molded body having a density of at least 70% of the theoretical density is produced from the obtained powder mixture, c) Nitriding treatment is performed by heating the molded body under a nitrogen-containing atmosphere at a temperature of less than 1500 ° C., and (d) Next, the nitrided molded body is heated to 1500 ° C.
A method of manufacturing a silicon nitride reaction sintered body, which comprises sintering at 2000 ° C.
製造方法において、前記焼結助剤は、Y2 O3 とMgO
とを含有することを特徴とする窒化珪素焼結体の製造方
法。2. The method for producing a silicon nitride reaction sintered body according to claim 1, wherein the sintering aid is Y 2 O 3 and MgO.
A method for producing a silicon nitride sintered body, comprising:
結体の製造方法において、前記焼結助剤は、さらにAl
2 O3 を含有することを特徴とする窒化珪素焼結体の製
造方法。3. The method for manufacturing a silicon nitride reaction sintered body according to claim 1, wherein the sintering aid is Al.
A method for producing a silicon nitride sintered body, which comprises 2 O 3 .
体の製造方法において、前記(d) 工程では、肌荒れ防止
用粉末中に埋没して焼結することを特徴とする窒化珪素
焼結体の製造方法。4. The method for producing a silicon nitride reaction sintered body according to any one of claims 1 to 3, wherein in the step (d), the silicon nitride is sintered by being buried in a rough skin preventing powder. Manufacturing method of sintered body.
製造方法において、前記肌荒れ防止用粉末が、珪素粉末
と窒化珪素粉末との混合物であることを特徴とする窒化
珪素焼結体の製造方法。5. The method for manufacturing a silicon nitride reaction sintered body according to claim 4, wherein the rough skin preventing powder is a mixture of silicon powder and silicon nitride powder. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6051373A JPH07237971A (en) | 1994-02-24 | 1994-02-24 | Production of silicon nitride reaction sintered compact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6051373A JPH07237971A (en) | 1994-02-24 | 1994-02-24 | Production of silicon nitride reaction sintered compact |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07237971A true JPH07237971A (en) | 1995-09-12 |
Family
ID=12885147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6051373A Pending JPH07237971A (en) | 1994-02-24 | 1994-02-24 | Production of silicon nitride reaction sintered compact |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07237971A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999011583A1 (en) * | 1997-09-03 | 1999-03-11 | Sumitomo Electric Industries, Ltd. | Silicon nitride sinter having high thermal conductivity and process for preparing the same |
JP2007197229A (en) * | 2006-01-24 | 2007-08-09 | National Institute Of Advanced Industrial & Technology | High-thermal conductive silicon nitride substrate and method of manufacturing the same |
JP2013100232A (en) * | 2007-02-20 | 2013-05-23 | Corning Inc | Refractory ceramic composite and method for making the same |
CN110240131A (en) * | 2019-05-13 | 2019-09-17 | 天津炜润达新材料科技有限公司 | A kind of preparation method of silicon nitride |
CN112851361A (en) * | 2021-01-29 | 2021-05-28 | 北方民族大学 | ZrN-lanthanum silicate complex phase ceramic and hot pressing reaction sintering preparation method thereof |
-
1994
- 1994-02-24 JP JP6051373A patent/JPH07237971A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999011583A1 (en) * | 1997-09-03 | 1999-03-11 | Sumitomo Electric Industries, Ltd. | Silicon nitride sinter having high thermal conductivity and process for preparing the same |
US6143677A (en) * | 1997-09-03 | 2000-11-07 | Sumitomo Electric Industries, Ltd. | Silicon nitride sinter having high thermal conductivity and process for preparing the same |
JP2007197229A (en) * | 2006-01-24 | 2007-08-09 | National Institute Of Advanced Industrial & Technology | High-thermal conductive silicon nitride substrate and method of manufacturing the same |
JP2013100232A (en) * | 2007-02-20 | 2013-05-23 | Corning Inc | Refractory ceramic composite and method for making the same |
CN110240131A (en) * | 2019-05-13 | 2019-09-17 | 天津炜润达新材料科技有限公司 | A kind of preparation method of silicon nitride |
CN112851361A (en) * | 2021-01-29 | 2021-05-28 | 北方民族大学 | ZrN-lanthanum silicate complex phase ceramic and hot pressing reaction sintering preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61111970A (en) | Silicon nitride sintered body and manufacture | |
JP3559382B2 (en) | Method for producing silicon nitride based sintered body | |
JPH07237971A (en) | Production of silicon nitride reaction sintered compact | |
JP2507480B2 (en) | SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof | |
JP2649220B2 (en) | Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body | |
JP3810183B2 (en) | Silicon nitride sintered body | |
JPS63236763A (en) | Boron carbide sintered body and manufacture | |
JP3564165B2 (en) | Method for producing silicon nitride reaction sintered body | |
JP2665755B2 (en) | Method for producing β-sialon composite ceramics | |
JP2980342B2 (en) | Ceramic sintered body | |
JP3124865B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP3564164B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPS6346029B2 (en) | ||
JPH06116045A (en) | Silicon nitride sintered compact and its production | |
JP2771335B2 (en) | Silicon nitride sintered body for cutting tools | |
JP3567001B2 (en) | Method for producing composite sintered body of silicon carbide and silicon nitride | |
JPH05117032A (en) | Production of silicon nitride sintered compact | |
JPH1029869A (en) | Silicon nitride-silicon carbide composite sintered compact and its production | |
JPH1149571A (en) | Silicon nitride sintered compact and its production | |
JP2940627B2 (en) | Method for producing silicon nitride ceramic sintered body | |
JP2700786B2 (en) | High-temperature high-strength silicon nitride sintered body and method for producing the same | |
JP2706304B2 (en) | Method for producing silicon nitride sintered body | |
JPH0559073B2 (en) | ||
JPH05201771A (en) | Production of reaction-sintered composite material containing boron nitride,production of molding therefrom, and composite material containing boron nitride and produced thereby | |
JP2694368B2 (en) | Method for producing silicon nitride based sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040728 |