JPH07233485A - Polishing liquid for copper metal and production of semiconductor device - Google Patents
Polishing liquid for copper metal and production of semiconductor deviceInfo
- Publication number
- JPH07233485A JPH07233485A JP26361394A JP26361394A JPH07233485A JP H07233485 A JPH07233485 A JP H07233485A JP 26361394 A JP26361394 A JP 26361394A JP 26361394 A JP26361394 A JP 26361394A JP H07233485 A JPH07233485 A JP H07233485A
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- film
- polishing liquid
- alloy
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- ing And Chemical Polishing (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、銅系金属用研磨液およ
び半導体装置の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper-based metal polishing liquid and a method for manufacturing a semiconductor device.
【0002】[0002]
【従来の技術】J.Electrochem.So
c.,VoL.138.No11,3460(199
1)、VMIC Conference,ISMIC−
101/92/0156(1992)またはVMIC
Conference,ISMIC−102/93/0
205(1993)には、アミン系コロイダルシリカの
スラリーまたはK3 Fe(CN)6 、K4 (CN)6 、
Co(NO3 )2 が添加されたスラリーからなるCu膜
またはCu合金膜の研磨液が開示されている。2. Description of the Related Art Electrochem. So
c. , VoL. 138. No11, 3460 (199
1), VMIC Conference, ISMIC-
101/92/0156 (1992) or VMIC
Conference, ISMIC-102 / 93/0
205 (1993), a slurry of amine colloidal silica or K 3 Fe (CN) 6 , K 4 (CN) 6 ,
A polishing liquid for a Cu film or a Cu alloy film made of a slurry to which Co (NO 3 ) 2 is added is disclosed.
【0003】しかしながら、前記研磨液は浸漬時と研磨
時との間でCu膜の溶解速度に差がないため、次のよう
な問題がある。半導体装置の製造工程の一つである配線
層形成においては、表面の段差を解消する目的でエッチ
バック技術が採用されている。このエッチバック技術
は、半導体基板上の絶縁膜に溝を形成し、前記溝を含む
前記絶縁膜上にCu膜を堆積し、前記Cu膜を研磨液を
用いて研磨処理し、前記溝内のみにCu膜を残存させて
埋め込み配線層を形成する方法である。このようなエッ
チバック工程後において、前記溝内のCu配線層は研磨
液に接触されるため、浸漬時と研磨時との間でCu膜の
エッチング速度に差がない前述した組成の研磨液を使用
すると、前記Cu配線層はさらに前記研磨液によりエッ
チングされる。その結果、前記溝内のCu配線層の表面
位置が前記絶縁膜の表面より低くなるため、前記絶縁膜
の表面と面一の配線層の形成が困難になり、平坦性が損
なわれる。また、形成された埋め込みCu配線層は、絶
縁膜の表面と面一に埋め込まれたCu配線層に比べて抵
抗値が高くなる。However, since the polishing liquid has no difference in the dissolution rate of the Cu film between the immersion and the polishing, the following problems occur. In forming a wiring layer, which is one of the manufacturing steps of a semiconductor device, an etch-back technique is adopted for the purpose of eliminating a surface step. In this etchback technique, a groove is formed in an insulating film on a semiconductor substrate, a Cu film is deposited on the insulating film including the groove, and the Cu film is polished using a polishing liquid so that only the inside of the groove is formed. This is a method of forming a buried wiring layer by leaving the Cu film left behind. After such an etch-back step, the Cu wiring layer in the groove is brought into contact with the polishing liquid, so that the polishing liquid having the above-mentioned composition, which has no difference in the etching rate of the Cu film between the immersion and the polishing, is used. When used, the Cu wiring layer is further etched by the polishing liquid. As a result, the surface position of the Cu wiring layer in the groove becomes lower than the surface of the insulating film, so that it becomes difficult to form a wiring layer flush with the surface of the insulating film, and flatness is impaired. Further, the formed buried Cu wiring layer has a higher resistance value than the Cu wiring layer buried flush with the surface of the insulating film.
【0004】[0004]
【発明が解決しようとする課題】本発明の目的は、銅
(Cu)または銅合金(Cu合金)の浸漬時において前
記Cu等を殆どエッチングせず、かつ研磨処理時に前記
CuまたはCu合金を溶解して浸漬時と研磨処理時との
間で数倍ないし数十倍のエッチング速度差を示す銅系金
属用研磨液を提供しようとするものである。The object of the present invention is to etch Cu (Cu) or a copper alloy (Cu alloy) hardly when it is immersed, and to dissolve the Cu or Cu alloy during polishing. Then, it is intended to provide a polishing liquid for copper-based metals, which shows a difference in etching rate of several times to several tens of times between immersion and polishing.
【0005】本発明の別の目的は、半導体基板上の絶縁
膜に溝および/または開口部を形成し、前記絶縁膜上に
堆積された銅(Cu)または銅合金(Cu合金)からな
る配線材料膜を短時間でエッチバックできると共に絶縁
膜表面と面一の埋め込み配線層を形成することが可能な
半導体装置の製造方法を提供しようとするものである。Another object of the present invention is to form a groove and / or an opening in an insulating film on a semiconductor substrate and to form a wiring made of copper (Cu) or a copper alloy (Cu alloy) deposited on the insulating film. An object of the present invention is to provide a method for manufacturing a semiconductor device, which can etch back a material film in a short time and form a buried wiring layer flush with the surface of an insulating film.
【0006】本発明のさらに別の目的は、半導体基板上
の絶縁膜に溝および/または開口部を形成し、前記絶縁
膜上に堆積されたCuまたはCu合金からなる配線材料
膜を短時間でエッチバックして絶縁膜表面と面一の埋め
込み配線層を形成することができ、さらにエッチバック
後の絶縁膜表面等を良好に清浄化することが可能な半導
体装置の製造方法を提供しようとするものである。Still another object of the present invention is to form a groove and / or an opening in an insulating film on a semiconductor substrate and form a wiring material film made of Cu or Cu alloy on the insulating film in a short time. To provide a method for manufacturing a semiconductor device capable of forming a buried wiring layer flush with an insulating film surface by etching back, and further capable of satisfactorily cleaning the insulating film surface and the like after etching back. It is a thing.
【0007】[0007]
【課題を解決するための手段および作用】本発明に係わ
る銅系金属用研磨液は、アミノ酢酸およびアミド硫酸か
ら選ばれる少なくとも1種の有機酸と酸化剤と水とを含
有する。このような研磨液は、CuまたはCu合金の浸
漬時において前記酸化剤の酸化作用により前記Cuまた
はCu合金の表面にエッチングバリアとして機能する酸
化層を形成し、CuまたはCu合金の研磨時おいて前記
酸化層を機械的に除去して露出したCuまたはCu合金
を前記有機酸でエッチングする。このため、Cuまたは
Cu合金は研磨液に浸漬されている時は前記酸化層によ
りエッチングが抑制ないし防止され、研磨時に露出した
CuまたはCu合金が物理的な研磨と研磨液中の有機酸
によるエッチングが進行する。その結果、浸漬時と研磨
時との間のCuまたはCu合金のエッチング速度差を十
分大きく取ることが可能になる。The polishing solution for copper-based metals according to the present invention contains at least one organic acid selected from aminoacetic acid and amidosulfuric acid, an oxidizing agent and water. Such a polishing liquid forms an oxide layer functioning as an etching barrier on the surface of the Cu or Cu alloy by the oxidizing action of the oxidizing agent during immersion of Cu or Cu alloy, and when polishing Cu or Cu alloy. The exposed Cu or Cu alloy by mechanically removing the oxide layer is etched with the organic acid. Therefore, when Cu or Cu alloy is immersed in the polishing liquid, etching is suppressed or prevented by the oxide layer, and Cu or Cu alloy exposed during polishing is physically polished and etched by the organic acid in the polishing liquid. Progresses. As a result, it becomes possible to make a sufficiently large difference in etching rate of Cu or Cu alloy between the time of immersion and the time of polishing.
【0008】前記酸化剤としては、例えば過酸化水素
(H2 O2 )、次亜塩素酸ソーダ(NaClO)等を用
いることができる。前記研磨液は、前記有機酸が0.0
1〜10重量%含有し、かつ重量割合で前記有機酸1に
対して前記酸化剤を20以上にすることが好ましい。こ
のように研磨液中の有機酸の含有量および有機酸と酸化
剤の含有比率を規定したのは、次のような理由によるも
のである。As the oxidizing agent, for example, hydrogen peroxide (H 2 O 2 ) or sodium hypochlorite (NaClO) can be used. The polishing liquid contains 0.0% of the organic acid.
It is preferable that the content of the oxidizing agent be 1 to 10% by weight, and the weight ratio of the oxidizing agent to the organic acid is 20 or more. The reason for defining the content of the organic acid and the content ratio of the organic acid and the oxidizing agent in the polishing liquid is as follows.
【0009】前記有機酸の含有量を0.01重量%未満
にすると、研磨時のCuまたはCu合金のポリシング速
度(主に化学的溶解速度)が低下する恐れがある。一
方、前記有機酸の含有量が10重量%を越えると研磨液
中に浸漬した時にCuまたはCu合金のエッチングが過
度に進行して浸漬時と研磨時との間のエッチング速度差
が近似する恐れがある。より好ましい前記有機酸の含有
量は、0.01〜1重量%である。When the content of the organic acid is less than 0.01% by weight, the polishing rate (mainly the chemical dissolution rate) of Cu or Cu alloy during polishing may decrease. On the other hand, if the content of the organic acid exceeds 10% by weight, the etching of Cu or Cu alloy may proceed excessively when immersed in a polishing liquid, and the etching rate difference between the immersion and the polishing may be similar. There is. The more preferable content of the organic acid is 0.01 to 1% by weight.
【0010】重量割合で有機酸1に対して酸化剤を20
未満にすると、CuまたはCu合金の浸漬時と研磨時と
の間で十分なエッチング速度差を取れなくなる恐があ
る。前記研磨液中の有機酸と酸化剤の含有比率は、重量
割合で有機酸1に対して酸化剤を40以上、さらに好ま
しくは100以上にすることが望ましい。20 weight ratio of oxidizer to 1 organic acid
If the amount is less than the range, there is a fear that a sufficient etching rate difference cannot be obtained between the time of dipping Cu or Cu alloy and the time of polishing. The content ratio of the organic acid and the oxidant in the polishing liquid is preferably 40 or more, more preferably 100 or more with respect to 1 organic acid by weight.
【0011】前記有機酸に対する前記酸化剤の上限比率
は、酸化剤の含有量から規定することが望ましく、例え
ば前記酸化剤の含有量を30重量%にすることが好まし
い。前記酸化剤の含有量が30重量%を越えると、Cu
またはCu合金の研磨時において露出した面に酸化層が
直ぐに生成されてポリシング速度の低下を招く恐れがあ
る。The upper limit ratio of the oxidizing agent to the organic acid is preferably defined by the content of the oxidizing agent, and for example, the content of the oxidizing agent is preferably 30% by weight. If the content of the oxidizing agent exceeds 30% by weight, Cu
Alternatively, there is a possibility that an oxide layer is immediately formed on the exposed surface of the Cu alloy during polishing, resulting in a decrease in the polishing rate.
【0012】なお、前記有機酸の含有量を前記範囲内の
下限値(0.01重量%)側にする場合には、前記有機
酸と酸化剤の含有比率を重量割合で有機酸1に対して酸
化剤を40以上にすることが好ましい。When the content of the organic acid is set to the lower limit value (0.01% by weight) within the above range, the content ratio of the organic acid and the oxidizing agent is 1 by weight with respect to 1 organic acid. Therefore, it is preferable that the oxidizing agent is 40 or more.
【0013】本発明に係わる研磨液は、前記有機酸およ
び酸化剤の他にpHを9〜14に調節するアルカリ剤を
含有することを許容する。このようなアルカリ剤として
は、例えば水酸化カリウム、キノリンが好適である。The polishing liquid according to the present invention is allowed to contain, in addition to the organic acid and the oxidizing agent, an alkaline agent for adjusting the pH to 9-14. As such an alkaline agent, for example, potassium hydroxide and quinoline are suitable.
【0014】本発明に係わる研磨液は、前記有機酸およ
び酸化剤の他にシリカ粒子、アルミナ粒子、酸化セリウ
ム粒子、ジルコニア粒子等の研磨砥粒を添加することを
許容する。これらの研磨砥粒は、2種以上の混合物の形
態で用いてもよい。The polishing liquid according to the present invention allows addition of polishing abrasives such as silica particles, alumina particles, cerium oxide particles, and zirconia particles in addition to the organic acid and the oxidizing agent. These polishing abrasive grains may be used in the form of a mixture of two or more kinds.
【0015】前記研磨砥粒は、0.02〜0.1μmの
平均粒径を有することが好ましい。前記研磨砥粒は、1
〜14重量%添加されることが好ましい。前記研磨砥粒
の添加量を1重量%未満にすると、その効果を十分に達
成することが困難になる。一方、前記研磨砥粒の添加量
が14重量%を越えると、研磨液の粘度等が高くなって
取扱い難くなる。より好ましい研磨砥粒の添加量は、3
〜10重量%の範囲である。The abrasive grains preferably have an average particle size of 0.02 to 0.1 μm. The abrasive grains are 1
It is preferable to add -14% by weight. If the amount of the abrasive grains added is less than 1% by weight, it becomes difficult to achieve the effect sufficiently. On the other hand, if the amount of the abrasive grains added exceeds 14% by weight, the viscosity of the polishing liquid increases and it becomes difficult to handle. The more preferable amount of abrasive grains added is 3
It is in the range of 10% by weight.
【0016】本発明に係わる銅系金属用研磨液により例
えば基板上に成膜されたCu膜またはCu合金膜を研磨
するには、図1に示すポリシング装置が用いられる。す
なわち、ターンテーブル1上には例えば布から作られた
研磨パッド2が被覆されている。研磨液を供給するため
の供給管3は、前記研磨パッド2の上方に配置されてい
る。上面に支持軸4を有する基板ホルダ5は、研磨パッ
ド2の上方に上下動自在でかつ回転自在に配置されてい
る。このようなポリシング装置において、前記ホルダ5
により基板6をその研磨面(例えばCu膜)が前記パッ
ド2に対向するように保持し、前記供給管3から前述し
た組成の研摩液7を供給しながら、前記支持軸4により
前記基板6を前記研磨パッド2に向けて所望の加重を与
え、さらに前記ホルド5および前記ターンテーブル1を
互いに反対方向に回転させることにより前記基板上のC
u膜が研磨される。The polishing apparatus shown in FIG. 1 is used to polish a Cu film or a Cu alloy film formed on a substrate, for example, with the copper-based metal polishing liquid according to the present invention. That is, the turntable 1 is covered with a polishing pad 2 made of, for example, cloth. A supply pipe 3 for supplying a polishing liquid is arranged above the polishing pad 2. The substrate holder 5 having the support shaft 4 on the upper surface is arranged above the polishing pad 2 so as to be vertically movable and rotatable. In such a polishing apparatus, the holder 5
Holds the substrate 6 so that its polishing surface (eg, Cu film) faces the pad 2, and while the polishing liquid 7 having the above-described composition is supplied from the supply pipe 3, the substrate 6 is supported by the support shaft 4. A desired weight is applied to the polishing pad 2, and the holder 5 and the turntable 1 are rotated in opposite directions to each other, so that C on the substrate is
The u film is polished.
【0017】以上説明した本発明に係わる銅系金属用研
磨液は、アミノ酢酸およびアミド硫酸から選ばれる少な
くとも1種の有機酸と酸化剤と水とを含有するため、C
uまたはCu合金の浸漬時において前記Cu等を殆どエ
ッチングせず(好ましくは100nm/min以下のエ
ッチング速度)、かつ浸漬時と研磨時との間で数倍ない
し数十倍のエッチング速度差を示す。The copper-based metal-polishing liquid according to the present invention described above contains at least one organic acid selected from aminoacetic acid and amidosulfuric acid, an oxidizing agent, and water.
Cu or the like is hardly etched when u or Cu alloy is immersed (preferably an etching rate of 100 nm / min or less), and an etching rate difference of several times to several tens of times between immersion and polishing is exhibited. .
【0018】すなわち、前記研磨液の一成分である有機
酸(例えばアミノ酢酸)は、下記反応式に示すようにC
uの水和物と反応して錯体を生成する性質を有する。 Cu(H2 O)4 2++2H2 NCH2 COOH→Cu
(H2 NCH2 COOH)2 +4H2 O+2H+ Cuは、前記アミノ酢酸と水との混合液とは反応しな
い。このような反応系において、酸化剤(例えば過酸化
水素)を添加することにより前記反応式の矢印に示す方
向に反応が進み、Cuのエッチングなされる。That is, the organic acid (for example, aminoacetic acid) which is one component of the polishing liquid is C as shown in the following reaction formula.
It has a property of reacting with a hydrate of u to form a complex. Cu (H 2 O) 4 2+ + 2H 2 NCH 2 COOH → Cu
(H 2 NCH 2 COOH) 2 + 4H 2 O + 2H + Cu does not react with the mixed solution of aminoacetic acid and water. In such a reaction system, by adding an oxidizing agent (for example, hydrogen peroxide), the reaction proceeds in the direction shown by the arrow in the above reaction formula, and Cu is etched.
【0019】図2は、アミノ酢酸、過酸化水素および水
からなる研磨液においてアミノ酢酸の含有量を0.1重
量%と一定とし、過酸化水素の含有量を変化させた時の
基板上に成膜されたCu膜の浸漬時のエッチング速度お
よび研磨処理時のポリシング速度をプロットしたもので
ある。なお、研磨処理は前述した図1に示すポリシング
装置を用いて行われる。即ち、基板ホルダ5にCu膜が
成膜された基板をそのCu膜が例えばローデル・ニッタ
社製商品名;SUBA800からなる研磨パッド2側に
対向するように逆さにして保持し、支持軸4により前記
基板を研磨パッド2に400g/cm2 の加重を与え、
さらにターンテーブル1および前記ホルダ5をそれぞれ
100rpmの速度で互いに反対方向に回転させなが
ら、研磨液を供給管3から12.5ml/分の速度で前
記研磨パッド2に供給することによって研磨処理を行っ
た。FIG. 2 shows that when the content of aminoacetic acid in the polishing liquid consisting of aminoacetic acid, hydrogen peroxide and water was kept constant at 0.1% by weight, the content of hydrogen peroxide was varied on the substrate. It is a plot of the etching rate during immersion of the formed Cu film and the polishing rate during polishing treatment. The polishing process is performed using the polishing device shown in FIG. That is, the substrate with the Cu film formed on the substrate holder 5 is held upside down so that the Cu film faces the polishing pad 2 side made of, for example, a product name of SUBA800 manufactured by Rodel-Nitta Co., and is supported by the support shaft 4. The substrate is applied to the polishing pad 2 with a weight of 400 g / cm 2 ,
Further, while rotating the turntable 1 and the holder 5 in opposite directions at a speed of 100 rpm, respectively, a polishing liquid is supplied from the supply pipe 3 to the polishing pad 2 at a speed of 12.5 ml / min to perform a polishing process. It was
【0020】図2から明らかなようにCu膜の浸漬時に
おいて、過酸化水素を添加しない研磨液を用いた場合に
はCu膜のエッチングは全く起きないが、過酸化水素を
少量含有させるとCu膜が急激にエッチングされること
がわかる。これは、研磨液中の過酸化水素によりCuの
水和物が生成し、これにアミノ酢酸が反応して錯体を生
成してCuがエッチングされるためである。また、前記
過酸化水素の含有量をさらに多くするとCu膜のエッチ
ング速度が遅くなり、過酸化水素の含有量が5重量%に
なるとエッチング速度が零になることがわかる。これ
は、過酸化水素の含有量を多くするとCu膜の表面に前
記研磨液によるエッチングを妨げる酸化層が生成するた
めであると考えられる。As is apparent from FIG. 2, when the Cu film is dipped, when the polishing liquid containing no hydrogen peroxide is used, the Cu film is not etched at all. It can be seen that the film is rapidly etched. This is because the hydrate of Cu is generated by hydrogen peroxide in the polishing liquid, and aminoacetic acid reacts with this to form a complex to etch Cu. Further, it can be seen that when the content of hydrogen peroxide is further increased, the etching rate of the Cu film becomes slow, and when the content of hydrogen peroxide becomes 5% by weight, the etching rate becomes zero. It is considered that this is because when the content of hydrogen peroxide is increased, an oxide layer is formed on the surface of the Cu film that hinders etching by the polishing liquid.
【0021】事実、図3の(A)に示すように基板11
上に凹凸を有するCu膜12を形成し、この基板11を
図2に示すエッチング速度が遅くなった組成の研磨液
(アミノ酢酸0.1重量%、過酸化水素13重量%含
有)に3分間浸漬すると、図3の(B)に示すようにC
u膜12表面に酸化層13が生成される。また、前記研
磨液に前記基板を浸漬した後、Cu膜表面をXPS(X-
ray photoelectron spectroscopy)で分析すると、図4
の実線に示すスペクトルが現れることからも、酸化層が
生成されていることが確認された。なお、図4の点線は
Cu膜を基板に成膜した直後の加工前のスペクトルを示
す。In fact, as shown in FIG.
A Cu film 12 having irregularities is formed on the substrate 11, and the substrate 11 is immersed in a polishing liquid (containing 0.1% by weight of aminoacetic acid and 13% by weight of hydrogen peroxide) having a slow etching rate for 3 minutes. When immersed, C as shown in FIG.
An oxide layer 13 is formed on the surface of the u film 12. After dipping the substrate in the polishing liquid, the surface of the Cu film is treated with XPS (X-
Ray photoelectron spectroscopy)
From the appearance of the spectrum shown by the solid line, it was confirmed that an oxide layer was generated. The dotted line in FIG. 4 shows the spectrum before processing immediately after the Cu film was formed on the substrate.
【0022】図1に示すポリシング装置およびアミノ酢
酸0.1重量%、過酸化水素13重量%を含有する研磨
液を用いて前述した研磨処理を行うと、図2に示すよう
にCu膜のポリシング速度は浸漬時に比べて約10nm
/分の差が生じることが確認された。このような研磨処
理によるCu膜のポリシング速度の上昇は、図3の
(B)に示す酸化層13が表面に形成されたCu膜12
を前記研磨液が存在する研磨パッドで研磨すると、図3
の(C)に示すようにCu膜12の凸部に対応する酸化
層13が前記パッドにより機械的な研磨されて純Cuが
表面に露出し、研磨液中のアミノ酢酸および過酸化水素
の作用により化学的研磨が急激になされてためである。
つまり、研磨処理工程ではCu膜の研磨面に常に純Cu
が露出して研磨液中のアミノ酢酸および過酸化水素によ
る化学的エッチングがなされるためである。事実、研磨
処理直後のCu膜表面をXPSで分析すると、図4の一
点鎖線に示すスペクトルが現れ、Cuが露出しているこ
とが確認された。When the above-mentioned polishing treatment is carried out using the polishing apparatus shown in FIG. 1 and a polishing liquid containing 0.1% by weight of aminoacetic acid and 13% by weight of hydrogen peroxide, the Cu film is polished as shown in FIG. The speed is about 10 nm compared to when immersed
It was confirmed that there was a difference of / minute. The increase in the polishing rate of the Cu film due to such polishing treatment is caused by the Cu film 12 having the oxide layer 13 shown in FIG.
Is polished with a polishing pad in which the polishing liquid is present, as shown in FIG.
(C), the oxide layer 13 corresponding to the convex portion of the Cu film 12 is mechanically polished by the pad to expose pure Cu on the surface, and the action of aminoacetic acid and hydrogen peroxide in the polishing liquid is exerted. This is because the chemical polishing is rapidly performed.
That is, in the polishing process, pure Cu is always applied to the polished surface of the Cu film.
Is exposed and is chemically etched by aminoacetic acid and hydrogen peroxide in the polishing liquid. In fact, when the Cu film surface immediately after the polishing treatment was analyzed by XPS, the spectrum indicated by the alternate long and short dash line in FIG. 4 appeared, and it was confirmed that Cu was exposed.
【0023】また、図5はアミノ酢酸、過酸化水素およ
び水からなる研磨液においてアミノ酢酸の含有量を0.
9重量%と一定とし、過酸化水素の含有量を変化させた
時の基板上に成膜されたCu膜の浸漬時のエッチング速
度および研磨処理時のポリシング速度をプロットしたも
のである。なお、研磨処理は図1に示すポリシング装置
を用いて前述したのと同様な手順により行った。図5か
ら明らかなようにCu膜の浸漬時において、過酸化水素
を添加しない研磨液を用いた場合にはCu膜のエッチン
グは全く起きないが、過酸化水素を少量含有させるとC
u膜が急激にエッチングされることがわかる。また、前
記過酸化水素の含有量をさらに多くするとCu膜のエッ
チング速度が遅くなり、過酸化水素の含有量が約18重
量%になるとエッチング速度が零になることがわかる。
これは、過酸化水素の含有量を多くするとCu膜の表面
に前記研磨液によるエッチングを妨げる酸化層が生成す
るためであると考えられる。このような研磨液におい
て、過酸化水素が15重量%含有するものを用いて前述
したのと同様な方法によりCu膜を研磨処理すると、約
85nm/分の速度でCu膜がポリシングされ、浸漬時
と研磨処理時との間に十分なエッチング速度差が生じ
る。ただし、浸漬時にCu膜が確実にエッチングされな
い条件である過酸化水素が20重量%含有する研磨液、
つまりアミノ酢酸と過酸化水素の含有比率が重量割合で
アミノ酢酸1に対して過酸化水素を約20とした研磨液
においてもCu膜の研磨処理時のポリシング速度は約6
0nm/分となる。したがって、このように過酸化水素
の含有量を多くした研磨液を用いた場合でも浸漬時と研
磨処理時との間で十分なエッチング速度差をとることが
できる。Further, FIG. 5 shows that the content of aminoacetic acid in the polishing liquid consisting of aminoacetic acid, hydrogen peroxide and water was 0.
9 is a plot of the etching rate during immersion of a Cu film formed on a substrate and the polishing rate during polishing when the content of hydrogen peroxide was changed, with the content being constant at 9% by weight. The polishing process was performed using the polishing apparatus shown in FIG. 1 in the same procedure as described above. As is clear from FIG. 5, when the Cu film is dipped, when the polishing liquid containing no hydrogen peroxide is used, the Cu film is not etched at all, but when a small amount of hydrogen peroxide is contained, C
It can be seen that the u film is rapidly etched. Further, it can be seen that when the content of hydrogen peroxide is further increased, the etching rate of the Cu film becomes slow, and when the content of hydrogen peroxide becomes about 18% by weight, the etching rate becomes zero.
It is considered that this is because when the content of hydrogen peroxide is increased, an oxide layer is formed on the surface of the Cu film that hinders etching by the polishing liquid. When such a polishing liquid containing 15% by weight of hydrogen peroxide is used to polish the Cu film by the same method as described above, the Cu film is polished at a rate of about 85 nm / min, and when it is immersed. And a sufficient etching rate difference occurs between the polishing process and the polishing process. However, a polishing liquid containing 20% by weight of hydrogen peroxide, which is a condition under which the Cu film is not reliably etched during immersion,
That is, even in a polishing solution in which the content ratio of aminoacetic acid and hydrogen peroxide is about 20 by weight relative to 1 aminoacetic acid, the polishing rate at the time of polishing the Cu film is about 6
It becomes 0 nm / min. Therefore, even when the polishing liquid containing a large amount of hydrogen peroxide is used, a sufficient etching rate difference can be obtained between the immersion and the polishing treatment.
【0024】さらに、図6は有機酸であるアミド硫酸、
過酸化水素および水からなる研磨液においてアミド硫酸
の含有量を0.86重量%と一定とし、過酸化水素の含
有量を変化させた時の基板上に成膜されたCu膜の浸漬
時のエッチング速度および研磨処理時のポリシング速度
をプロットしたものである。なお、研磨処理は図1に示
すポリシング装置を用いて前述したのと同様な手順によ
り行った。図6から明らかなように過酸化水素を添加し
ない研磨液を用いた場合にはCu膜のエッチングは全く
起きないが、過酸化水素を少量含有させるとCu膜が急
激にエッチングされることがわかる。また、前記過酸化
水素の含有量をさらに多くするとCu膜のエッチング速
度が遅くなり、過酸化水素の含有量が約22重量%以上
になるとエッチング速度が50nm/分になることがわ
かる。これは、過酸化水素の含有量を多くするとCu膜
の表面に前記研磨液によるエッチングを妨げる酸化層が
生成するためであると考えられる。このような研磨液に
おいて、過酸化水素が30重量%含有するもの、つまり
アミド硫酸と過酸化水素の含有比率が重量割合でアミノ
酢酸1に対して過酸化水素を約35とした研磨液を用い
て前述したのと同様な方法でCu膜を研磨処理すると、
約950nm/分の速度でCu膜がポリシングされ、浸
漬時と研磨処理時とのエッチング速度差が約19倍と十
分に大きくとれる。Further, FIG. 6 shows amidosulfuric acid which is an organic acid,
When the content of amido-sulfuric acid in the polishing liquid consisting of hydrogen peroxide and water was kept constant at 0.86% by weight and the content of hydrogen peroxide was changed, the Cu film formed on the substrate was immersed. It is a plot of the etching rate and the polishing rate during polishing. The polishing process was performed using the polishing apparatus shown in FIG. 1 in the same procedure as described above. As is clear from FIG. 6, the Cu film is not etched at all when the polishing liquid containing no hydrogen peroxide is used, but the Cu film is rapidly etched when a small amount of hydrogen peroxide is contained. . Further, it can be seen that when the content of hydrogen peroxide is further increased, the etching rate of the Cu film becomes slow, and when the content of hydrogen peroxide becomes about 22% by weight or more, the etching rate becomes 50 nm / min. It is considered that this is because when the content of hydrogen peroxide is increased, an oxide layer is formed on the surface of the Cu film that hinders etching by the polishing liquid. In such a polishing liquid, one containing 30% by weight of hydrogen peroxide, that is, a polishing liquid in which the content ratio of amidosulfuric acid and hydrogen peroxide is about 35 hydrogen peroxide to 1 aminoacetic acid is used. When the Cu film is polished by the same method as described above,
The Cu film is polished at a rate of about 950 nm / min, and the difference in etching rate between immersion and polishing is about 19 times, which is sufficiently large.
【0025】したがって、本発明に係わる研磨液はCu
またはCu合金の浸漬時においてCuまたはCu合金を
殆どエッチングせず、かつ浸漬時と研磨時との間で数倍
ないし数十倍のエッチング速度差を示す。このため、研
磨処理工程において研磨液の供給タイミング等によりC
uのエッチング量が変動する等の問題を回避でき、その
操作を簡便に行うことができる。また、前記ポリシング
装置による前記基板上のCu膜の研磨の終了後におい
て、前記Cu膜は研磨液に接触されると前述したように
過酸化水素によりCu膜に酸化層が形成されるため、研
磨処理後においてもCu膜がさらにエッチングされる、
いわゆるオーバーエッチングを阻止することができる。
さらに、図3の(C)に示すように凹凸を有するCu膜
12は研磨工程において側面からのエッチングがなされ
ず、前記研磨パッドと当接する凸部表面から順次エッチ
ングすることができるため、後述するエッチバック技術
に極めて好適である。Therefore, the polishing liquid according to the present invention is Cu
Alternatively, the Cu or Cu alloy is hardly etched during immersion of the Cu alloy, and the etching rate difference between the immersion time and the polishing time is several to several tens of times. For this reason, in the polishing process step, C
The problem that the etching amount of u varies and the like can be avoided, and the operation can be performed easily. Further, after the polishing of the Cu film on the substrate by the polishing apparatus is completed, when the Cu film is brought into contact with a polishing liquid, an oxide layer is formed on the Cu film by hydrogen peroxide as described above, and thus the polishing is performed. The Cu film is further etched even after the treatment,
So-called over-etching can be prevented.
Further, as shown in FIG. 3C, the Cu film 12 having irregularities is not etched from the side surface in the polishing step, and can be sequentially etched from the surface of the convex portion contacting the polishing pad, which will be described later. Very suitable for etch back technology.
【0026】本発明に係わる研磨液において、水酸化カ
リウムのようなアルカリ剤を加えてpHを9〜14に調
節することにより前記研磨液にCuまたはCu合金を浸
漬した際、CuまたはCu合金の表面に前記研磨液に対
してエッチングバリア性の優れた酸化層を生成できる。
また、CuまたはCu合金の表面に生成される酸化層の
厚さを制御することができる。図7は、例えばアミノ酢
酸0.9重量%、過酸化水素12重量%を含み、水酸化
カリウムを添加してpHを8.5〜11に調節した研磨
液に基板上に成膜されたCu膜を浸漬した時の前記Cu
膜表面に生成された酸化層の厚さ変化を示す特性図であ
る。この図7に示すようにpHが高くなるに伴ってCu
膜表面に生成される酸化層の厚さが厚くなる。In the polishing liquid according to the present invention, when an alkali agent such as potassium hydroxide is added to adjust the pH to 9 to 14, when Cu or Cu alloy is dipped in the polishing liquid, Cu or Cu alloy An oxide layer having an excellent etching barrier property against the polishing liquid can be formed on the surface.
In addition, the thickness of the oxide layer formed on the surface of Cu or Cu alloy can be controlled. FIG. 7 shows Cu deposited on a substrate in a polishing liquid containing, for example, 0.9% by weight of aminoacetic acid and 12% by weight of hydrogen peroxide, and adjusting pH to 8.5 to 11 by adding potassium hydroxide. Cu when the film is immersed
It is a characteristic view which shows the thickness change of the oxide layer produced | generated on the film surface. As shown in FIG. 7, as the pH increases, Cu
The thickness of the oxide layer formed on the film surface becomes thicker.
【0027】このようなpHを9〜14に調節された研
磨液は、CuまたはCu合金の浸漬時にエッチングバリ
ア性の高い酸化層を前記CuまたはCu合金の表面に生
成させることができる。このため、前記研磨液中のアミ
ノ酢酸のような有機酸の含有量を大きくしてもCuまた
はCu合金の浸漬時においてCu等を殆どエッチングせ
ず、一方、研磨時においては前記有機酸の含有量の増加
によりCuまたはCu合金のポリシング速度を高めるこ
とができる。したがって、アルカリ剤を添加しない場合
に比べて浸漬時と研磨時との間でエッチング速度差を大
きくすることができ、結果的にはCuまたはCu合金の
研磨処理時間を短縮することができる。Such a polishing liquid having a pH adjusted to 9 to 14 can form an oxide layer having a high etching barrier property on the surface of the Cu or Cu alloy when immersed in Cu or Cu alloy. Therefore, even if the content of the organic acid such as aminoacetic acid in the polishing liquid is increased, Cu or the like is hardly etched during immersion of Cu or Cu alloy, while the content of the organic acid is contained during polishing. By increasing the amount, the polishing rate of Cu or Cu alloy can be increased. Therefore, the etching rate difference between the immersion time and the polishing time can be increased as compared with the case where no alkali agent is added, and as a result, the polishing time for Cu or Cu alloy can be shortened.
【0028】本発明に係わる研磨液において、シリカ粒
子のような研磨砥粒を添加することによって前記研磨砥
粒が未添加の研磨液に比べてCuまたはCu合金の研磨
時のポリシング速度を向上できる。例えば、アミノ酢酸
0.1重量%、過酸化水素13重量%を含有する水溶液
に平均粒径30nmのシリカ粒子、平均粒径740nm
のアルミナ粒子、平均粒径1300nmの酸化セリウム
粒子および平均粒径1100nmのジルコニア粒子をそ
れぞれ約9重量%添加して研磨液を調製した。これらの
研磨液を図1に示すポリシング装置を用いて前述したの
と同様な手順により基板に成膜された凹凸を有するCu
膜の研磨処理を行った。各研磨液によるCu膜ポリシン
グ速度を下記表1に示す。なお、下記表1には研磨砥粒
が添加されないアミノ酢酸0.1重量%、過酸化水素1
3重量%を含有する研磨液を用いた場合のCu膜のポリ
シング速度を併記した。By adding polishing abrasives such as silica particles to the polishing liquid according to the present invention, the polishing rate at the time of polishing Cu or Cu alloy can be improved as compared with the polishing liquid in which the polishing abrasives are not added. . For example, in an aqueous solution containing 0.1% by weight of aminoacetic acid and 13% by weight of hydrogen peroxide, silica particles having an average particle size of 30 nm and an average particle size of 740 nm are used.
About 9% by weight of alumina particles, cerium oxide particles having an average particle diameter of 1300 nm, and zirconia particles having an average particle diameter of 1100 nm were added to prepare a polishing liquid. These polishing liquids were formed on the substrate by the same procedure as described above using the polishing apparatus shown in FIG.
The film was polished. The Cu film polishing rate by each polishing solution is shown in Table 1 below. In Table 1 below, 0.1% by weight of aminoacetic acid and 1% of hydrogen peroxide to which abrasive grains were not added
The polishing rate of the Cu film when using the polishing liquid containing 3% by weight is also shown.
【0029】[0029]
【表1】 [Table 1]
【0030】前記表1から明らかなように研磨砥粒が添
加された研磨液では、研磨砥粒が添加されない研磨液に
比べてCu膜の研磨速度を向上できることがわかる。ま
た、研磨砥粒の種類を変えることによってCu膜のポリ
シング速度を制御できることがわかる。As can be seen from Table 1 above, the polishing liquid containing the polishing abrasive grains can improve the polishing rate of the Cu film as compared with the polishing liquid containing no polishing grains. Further, it is understood that the polishing rate of the Cu film can be controlled by changing the type of polishing abrasive grains.
【0031】また、前記シリカ粒子およびアルミナ粒子
をそれぞれ砥粒として添加された研磨液を図1に示すポ
リシング装置を用いて前述したのと同様な手順により基
板に成膜されたSiO2 膜、Si3 N4 膜およびボロン
添加ガラス膜(BPSG膜)の研磨処理をそれぞれ行っ
た。各研磨液による各種絶縁膜のポリシング速度を下記
表2に示す。なお、表2中の括弧内の値は(同種の研磨
液でのCu膜のポリシング速度/各絶縁膜のポリシング
速度)から求めた速度比である。後述する半導体装置の
製造時において絶縁膜の溝等に埋め込みCu配線層を研
磨処理により形成する際、前記速度比が大きい程、Cu
の選択ポリシング性を向上することが可能になる。つま
り、下地の絶縁膜の膜減りを抑制できる。Further, the silica particles and alumina particles added abrasive liquid is deposited on the substrate by the same procedure as described above with reference to polishing apparatus shown in FIG. 1 to the SiO 2 film as the abrasive grains, respectively, Si The 3 N 4 film and the boron-added glass film (BPSG film) were polished. Table 2 below shows polishing rates of various insulating films by each polishing liquid. The values in parentheses in Table 2 are speed ratios calculated from (polishing speed of Cu film / polishing speed of each insulating film in the same polishing liquid). When a buried Cu wiring layer is formed in a groove of an insulating film by polishing during the manufacturing of a semiconductor device described later, the Cu content increases as the speed ratio increases.
It is possible to improve the selective policing property of. That is, it is possible to suppress film loss of the underlying insulating film.
【0032】[0032]
【表2】 [Table 2]
【0033】さらに、シリカ粒子のような研磨砥粒が添
加された研磨液はCu膜またはCu合金膜の割れや微細
な傷を生じることなく良好にポリシングすることができ
る。これは、図1に示すポリシング装置を用いた研磨工
程においてCu膜の研磨面と前記研磨パッドとの間の摩
擦力を前記砥粒により緩和でき、Cu膜への衝撃力を低
減して割れ等を防止することができるためである。Further, the polishing liquid to which polishing abrasive grains such as silica particles are added can be satisfactorily polished without causing cracks or fine scratches on the Cu film or Cu alloy film. This is because in the polishing process using the polishing apparatus shown in FIG. 1, the frictional force between the polishing surface of the Cu film and the polishing pad can be alleviated by the abrasive grains, and the impact force on the Cu film is reduced to cause cracking or the like. This is because it is possible to prevent
【0034】したがって、シリカ粒子のような研磨砥粒
が添加された研磨液は研磨砥粒が添加されない研磨液に
比べてCuまたはCu合金のポリシング速度を向上でき
ると共に研磨処理時におけるCuまたはCu合金表面へ
の損傷を抑制できる。Therefore, the polishing liquid to which the polishing particles such as silica particles are added can improve the polishing rate of Cu or Cu alloy as compared with the polishing liquid to which the polishing particles are not added, and the Cu or Cu alloy during the polishing process. The damage to the surface can be suppressed.
【0035】なお、有機酸がアミド硫酸で、シリカ粒子
のような研磨砥粒を含む研磨液においても前記研磨砥粒
が添加されない研磨液に比べてCuまたはCu合金のポ
リシング速度を向上できると共に研磨処理時におけるC
uまたはCu合金表面への損傷を抑制できる。Even in a polishing liquid containing an abrasive such as silica particles, the organic acid is amido-sulfuric acid, the polishing rate of Cu or Cu alloy can be improved and the polishing speed can be improved as compared with the polishing liquid not containing the abrasive grains. C during processing
Damage to the u or Cu alloy surface can be suppressed.
【0036】本発明に係わる半導体装置の製造方法は、
半導体基板上の絶縁膜に配線層の形状に相当する溝およ
び/または開口部を形成する工程と、前記溝および/ま
たは開口部を含む前記絶縁膜上にCuまたはCu合金か
らなる配線材料膜を堆積する工程と、アミノ酢酸および
アミド硫酸から選ばれる少なくとも1種の有機酸と酸化
剤と水とを含有する研磨液を用いて前記配線材料膜を前
記絶縁膜の表面が露出するまで研磨処理することにより
前記絶縁膜にその表面と面一の埋め込み配線層を形成す
る工程とを具備したことを特徴とするものである。A method of manufacturing a semiconductor device according to the present invention is
A step of forming a groove and / or an opening corresponding to the shape of the wiring layer in the insulating film on the semiconductor substrate; and a wiring material film made of Cu or a Cu alloy on the insulating film including the groove and / or the opening. The step of depositing and polishing the wiring material film with a polishing liquid containing at least one organic acid selected from aminoacetic acid and amidosulfuric acid, an oxidizing agent and water until the surface of the insulating film is exposed. Thus, a step of forming a buried wiring layer flush with the surface of the insulating film is provided.
【0037】前記絶縁膜としては、例えばシリコン酸化
膜、シリコン窒化膜、シリコン酸化膜とこの上に積層さ
れたシリコン窒化膜の2層膜、ボロン添加ガラス膜(B
PSG膜)、リン添加ガラス膜(PSG膜)等を用いる
ことができる。As the insulating film, for example, a silicon oxide film, a silicon nitride film, a two-layer film of a silicon oxide film and a silicon nitride film laminated thereon, a boron-added glass film (B
A PSG film), a phosphorus-containing glass film (PSG film), or the like can be used.
【0038】前記Cu合金としては、例えばCu−Si
合金、Cu−Al合金、Cu−Si−Al合金、Cu−
Ag合金等を用いることができる。前記CuまたはCu
合金からなる配線材料膜は、スパッタ蒸着、真空蒸着等
により堆積される。As the Cu alloy, for example, Cu--Si
Alloy, Cu-Al alloy, Cu-Si-Al alloy, Cu-
Ag alloy or the like can be used. Cu or Cu
The wiring material film made of an alloy is deposited by sputtering deposition, vacuum deposition, or the like.
【0039】前記研磨液中の有機酸の含有量、およびそ
れら有機酸および酸化剤の含有比率は、前述した銅系金
属用研磨液と同様な範囲にすることが好ましい。前記研
磨液は、前記有機酸および酸化剤の他にpHを9〜14
に調節するアルカリ剤を含有することを許容する。この
ようなアルカリ剤としては、例えば水酸化カリウム、キ
ノリンが好適である。The content of the organic acid in the polishing liquid and the content ratio of the organic acid and the oxidizing agent are preferably in the same range as the above-mentioned polishing liquid for copper-based metal. The polishing liquid has a pH of 9 to 14 in addition to the organic acid and the oxidizing agent.
It is permissible to include an alkaline agent adjusted to. As such an alkaline agent, for example, potassium hydroxide and quinoline are suitable.
【0040】前記研磨液は、前記有機酸および酸化剤の
他にシリカ粒子、アルミナ粒子、酸化セリウム粒子、ジ
ルコニア粒子等の研磨砥粒を含有することを許容する。
これらの研磨砥粒の平均粒径および添加量は前述した銅
系金属用研磨液で説明したのと同様な範囲にすることが
好ましい。The polishing liquid is allowed to contain polishing particles such as silica particles, alumina particles, cerium oxide particles and zirconia particles in addition to the organic acid and the oxidizing agent.
The average particle size and the addition amount of these polishing abrasive grains are preferably in the same range as described for the copper-based metal polishing liquid.
【0041】前記研磨液による研磨処理は、例えば前述
した図1に示すポリシング装置が用いて行われる。図1
に示すポリシング装置を用いる研磨処理において、基板
ホルダで保持された基板を前記研磨パッドに与える加重
は研磨液の組成により適宜選定される。例えば、有機
酸、酸化剤および水からなる組成の研磨液では前記加重
を200〜2000g/cm2 にすることが好ましい。
さらにシリカ粒子のような研磨砥粒を含む組成の研磨液
では、前記加重を150〜1000g/cm2 にするこ
とが好ましい。The polishing treatment with the polishing liquid is carried out, for example, by using the polishing apparatus shown in FIG. Figure 1
In the polishing process using the polishing apparatus shown in (1), the load applied to the polishing pad by the substrate held by the substrate holder is appropriately selected according to the composition of the polishing liquid. For example, in a polishing liquid having a composition consisting of an organic acid, an oxidizing agent and water, the weight is preferably 200 to 2000 g / cm 2 .
Further, in a polishing liquid having a composition containing polishing particles such as silica particles, the weight is preferably 150 to 1000 g / cm 2 .
【0042】本発明に係わる半導体装置の製造におい
て、前記半導体基板上の前記溝および/または開口部を
含む前記絶縁膜には前記配線材料膜を堆積する前にバリ
ア層を形成することを許容する。このようなバリア層を
前記溝および/または開口部を含む前記絶縁膜に形成す
ることによって、Cuのような配線材料膜の堆積、エッ
チバックにより前記バリア層で囲まれた埋め込み配線層
を形成することが可能になる。その結果、配線材料であ
るCuの拡散による半導体基板の汚染を防止できる。In the manufacture of the semiconductor device according to the present invention, it is allowed to form a barrier layer on the insulating film including the groove and / or the opening on the semiconductor substrate before depositing the wiring material film. . By forming such a barrier layer on the insulating film including the groove and / or the opening, a wiring material film such as Cu is deposited and an embedded wiring layer surrounded by the barrier layer is formed by etchback. It will be possible. As a result, it is possible to prevent the semiconductor substrate from being contaminated due to the diffusion of Cu, which is a wiring material.
【0043】前記バリア層は、例えばTiN、Ti、N
b、WまたはCuTa合金からなる。このようなバリア
層は、15〜50nmの厚さを有することが好ましい。
本発明に係わる半導体装置の製造において、前述した図
1に示すポリシング装置の前記テーブルの回転トルクの
変化、研磨パッドの温度変化、または研磨パッドに供給
される前記研磨液のpH変化、に基づいて前記研磨処理
の終点を検出することを許容する。また、前述した図1
に示すポリシング装置のホルダの回転トルクの変化に基
づいて前記研磨処理の終点を検出することを許容する。
このような方法によれば、研磨処理の終点を簡単に検出
できる。その結果、この終点検出を利用することにより
前記絶縁膜にその表面と面一の埋め込み配線層を確実に
形成することができる。The barrier layer is made of, for example, TiN, Ti, N
It is made of b, W or CuTa alloy. Such a barrier layer preferably has a thickness of 15 to 50 nm.
In the manufacture of the semiconductor device according to the present invention, based on the change of the rotation torque of the table, the change of the temperature of the polishing pad, or the change of the pH of the polishing liquid supplied to the polishing pad of the polishing apparatus shown in FIG. It is allowed to detect the end point of the polishing process. In addition, FIG.
It is allowed to detect the end point of the polishing process based on the change of the rotation torque of the holder of the polishing apparatus shown in FIG.
According to such a method, the end point of the polishing process can be easily detected. As a result, by utilizing this end point detection, it is possible to surely form a buried wiring layer flush with the surface of the insulating film.
【0044】以上説明した本発明に係わる半導体装置の
製造方法は、半導体基板上の絶縁膜に配線層に相当する
溝および/または開口部を形成し、前記溝および/また
は開口部を含む前記絶縁膜上にCuまたはCu合金から
なる配線材料膜を堆積し、さらにアミノ酢酸およびアミ
ド硫酸から選ばれる少なくとも1種の有機酸と酸化剤と
水とを含有する研磨液および例えば前述した図1に示す
ポリシング装置を用いて前記配線材料膜を前記絶縁膜の
表面が露出するまで研磨する。前記研磨液は、既述した
ようにCu膜またはCu合金膜の浸漬時において前記C
u膜またはCu合金膜を殆どエッチングせず、かつ浸漬
時と研磨時との間で数倍ないし数十倍のエッチング速度
差を示す。その結果、前記研磨工程において前記配線材
料膜はその表面から順次ポリシングされる、いわゆるエ
ッチバックがなされるため、前記絶縁膜の溝および/ま
たは開口部にCuまたはCu合金からなる埋め込み配線
層を前記絶縁膜表面と面一に形成できる。また、エッチ
バック工程後の前記配線層は前記研磨液と接触される
が、前記配線層の露出表面には酸化層が形成されるため
前記酸化層により前記配線層がエッチングされるのを回
避できる。したがって、高精度の埋め込み配線層を有す
ると共に、表面が平坦な構造を有する半導体装置を製造
することができる。In the method for manufacturing a semiconductor device according to the present invention described above, a groove and / or an opening corresponding to a wiring layer is formed in an insulating film on a semiconductor substrate, and the insulating film including the groove and / or the opening is formed. A wiring material film made of Cu or a Cu alloy is deposited on the film, and a polishing liquid containing at least one organic acid selected from aminoacetic acid and amidosulfuric acid, an oxidizing agent, and water, for example, shown in FIG. 1 described above. The wiring material film is polished using a polishing device until the surface of the insulating film is exposed. As described above, the polishing liquid contains the above C when the Cu film or the Cu alloy film is immersed.
The u film or the Cu alloy film is hardly etched, and the etching rate difference between the time of dipping and the time of polishing is several to several tens of times. As a result, in the polishing step, the wiring material film is sequentially polished from its surface, that is, so-called etch back is performed, so that a buried wiring layer made of Cu or a Cu alloy is formed in the groove and / or the opening of the insulating film. It can be formed flush with the surface of the insulating film. Further, although the wiring layer is contacted with the polishing liquid after the etch back process, an oxide layer is formed on the exposed surface of the wiring layer, so that the wiring layer can be prevented from being etched by the oxide layer. . Therefore, it is possible to manufacture a semiconductor device having a highly accurate embedded wiring layer and having a flat surface structure.
【0045】また、水酸化カリウムのようなアルカリ剤
により研磨液のpHを9〜14に調節することによっ
て、前記研磨液に含有されるアミノ酢酸のような有機酸
の量を多くしてもエッチバック工程後の前記配線層のエ
ッチングをその表面に形成されたエッチングバリア性の
高い酸化膜により防止できる。しかも、研磨液中の有機
酸の含有量を高めることによって、前記配線材料膜のポ
リシング速度を高めることができ、結果的にはエッチバ
ック時間を短縮できる。Further, by adjusting the pH of the polishing liquid to 9 to 14 with an alkaline agent such as potassium hydroxide, even if the amount of the organic acid such as aminoacetic acid contained in the polishing liquid is increased, the etching is performed. The etching of the wiring layer after the back step can be prevented by the oxide film having a high etching barrier property formed on the surface thereof. Moreover, by increasing the content of the organic acid in the polishing liquid, the polishing rate of the wiring material film can be increased, and as a result, the etchback time can be shortened.
【0046】さらに、シリカ粒子のような研磨砥粒が添
加された研磨液を用いることによって前記配線材料層の
ポリシング速度を向上できるため、エッチバック時間を
短縮できる。しかも、前記エッチバック工程において配
線材料膜の割れや傷の発生を抑制できるため、信頼性の
高い埋め込み配線層を前記絶縁膜の溝および/または開
口部に形成することができる。Furthermore, since the polishing rate of the wiring material layer can be improved by using a polishing liquid to which polishing abrasive grains such as silica particles are added, the etchback time can be shortened. Moreover, since it is possible to suppress the occurrence of cracks and scratches in the wiring material film in the etch back step, it is possible to form a highly reliable buried wiring layer in the groove and / or the opening of the insulating film.
【0047】本発明に係わる別の半導体装置の製造方法
は、半導体基板上の絶縁膜に配線層の形状に相当する溝
および/または開口部を形成する工程と、前記溝および
/または開口部を含む前記絶縁膜上に銅または銅合金か
らなる配線材料膜を堆積する工程と、アミノ酢酸および
アミド硫酸から選ばれる少なくとも1種の有機酸と酸化
剤と水とを含有する研磨液を用いて前記配線材料膜を前
記絶縁膜の表面が露出するまで研磨処理することにより
前記絶縁膜にその表面と面一の埋め込み配線層を形成す
る工程と、前記配線層を含む前記絶縁膜表面を溶存オゾ
ン水溶液で処理し、さらに希フッ酸水溶液で処理する工
程とを具備したことを特徴とするものである。Another method of manufacturing a semiconductor device according to the present invention is the step of forming a groove and / or opening corresponding to the shape of a wiring layer in an insulating film on a semiconductor substrate, and the step of forming the groove and / or opening. A step of depositing a wiring material film made of copper or a copper alloy on the insulating film, and a polishing liquid containing at least one organic acid selected from aminoacetic acid and amidosulfuric acid, an oxidizing agent and water, A step of forming a buried wiring layer flush with the surface of the insulating film by exposing the wiring material film until the surface of the insulating film is exposed; and an aqueous ozone solution in which the surface of the insulating film including the wiring layer is dissolved. And a step of further treating with a dilute aqueous solution of hydrofluoric acid.
【0048】前記絶縁膜としては、例えばシリコン酸化
膜、シリコン窒化膜、シリコン酸化膜とこの上に積層さ
れたシリコン窒化膜の2層膜、ボロン添加ガラス膜(B
PSG膜)、リン添加ガラス膜(PSG膜)等を用いる
ことができる。As the insulating film, for example, a silicon oxide film, a silicon nitride film, a two-layer film of a silicon oxide film and a silicon nitride film laminated thereon, a boron-added glass film (B
A PSG film), a phosphorus-containing glass film (PSG film), or the like can be used.
【0049】前記Cu合金としては、例えばCu−Si
合金、Cu−Al合金、Cu−Si−Al合金、Cu−
Ag合金等を用いることができる。前記CuまたはCu
合金からなる配線材料膜は、スパッタ蒸着、真空蒸着等
により堆積される。As the Cu alloy, for example, Cu--Si
Alloy, Cu-Al alloy, Cu-Si-Al alloy, Cu-
Ag alloy or the like can be used. Cu or Cu
The wiring material film made of an alloy is deposited by sputtering deposition, vacuum deposition, or the like.
【0050】前記研磨液中の有機酸の含有量およびそれ
ら有機酸および酸化剤の含有比率は、前述した銅系金属
用研磨液と同様な範囲にすることが好ましい。前記研磨
液は、前記有機酸および酸化剤の他にpHを9〜14に
調節するアルカリ剤を含有することを許容する。このよ
うなアルカリ剤としては、例えば水酸化カリウム、キノ
リンが好適である。The content of the organic acid and the content ratio of the organic acid and the oxidizing agent in the polishing liquid are preferably in the same range as the above-mentioned polishing liquid for copper-based metal. The polishing liquid is allowed to contain, in addition to the organic acid and the oxidizing agent, an alkaline agent for adjusting the pH to 9-14. As such an alkaline agent, for example, potassium hydroxide and quinoline are suitable.
【0051】前記研磨液は、前記有機酸および酸化剤の
他にシリカ粒子、アルミナ粒子、酸化セリウム粒子、ジ
ルコニア粒子等の研磨砥粒を含有することを許容する。
これらの研磨砥粒の平均粒径および添加量は前述した銅
系金属用研磨液で説明したのと同様な範囲にすることが
好ましい。The polishing liquid is allowed to contain polishing particles such as silica particles, alumina particles, cerium oxide particles and zirconia particles in addition to the organic acid and the oxidizing agent.
The average particle size and the addition amount of these polishing abrasive grains are preferably in the same range as described for the copper-based metal polishing liquid.
【0052】前記研磨液による研磨処理は、前述した図
1に示すポリシング装置を用いて行われる。図1に示す
ポリシング装置を用いた研磨処理において、基板ホルダ
で保持された基板を前記研磨パッドに与える加重は研磨
液の組成により適宜選定される。例えば、有機酸、酸化
剤および水からなる組成の研磨液では前記加重を200
〜2000g/cm2 にすることが好ましい。さらにシ
リカ粒子のような研磨砥粒を含む組成の研磨液では、前
記加重を150〜1000g/cm2 にすることが好ま
しい。The polishing treatment with the polishing liquid is performed using the polishing apparatus shown in FIG. In the polishing process using the polishing apparatus shown in FIG. 1, the load applied to the polishing pad by the substrate held by the substrate holder is appropriately selected according to the composition of the polishing liquid. For example, in a polishing liquid having a composition consisting of an organic acid, an oxidizing agent and water, the weight is 200
It is preferably about 2000 g / cm 2 . Further, in a polishing liquid having a composition containing polishing particles such as silica particles, the weight is preferably 150 to 1000 g / cm 2 .
【0053】本発明に係わる別の半導体装置の製造にお
いて、前記半導体基板上の前記溝および/または開口部
を含む前記絶縁膜には前記配線材料膜を堆積する前にバ
リア層を形成することを許容する。このようなバリア層
を前記溝および/または開口部を含む前記絶縁膜に形成
することによって、Cuのような配線材料膜の堆積、エ
ッチバックにより前記バリア層で囲まれた埋め込み配線
層を形成することが可能になる。その結果、配線材料で
あるCuの拡散による半導体基板の汚染を防止できる。In manufacturing another semiconductor device according to the present invention, a barrier layer may be formed on the insulating film including the groove and / or the opening on the semiconductor substrate before depositing the wiring material film. Tolerate. By forming such a barrier layer on the insulating film including the groove and / or the opening, a wiring material film such as Cu is deposited and an embedded wiring layer surrounded by the barrier layer is formed by etchback. It will be possible. As a result, it is possible to prevent the semiconductor substrate from being contaminated due to the diffusion of Cu, which is a wiring material.
【0054】前記バリア層は、例えばTiN、Ti、N
b、WまたはCuTa合金からなる。このようなバリア
層は、15〜50nmの厚さを有することが好ましい。
本発明に係わる別の半導体装置の製造において、前述し
た図1に示すポリシング装置の前記テーブルの回転トル
クの変化、研磨パッドの温度変化、または研磨パッドに
供給される前記研磨液のpH変化、に基づいて前記研磨
処理の終点を検出することを許容する。また、前述した
図1に示すポリシング装置のホルダの回転トルクの変化
に基づいて前記研磨処理の終点を検出することを許容す
る。このような方法によれば、研磨処理の終点を簡単に
検出できる。その結果、前記終点検出を利用することに
より前記絶縁膜にその表面と面一の埋め込み配線層を確
実に形成することができる。The barrier layer is made of, for example, TiN, Ti, N
It is made of b, W or CuTa alloy. Such a barrier layer preferably has a thickness of 15 to 50 nm.
In the manufacture of another semiconductor device according to the present invention, the change of the rotation torque of the table of the polishing apparatus shown in FIG. 1, the temperature change of the polishing pad, or the pH change of the polishing liquid supplied to the polishing pad is performed. Based on this, it is possible to detect the end point of the polishing process. Further, the end point of the polishing process is allowed to be detected based on the change of the rotation torque of the holder of the polishing apparatus shown in FIG. According to such a method, the end point of the polishing process can be easily detected. As a result, the embedded wiring layer flush with the surface of the insulating film can be surely formed by utilizing the end point detection.
【0055】前記溶存オゾン水溶液は、オゾン濃度が
0.1〜25ppmであることが好ましい。前記溶存オ
ゾン水溶液のオゾン濃度を0.1ppm未満にすると前
記絶縁膜上に残留した配線材料であるCuまたはCu合
金を酸化物に変換したり、有機物等の汚染物を酸化分解
したりすることが困難になる。より好ましい前記溶存オ
ゾン水溶液のオゾン濃度は、5〜25ppmである。The dissolved ozone aqueous solution preferably has an ozone concentration of 0.1 to 25 ppm. When the ozone concentration of the dissolved ozone aqueous solution is less than 0.1 ppm, Cu or Cu alloy, which is the wiring material remaining on the insulating film, may be converted into an oxide, or contaminants such as organic substances may be oxidatively decomposed. It will be difficult. A more preferable ozone concentration of the dissolved ozone aqueous solution is 5 to 25 ppm.
【0056】前記希フッ酸水溶液は、フッ酸濃度が0.
05〜20%であることが好ましい。前記希フッ酸水溶
液のフッ酸濃度を0.05%未満にすると、前記溶存オ
ゾン水溶液での処理により変換されたCuまたはCu合
金を酸化物を効果的に溶解除去することが困難になる。
一方、前記希フッ酸水溶液のフッ酸濃度が20%を越え
ると絶縁膜としてシリコン酸化膜を用いた場合にはその
酸化膜をも溶解除去された膜減りを生じる恐れがある。
より好ましい前記希フッ酸水溶液のフッ酸濃度は0.1
〜5%である。The dilute aqueous solution of hydrofluoric acid had a hydrofluoric acid concentration of 0.
It is preferably from 05 to 20%. When the hydrofluoric acid concentration of the dilute hydrofluoric acid aqueous solution is less than 0.05%, it becomes difficult to effectively dissolve and remove the oxides of Cu or Cu alloy converted by the treatment with the dissolved ozone aqueous solution.
On the other hand, if the concentration of hydrofluoric acid in the dilute hydrofluoric acid aqueous solution exceeds 20%, when a silicon oxide film is used as the insulating film, the oxide film may be dissolved and removed, resulting in film loss.
More preferable hydrofluoric acid concentration of the dilute hydrofluoric acid aqueous solution is 0.1.
~ 5%.
【0057】以上説明した本発明に係わる別の半導体装
置の製造方法は、半導体基板上の絶縁膜に配線層に相当
する溝および/または開口部を形成し、前記溝および/
または開口部を含む前記絶縁膜上にCuまたはCu合金
からなる配線材料膜を堆積し、さらにアミノ酢酸および
アミド硫酸から選ばれる少なくとも1種の有機酸と酸化
剤と水とを含有する研磨液および例えば前述した図1に
示すポリシング装置を用いて前記配線材料膜を前記絶縁
膜の表面が露出するまで研磨する。前記研磨液は、既述
したようにCu膜またはCu合金膜の浸漬時において前
記Cu膜またはCu合金膜を殆どエッチングせず、かつ
浸漬時と研磨時との間で数倍ないし数十倍のエッチング
速度差を示す。その結果、前記研磨工程において前記配
線材料膜はその表面から順次ポリシングされる、いわゆ
るエッチバックがなされるため、前記絶縁膜の溝および
/または開口部にCuまたはCu合金からなる埋め込み
配線層を前記絶縁膜表面と面一に形成できる。また、エ
ッチバック工程後の前記配線層は前記研磨液と接触され
るが、前記配線層の露出表面には酸化層が形成されるた
め前記酸化層により前記配線層がエッチングされるのを
回避できる。In another method of manufacturing a semiconductor device according to the present invention described above, a groove and / or an opening corresponding to a wiring layer is formed in an insulating film on a semiconductor substrate, and the groove and / or the opening is formed.
Alternatively, a wiring material film made of Cu or a Cu alloy is deposited on the insulating film including an opening, and a polishing liquid containing at least one organic acid selected from aminoacetic acid and amidosulfuric acid, an oxidizing agent, and water, For example, the wiring material film is polished until the surface of the insulating film is exposed by using the polishing apparatus shown in FIG. As described above, the polishing liquid hardly etches the Cu film or the Cu alloy film at the time of dipping the Cu film or the Cu alloy film, and is several times to several tens of times between the immersion time and the polishing time. The etching rate difference is shown. As a result, in the polishing step, the wiring material film is sequentially polished from its surface, that is, so-called etch back is performed, so that a buried wiring layer made of Cu or a Cu alloy is formed in the groove and / or the opening of the insulating film. It can be formed flush with the surface of the insulating film. Further, although the wiring layer is contacted with the polishing liquid after the etch back process, an oxide layer is formed on the exposed surface of the wiring layer, so that the wiring layer can be prevented from being etched by the oxide layer. .
【0058】さらに、前記エッチバック工程後に前記配
線層を含む前記絶縁膜表面を溶存オゾン水溶液で処理す
ることにより前記絶縁膜上に残留した微細な配線材料、
つまりCuまたはCu合金を酸化物に変換したり、有機
物等の汚染物質を酸化分解することができる。このよう
な溶存オゾン水溶液での処理後に希フッ酸水溶液で処理
することによって、前記絶縁膜上にCuまたはCu合金
の酸化物や前記汚染物質の酸化分解物を容易に溶解除去
することができる。Furthermore, after the etching back step, the surface of the insulating film including the wiring layer is treated with a dissolved ozone aqueous solution, so that a fine wiring material remaining on the insulating film,
That is, Cu or a Cu alloy can be converted into an oxide, and contaminants such as organic substances can be oxidatively decomposed. By treating with the diluted hydrofluoric acid aqueous solution after the treatment with the dissolved ozone aqueous solution, the oxide of Cu or Cu alloy or the oxidative decomposition product of the contaminant can be easily dissolved and removed on the insulating film.
【0059】したがって、高精度の埋め込み配線層を有
すると共に、表面が平坦な構造を有し、さらに絶縁膜表
面の有機物や残留配線材料が除去された清浄な表面を有
する半導体装置を製造することができる。Therefore, it is possible to manufacture a semiconductor device having a highly accurate embedded wiring layer, a flat surface structure, and a clean surface from which organic substances and residual wiring material on the surface of the insulating film are removed. it can.
【0060】また、水酸化カリウムのようなアルカリ剤
により研磨液のpHを9〜14に調節することによっ
て、前記研磨液に含有されるアミノ酢酸のような有機酸
の量を多くしてもエッチバック工程後の前記配線層のエ
ッチングをその表面に形成されたエッチングバリア性の
高い酸化膜により防止できる。しかも、研磨液中の有機
酸の含有量を高めることによって、前記配線材料膜のポ
リシング速度を高めることができ、結果的にはエッチバ
ック時間を短縮できる。Further, by adjusting the pH of the polishing liquid to 9 to 14 with an alkaline agent such as potassium hydroxide, even if the amount of the organic acid such as aminoacetic acid contained in the polishing liquid is increased, etching is performed. The etching of the wiring layer after the back step can be prevented by the oxide film having a high etching barrier property formed on the surface thereof. Moreover, by increasing the content of the organic acid in the polishing liquid, the polishing rate of the wiring material film can be increased, and as a result, the etchback time can be shortened.
【0061】さらに、シリカ粒子のような研磨砥粒が添
加された研磨液を用いることによって前記配線材料層の
ポリシング速度を向上できるため、エッチバック時間を
短縮できる。しかも、前記エッチバック工程において配
線材料膜の割れや傷の発生を抑制できるため、信頼性の
高い埋め込み配線層を前記絶縁膜の溝および/または開
口部に形成することができる。Furthermore, since the polishing rate of the wiring material layer can be improved by using a polishing liquid to which polishing abrasive grains such as silica particles are added, the etchback time can be shortened. Moreover, since it is possible to suppress the occurrence of cracks and scratches in the wiring material film in the etch back step, it is possible to form a highly reliable buried wiring layer in the groove and / or the opening of the insulating film.
【0062】[0062]
【実施例】以下、本発明の好ましい実施例を詳細に説明
する。 実施例1 まず、図8の(A)に示すように表面に図示しないソー
ス、ドレイン等の拡散層が形成されたシリコン基板21
上にCVD法により層間絶縁膜としての例えば厚さ10
00nmのSiO2 膜22を堆積した後、前記SiO2
膜22にフォトエッチング技術により配線層に相当する
形状を有する深さ500nmの複数の溝23を形成し
た。つづいて、図8の(B)に示すように前記溝23を
含む前記SiO2 膜22上にスパッタ蒸着により厚さ1
5nmのTiNからなるバリア層24および厚さ600
nmのCu膜25をこの順序で堆積した。The preferred embodiments of the present invention will be described in detail below. Example 1 First, as shown in FIG. 8A, a silicon substrate 21 having a diffusion layer such as a source and a drain (not shown) formed on its surface.
An interlayer insulating film having a thickness of 10
After depositing the SiO 2 film 22 nm, the SiO 2
A plurality of grooves 23 having a shape corresponding to the wiring layer and having a depth of 500 nm were formed in the film 22 by a photoetching technique. Then, as shown in FIG. 8B, a thickness of 1 is formed on the SiO 2 film 22 including the groove 23 by sputtering deposition.
Barrier layer 24 of 5 nm TiN and thickness 600
The Cu film 25 nm of 25 nm was deposited in this order.
【0063】次いで、前述した図1に示すポリシング装
置の基板ホルダ5に図8の(B)に示す基板21を逆さ
にして保持し、前記ホルダ5の支持軸4により前記基板
をターンテーブル1上のローデル・ニッタ社製商品名;
SUBA800からなる研磨パッド2に300g/cm
2 の加重を与え、前記ターンテーブル1およびホルダ5
をそれぞれ100ppmの速度で互いに反対方向に回転
させながら、研磨液を供給管3から20ml/分の速度
で前記研磨パッド2に供給して前記基板21に堆積した
Cu膜25およびバリア層24を前記SiO2 膜22の
表面が露出するまで研磨した。ここで、前記研磨液とし
てアミノ酢酸0.1重量%、過酸化水素13.0重量%
および平均粒径0.04μmのシリカ粉末8重量%を含
む純水からなり、重量割合でアミノ酢酸1に対して過酸
化水素が130であるものを用いた。前記研磨工程にお
いて、前記研磨液はCu膜との接触時のエッチング速度
が零であり、前記研磨パッドによる研磨時のポリシング
速度が約77nm/分で浸漬時に比べて十分に大きなエ
ッチング速度差を示した。このため、研磨工程において
図8の(B)に示す凸状のCu膜25は前記研磨パッド
と機械的に接触する表面から優先的にポリシングされ、
さらに露出したバリア層24がポリシングされる、いわ
ゆるエッチバックがなされた。その結果、図8の(C)
に示すように前記溝23内のみにバリア層24が残存す
ると共に、前記バリア層24で覆われた前記溝23に前
記SiO2 膜22表面と面一な埋め込みCu配線層26
が形成された。また、前記ポリシング装置のホルダ5に
よる前記研磨パッド2への加重を解除し、かつターンテ
ーブル1およびホルダ5の回転の停止した後において、
前記Cu配線層26が前記研磨液に接触されてもエッチ
ングが進行することがなかった。Next, the substrate 21 shown in FIG. 8B is held upside down on the substrate holder 5 of the polishing apparatus shown in FIG. 1 described above, and the substrate is mounted on the turntable 1 by the support shaft 4 of the holder 5. Trade name of Rodel Nitta, Inc .;
300g / cm on polishing pad 2 made of SUBA800
2 is applied to the turntable 1 and the holder 5
Of the Cu film 25 and the barrier layer 24 deposited on the substrate 21 by supplying a polishing liquid from the supply pipe 3 to the polishing pad 2 at a speed of 20 ml / min while rotating the respective components in opposite directions at a speed of 100 ppm. Polishing was performed until the surface of the SiO 2 film 22 was exposed. Here, 0.1% by weight of aminoacetic acid and 13.0% by weight of hydrogen peroxide were used as the polishing liquid.
And pure water containing 8% by weight of silica powder having an average particle diameter of 0.04 μm, and hydrogen peroxide was 130 per 1 aminoacetic acid in a weight ratio. In the polishing step, the polishing solution has an etching rate of zero when it contacts the Cu film, and the polishing rate when polishing with the polishing pad is about 77 nm / min, which is a sufficiently large difference in etching rate as compared with immersion. It was Therefore, in the polishing step, the convex Cu film 25 shown in FIG. 8B is preferentially polished from the surface that mechanically contacts the polishing pad,
Further, the exposed barrier layer 24 was polished, so-called etch back was performed. As a result, FIG. 8 (C)
As shown in FIG. 5, the barrier layer 24 remains only in the groove 23, and the buried Cu wiring layer 26 flush with the surface of the SiO 2 film 22 is formed in the groove 23 covered with the barrier layer 24.
Was formed. Further, after releasing the load on the polishing pad 2 by the holder 5 of the polishing device and stopping the rotation of the turntable 1 and the holder 5,
Even if the Cu wiring layer 26 was brought into contact with the polishing liquid, the etching did not proceed.
【0064】また、前述した図1のポリシング装置によ
るポリシング工程(エッチバック工程)において研磨パ
ッドから研磨液を逐次採取してpH測定計によりpHの
変化を測定した。研磨時間に対する研磨液のpH変化を
図9に示す。図9から明らかなように、pHはホルダに
よる基板の加重後に一度下がり、再度上昇する。このp
Hが上昇する時、例えば加重開始後8分間経過した時、
をエッチング終点とした。このような終点検出によりエ
ッチバック時間を設定することによって、前記SiO2
膜22の溝23に前記SiO2 膜22表面と面一な埋め
込みCu配線層26を再現性よく形成することができ
た。Further, in the polishing step (etchback step) by the above-described polishing apparatus of FIG. 1, the polishing liquid was sequentially sampled from the polishing pad and the pH change was measured by the pH meter. FIG. 9 shows the pH change of the polishing liquid with respect to the polishing time. As is clear from FIG. 9, the pH once drops and then rises again after the substrate is loaded by the holder. This p
When H rises, for example, 8 minutes after the start of weighting,
Was set as the etching end point. By setting the etch back time by detecting such an end point, the SiO 2
The embedded Cu wiring layer 26 flush with the surface of the SiO 2 film 22 could be formed in the groove 23 of the film 22 with good reproducibility.
【0065】なお、前述した図1のポリシング装置によ
るポリシング工程(エッチバック工程)において温度セ
ンサにより前記研磨パッドの温度変化の測定、およびタ
ーンテーブルの駆動モータの電圧変化、をそれぞれ測定
した。研磨時間に対する前記研磨パッドの温度変化を図
10に、研磨時間に対する前記駆動モータの電圧変化を
図11に、それぞれ示す。温度変化を示す図10におい
て、加重開始直後に研磨パッドの温度が上昇して一定の
温度になり、再度温度が上昇する。この温度上昇が起こ
る時をエッチング終点とした。電圧変化を示す図11に
おいて、加重開始直後にターンテーブルの駆動モータの
電圧が上昇して一定の電圧になり、再度、電圧が上昇す
る。この電圧が上昇する時をエッチング終点とした。こ
のような終点検出によりエッチバック時間を設定するこ
とによって、前述した研磨液のpH測定の場合と同様に
前記SiO2 膜22の溝23に前記SiO2 膜22表面
と面一な埋め込みCu配線層26を再現性よく形成する
ことができた。In the polishing step (etchback step) using the polishing apparatus shown in FIG. 1, the temperature change of the polishing pad and the voltage change of the drive motor of the turntable were measured by a temperature sensor. FIG. 10 shows the temperature change of the polishing pad with respect to the polishing time, and FIG. 11 shows the voltage change of the drive motor with respect to the polishing time. In FIG. 10 showing the temperature change, the temperature of the polishing pad rises to a constant temperature immediately after the start of weighting, and the temperature rises again. The time when this temperature rise occurred was defined as the etching end point. In FIG. 11 showing the voltage change, the voltage of the drive motor of the turntable rises to a constant voltage immediately after the start of weighting, and the voltage rises again. The etching end point was when this voltage increased. By setting the etch-back time by such endpoint detection, the SiO 2 film 22 flush with the surface of buried Cu wiring layer in the groove 23 in the case of pH measurement in the same manner as the SiO 2 film 22 of the polishing liquid as described above 26 could be formed with good reproducibility.
【0066】さらに、前記埋め込み配線層の形成後の基
板をオゾン濃度0.001%の溶存オゾン水溶液に3分
間浸漬して処理した後、フッ酸濃度10%の希フッ酸水
溶液に90秒間浸漬して処理した。図12は、XPSで
分析したスペクトル図であり、実線はCu配線層形成直
後の表面のスペクトル、点線は溶存オゾン水溶液で処理
した後のCu配線層表面のスペクトル、一点鎖線は希フ
ッ酸処理後のCu配線層表面のスペクトル、である。図
12から明らかなように配線形成後の基板を溶存オゾン
水溶液に浸漬して処理すると、点線に示すスペクトルの
ように配線形成直後で見られた金属Cuの信号はなくな
り、Cu配線層表面が酸化物に変化したことがわかる。
この後、希フッ酸水溶液で処理すると一点鎖線に示すス
ペクトルのように前記溶存オゾン水溶液の処理で見られ
たCuOの信号がなくなり、純CuがCu配線層表面に
露出したことがわかる。このように溶存オゾン水溶液で
処理することによって、SiO2 膜22等の表面に残留
したアミノ酢酸のような有機物を分解できると共に、前
記SiO2 膜22に残留したCuを酸化物に変換でき
る。溶存オゾン水溶液の処理で生成された有機物の分解
物およびCuの酸化物は、この後の希フッ酸水溶液の処
理により除去できると共に、前記研磨液との接触により
Cu配線層26表面に生成されたCu酸化物層も除去す
ることができる。その結果、SiO2 膜22の表面を清
浄化でき、さらにCu配線層26表面に純Cuを露出す
ることができる。Further, the substrate on which the embedded wiring layer has been formed is immersed in a dissolved ozone aqueous solution having an ozone concentration of 0.001% for 3 minutes for treatment, and then immersed in a dilute hydrofluoric acid aqueous solution having a hydrofluoric acid concentration of 10% for 90 seconds. Processed. FIG. 12 is a spectrum diagram analyzed by XPS, where the solid line is the spectrum of the surface immediately after the formation of the Cu wiring layer, the dotted line is the spectrum of the Cu wiring layer surface after treatment with the dissolved ozone aqueous solution, and the chain line is after dilute hydrofluoric acid treatment. Is a spectrum of the Cu wiring layer surface. As is clear from FIG. 12, when the substrate after wiring formation is immersed in the dissolved ozone aqueous solution for treatment, the signal of metal Cu seen immediately after the wiring formation disappears as shown by the dotted line spectrum, and the Cu wiring layer surface is oxidized. You can see that it has changed.
After that, when it is treated with a dilute hydrofluoric acid aqueous solution, the signal of CuO found in the treatment with the dissolved ozone aqueous solution disappears as shown by the chain line line, and it can be seen that pure Cu was exposed on the surface of the Cu wiring layer. By thus treating with the dissolved ozone aqueous solution, organic substances such as aminoacetic acid remaining on the surface of the SiO 2 film 22 and the like can be decomposed, and Cu remaining on the SiO 2 film 22 can be converted into an oxide. The decomposition products of organic substances and Cu oxides generated by the treatment of the dissolved ozone aqueous solution can be removed by the subsequent treatment of the dilute hydrofluoric acid aqueous solution, and are generated on the surface of the Cu wiring layer 26 by the contact with the polishing liquid. The Cu oxide layer can also be removed. As a result, the surface of the SiO 2 film 22 can be cleaned, and pure Cu can be exposed on the surface of the Cu wiring layer 26.
【0067】したがって、実施例1によれば前記SiO
2 膜22の溝23内にその深さと同様な厚さを有する埋
め込みCu配線層26を前記SiO2 膜22表面と面一
に形成することができ、配線層26の形成後の基板21
表面を平坦化することがてきた。また、Cu配線層26
の形成後に溶存オゾン水溶液の処理、希フッ酸水溶液の
処理を行うことによって、SiO2 膜22表面の清浄
化、研磨液の酸化により生成された抵抗成分となる酸化
層の除去がなされるため、Cu本来の低抵抗性を持つ埋
め込みCu配線層を有し、かつ信頼性の高い半導体装置
を製造することができる。Therefore, according to Example 1, the SiO 2
Its depth in the groove 23 of the 2 film 22 and the Cu wiring layer 26 buried with the same thickness can be formed on the SiO 2 film 22 flush with the surface of, after formation of the wiring layer 26 substrate 21
It has been possible to flatten the surface. In addition, the Cu wiring layer 26
Since the treatment of the dissolved ozone aqueous solution and the treatment of the dilute hydrofluoric acid aqueous solution are performed after the formation, the surface of the SiO 2 film 22 is cleaned and the oxide layer which is the resistance component generated by the oxidation of the polishing liquid is removed. It is possible to manufacture a highly reliable semiconductor device having a buried Cu wiring layer having a low resistance inherent to Cu.
【0068】なお、前記実施例1において研磨液として
アミド硫酸0.86重量%、過酸化水素水30重量%、
平均粒径0.09μmのシリカ粉末8重量%を含む純水
からなるものを用いたところ、実施例1と同様、層間絶
縁SiO2 膜の溝内に埋め込み配線層を前記絶縁SiO
2 膜表面と面一に形成することができた。In Example 1, as the polishing liquid, 0.86% by weight of amido sulfuric acid, 30% by weight of hydrogen peroxide solution,
When pure water containing 8% by weight of silica powder having an average particle diameter of 0.09 μm was used, a buried wiring layer was formed in the groove of the interlayer insulating SiO 2 film as in the case of Example 1.
It could be formed flush with the surface of the two films.
【0069】実施例2 まず、図13の(A)に示すように表面に図示しないソ
ース、ドレイン等の拡散層が形成されたシリコン基板2
1上にCVD法により例えば厚さ800nmのSiO2
膜22および厚さ200nmのSi3 N4 膜27をこの
順序で堆積して層間絶縁膜を形成した後、前記Si3 N
4 膜27および前記SiO2 膜22にフォトエッチング
技術により配線層に相当する形状を有する深さ500n
mの複数の溝23を形成した。つづいて、図13の
(B)に示すように前記溝23を含む前記Si3 N4 膜
27上にスパッタ蒸着により厚さ15nmのTiNから
なるバリア層24および厚さ600nmのCu膜25を
この順序で堆積した。Example 2 First, as shown in FIG. 13A, a silicon substrate 2 having a diffusion layer such as a source and a drain (not shown) formed on the surface thereof.
On the substrate 1 by CVD, for example, 800 nm thick SiO 2
After forming an interlayer insulating film by depositing the Si 3 N 4 film 27 of the film 22 and the thickness of 200nm in this order, the Si 3 N
4 film 27 and the SiO 2 film 22 having a shape corresponding to a wiring layer formed by photo-etching technique and having a depth of 500 n
A plurality of m-shaped grooves 23 were formed. Subsequently, as shown in FIG. 13B, a barrier layer 24 made of TiN having a thickness of 15 nm and a Cu film 25 having a thickness of 600 nm are formed on the Si 3 N 4 film 27 including the groove 23 by sputter deposition. Deposited in order.
【0070】次いで、前述した図1に示すポリシング装
置の基板ホルダ5に図13の(B)に示す基板21を逆
さにして保持し、前記ホルダ5の支持軸4により前記基
板をローデル・ニッタ社製商品名;SUBA800から
なる研磨パッド2に300g/cm2 の加重を与え、前
記ターンテーブル1およびホルダ5をそれぞれ100p
pmの速度で互いに反対方向に回転させながら、研磨液
を供給管3から20ml/分の速度で前記研磨パッド2
に供給して前記基板21に堆積したCu膜25およびバ
リア層24を前記Si3 N4 膜27の表面が露出するま
で研磨した。ここで、前記研磨液としてアミノ酢酸0.
1重量%、過酸化水素13.0重量%および平均粒径
0.04μmのシリカ粉末8重量%を含む純水からな
り、重量割合でアミノ酢酸1に対して過酸化水素が13
0であるものを用いた。前記研磨工程において、前記研
磨液はCu膜との接触時のエッチング速度が零であり、
前記研磨パッドによる研磨時のポリシング速度が約77
nm/分で浸漬時に比べて十分に大きなエッチング速度
差を示した。このため、図13の(B)に示す凸状のC
u膜25は前記研磨パッドと機械的に接触する表面から
優先的にポリシングされ、さらに露出したバリア層24
がポリシングされる、いわゆるエッチバックがなされ
た。Next, the substrate 21 shown in FIG. 13B is held upside down on the substrate holder 5 of the polishing apparatus shown in FIG. 1 described above, and the supporting shaft 4 of the holder 5 holds the substrate. Product name: SUBA800 polishing pad 2 is applied with a weight of 300 g / cm 2 , and the turntable 1 and holder 5 are each 100 p
While rotating in the opposite directions at a speed of pm, the polishing liquid is supplied from the supply pipe 3 at a speed of 20 ml / min.
The Cu film 25 and the barrier layer 24 which were supplied to the substrate 21 and were deposited on the substrate 21 were polished until the surface of the Si 3 N 4 film 27 was exposed. Here, as the polishing liquid, aminoacetic acid of 0.
1% by weight, 13.0% by weight of hydrogen peroxide, and 8% by weight of silica powder having an average particle size of 0.04 μm were used as pure water.
The one that was 0 was used. In the polishing step, the polishing liquid has an etching rate of zero at the time of contact with the Cu film,
The polishing rate during polishing with the polishing pad is about 77.
The difference in etching rate at nm / min was sufficiently larger than that at the time of immersion. Therefore, the convex C shown in FIG.
The u film 25 is preferentially polished from the surface that makes mechanical contact with the polishing pad, and the exposed barrier layer 24
The so-called etch back was done.
【0071】その結果、図13の(C)に示すように前
記溝23内のみにバリア層24が残存すると共に、前記
バリア層24で覆われた前記溝23に前記Si3 N4 膜
27表面と面一な埋め込みCu配線層26が形成され
た。また、前記ポリシング装置のホルダ5による前記研
磨パッド2への加重を解除し、かつターンテーブル1お
よびホルダ5の回転の停止した後において、前記Cu配
線層26が前記研磨液に接触されてもエッチングが進行
することがなかった。As a result, as shown in FIG. 13C, the barrier layer 24 remains only in the groove 23, and the surface of the Si 3 N 4 film 27 is covered in the groove 23 covered with the barrier layer 24. A buried Cu wiring layer 26 flush with the above was formed. Further, even after the Cu wiring layer 26 is brought into contact with the polishing liquid after releasing the load on the polishing pad 2 by the holder 5 of the polishing apparatus and stopping the rotation of the turntable 1 and the holder 5, the etching is performed. Never progressed.
【0072】さらに、前記シリカ粒子を研磨砥粒として
含む研磨液を用いたポリシング工程において前記層間絶
縁膜は表面側が優れた耐ポリシング性を有するSi3 N
4 膜27で形成されているため、前記エッチバック工程
での膜減りを抑制することができた。このため、良好な
絶縁耐圧を有する層間絶縁膜を備えた半導体装置を製造
することができた。Further, in the polishing step using a polishing liquid containing the silica particles as polishing abrasive grains, the interlayer insulating film has a Si 3 N 3 surface having excellent polishing resistance.
Since it is formed of the four films 27, it is possible to suppress the film loss in the etch back process. Therefore, a semiconductor device including an interlayer insulating film having a good withstand voltage could be manufactured.
【0073】実施例3 まず、図14の(A)に示すように表面に図示しないソ
ース、ドレイン等の拡散層が形成されたシリコン基板2
1上にCVD法により層間絶縁膜としての例えば厚さ1
000nmのSi3 N4 膜27を堆積した後、前記Si
3 N4 膜27にフォトエッチング技術により配線層に相
当する形状を有する深さ500nmの複数の溝23を形
成した。つづいて、図14の(B)に示すように前記溝
23を含む前記Si3 N4 膜27上にスパッタ蒸着によ
り厚さ600nmのCu膜25を堆積した。Example 3 First, as shown in FIG. 14A, a silicon substrate 2 having a diffusion layer such as a source and drain (not shown) formed on the surface thereof.
1 as a layer insulation film by CVD method, for example, with a thickness of 1
After depositing the 000 nm Si 3 N 4 film 27, the Si
A plurality of trenches 23 having a depth of 500 nm and having a shape corresponding to the wiring layer were formed in the 3 N 4 film 27 by a photoetching technique. Subsequently, as shown in FIG. 14B, a Cu film 25 having a thickness of 600 nm was deposited on the Si 3 N 4 film 27 including the groove 23 by sputter deposition.
【0074】次いで、前述した図1に示すポリシング装
置の基板ホルダ5に図14の(B)に示す基板21を逆
さにして保持し、前記ホルダ5の支持軸4により前記基
板をローデル・ニッタ社製商品名;SUBA800から
なる研磨パッド2に400g/cm2 の加重を与え、前
記ターンテーブル1およびホルダ5をそれぞれ100p
pmの速度で互いに反対方向に回転させながら、研磨液
を供給管3から20ml/分の速度で前記研磨パッド2
に供給して前記基板21に堆積したCu膜25を前記S
i3 N4 膜27の表面が露出するまで研磨した。ここ
で、前記研磨液としてアミノ酢酸0.9重量%、過酸化
水素22.0重量%および水酸化カリウム3.7重量%
を含む純水からなり、重量割合でアミノ酢酸1に対して
過酸化水素が約24であるpH10.5のものを用い
た。前記研磨工程において、前記研磨液はCu膜との接
触時のエッチング速度が零であり、前記研磨パッドによ
る研磨時のポリシング速度が約220nm/分で浸漬時
に比べて十分に大きなエッチング速度差を示した。この
ため、図14の(B)に示す凸状のCu膜25は前記研
磨パッドと機械的に接触する表面から優先的にポリシン
グされる、いわゆるエッチバックがなされた。Next, the substrate 21 shown in FIG. 14B is held upside down in the substrate holder 5 of the polishing apparatus shown in FIG. 1 described above, and the supporting shaft 4 of the holder 5 holds the substrate. Product name: SUBA800 polishing pad 2 is applied with a load of 400 g / cm 2 , and the turntable 1 and holder 5 are each 100 p
While rotating in the opposite directions at a speed of pm, the polishing liquid is supplied from the supply pipe 3 at a speed of 20 ml / min.
The Cu film 25 deposited on the substrate 21 by supplying
Polishing was performed until the surface of the i 3 N 4 film 27 was exposed. As the polishing liquid, 0.9% by weight of aminoacetic acid, 22.0% by weight of hydrogen peroxide and 3.7% by weight of potassium hydroxide were used.
Was used, and the pH ratio was 10.5 in which hydrogen peroxide was about 24 per 1 aminoacetic acid in a weight ratio. In the polishing step, the polishing liquid has a zero etching rate when in contact with the Cu film, and the polishing rate when polishing with the polishing pad is about 220 nm / min, which is a sufficiently large etching rate difference as compared with immersion. It was For this reason, the convex Cu film 25 shown in FIG. 14 (B) was subjected to so-called etch back, in which polishing was performed preferentially from the surface that mechanically contacts the polishing pad.
【0075】その結果、図14の(C)に示すように前
記溝23内に前記Si3 N4 膜27表面と面一な埋め込
みCu配線層26が形成された。また、前記ポリシング
装置のホルダ5による前記研磨パッド2への加重を解除
し、かつターンテーブル1およびホルダ5の回転の停止
した後において、前記Cu配線層26が前記研磨液に接
触されてもエッチングが進行することがなかった。As a result, as shown in FIG. 14C, a buried Cu wiring layer 26 flush with the surface of the Si 3 N 4 film 27 was formed in the groove 23. Further, even after the Cu wiring layer 26 is brought into contact with the polishing liquid after releasing the load on the polishing pad 2 by the holder 5 of the polishing apparatus and stopping the rotation of the turntable 1 and the holder 5, the etching is performed. Never progressed.
【0076】さらに、前記埋め込みCu配線層26が形
成される溝23を有する層間絶縁膜27は、Cuの拡散
バリア性の優れたSi3 N4 からなる。その結果、Cu
配線層26からCuが前記層間絶縁膜を通して前記シリ
コン基板21に拡散することがないため、前記溝23内
面のTiNのようなバリア層を形成しなくとも、前記シ
リコン基板21の汚染を回避することができた。Further, the interlayer insulating film 27 having the groove 23 in which the embedded Cu wiring layer 26 is formed is made of Si 3 N 4 having an excellent Cu diffusion barrier property. As a result, Cu
Since Cu does not diffuse from the wiring layer 26 to the silicon substrate 21 through the interlayer insulating film, avoiding contamination of the silicon substrate 21 without forming a barrier layer such as TiN on the inner surface of the groove 23. I was able to.
【0077】実施例4 まず、図15の(A)に示すように表面にn+ 型拡散層
31が形成されたp型シリコン基板32上にCVD法に
より第1層間絶縁膜としての例えば厚さ1000nmの
SiO2 膜33を堆積した後、前記拡散層31に対応す
る前記SiO2膜33にフォトエッチング技術によりビ
アホール34を形成した。つづいて、図15の(B)に
示すように前記ビアホール34を含む前記SiO2 膜3
3上にスパッタ蒸着により厚さ20nmのTiNからな
るバリア層35を堆積した後、スパッタ蒸着により厚さ
1100nmのCu膜36を堆積した。Embodiment 4 First, as shown in FIG. 15A, a p-type silicon substrate 32 having an n + -type diffusion layer 31 formed on the surface thereof is formed by CVD on the p-type silicon substrate 32 to a thickness of, for example, a first interlayer insulating film. After depositing a 1000 nm SiO 2 film 33, a via hole 34 was formed in the SiO 2 film 33 corresponding to the diffusion layer 31 by a photoetching technique. Subsequently, as shown in FIG. 15B, the SiO 2 film 3 including the via hole 34 is formed.
After depositing a barrier layer 35 of TiN having a thickness of 20 nm on the No. 3 by sputter deposition, a Cu film 36 having a thickness of 1100 nm was deposited by sputter deposition.
【0078】次いで、前述した図1に示すポリシング装
置のホルダ5に図15の(B)に示す基板32を逆さに
して保持し、前記ホルダ5の支持軸4により前記基板を
ローデル・ニッタ社製商品名;SUBA800からなる
研磨パッド2に300g/cm2 の加重を与え、前記タ
ーンテーブル1およびホルダ5をそれぞれ100ppm
の速度で互いに反対方向に回転させながら、研磨液を供
給管3から20ml/分の速度で前記研磨パッド2に供
給して前記基板32に堆積したCu膜36およびバリア
層35を前記SiO2 膜33の表面が露出するまで研磨
した。ここで、前記研磨液としてアミノ酢酸0.2重量
%、過酸化水素20.0重量%および平均粒径0.04
μmのシリカ粉末10重量%を含む純水からなり、重量
割合でアミノ酢酸1に対して過酸化水素が100である
ものを用いた。前記研磨工程において、前記研磨液はC
u膜との接触時のエッチング速度が零であり、前記研磨
パッドによる研磨時のポリシング速度が約70nm/分
で浸漬時に比べて十分に大きなエッチング速度差を示し
た。このため、図15の(B)に示す凸状のCu膜36
は前記研磨パッドと機械的に接触する表面から優先的に
ポリシングされ、さらに露出したバリア層35がポリシ
ングされる、いわゆるエッチバックがなされた。その結
果、図15の(C)に示すように前記ビアホール34内
のみにバリア層35が残存すると共に、前記バリア層3
5で覆われた前記ビアホール34に前記SiO2 膜33
表面と面一なCuからなるビアフィル37が形成され
た。また、前記ポリシング装置のホルダ5による前記研
磨パッド2への加重を解除し、かつターンテーブル1お
よびホルダ5の回転の停止した後において、前記ビアフ
ィル37が前記研磨液に接触されてもエッチングが進行
することがなかった。つづいて、前記ビアフィル37の
形成後の基板をオゾン濃度0.002%の溶存オゾン水
溶液に3分間浸漬して処理した後、フッ酸濃度5%の希
フッ酸水溶液に9秒間浸漬して処理することによりSi
O2 膜33表面を清浄化した。Next, the substrate 32 shown in FIG. 15 (B) is held upside down in the holder 5 of the polishing apparatus shown in FIG. 1, and the supporting shaft 4 of the holder 5 holds the substrate by Rodel-Nitta. Product name; SUBA800 polishing pad 2 is applied with a load of 300 g / cm 2 , and the turntable 1 and holder 5 are each 100 ppm.
The polishing solution is supplied from the supply pipe 3 to the polishing pad 2 at a speed of 20 ml / min while rotating in the opposite directions at a speed of 10 to form the Cu film 36 and the barrier layer 35 deposited on the substrate 32 into the SiO 2 film. Polishing was performed until the surface of 33 was exposed. Here, 0.2% by weight of aminoacetic acid, 20.0% by weight of hydrogen peroxide and an average particle size of 0.04 were used as the polishing liquid.
It was made of pure water containing 10% by weight of silica powder having a particle diameter of μm, and hydrogen peroxide was 100 per 1 aminoacetic acid in a weight ratio. In the polishing step, the polishing liquid is C
The etching rate at the time of contact with the u film was zero, and the polishing rate at the time of polishing by the polishing pad was about 70 nm / min, showing a sufficiently large etching rate difference as compared with the time of immersion. Therefore, the convex Cu film 36 shown in FIG.
Was preferentially polished from the surface that mechanically contacts the polishing pad, and the exposed barrier layer 35 was polished, so-called etch back was performed. As a result, as shown in FIG. 15C, the barrier layer 35 remains only in the via hole 34 and the barrier layer 3 is formed.
The SiO 2 film 33 in the via hole 34 covered with
A via fill 37 made of Cu, which is flush with the surface, was formed. Further, even after the load of the polishing pad 2 by the holder 5 of the polishing device is released and the rotation of the turntable 1 and the holder 5 is stopped, the etching progresses even if the via fill 37 is brought into contact with the polishing liquid. I had nothing to do. Subsequently, the substrate on which the via fill 37 has been formed is immersed in a dissolved ozone aqueous solution having an ozone concentration of 0.002% for 3 minutes and then treated for 9 seconds in a dilute hydrofluoric acid aqueous solution having a hydrofluoric acid concentration of 5%. By Si
The surface of the O 2 film 33 was cleaned.
【0079】次いで、図16の(D)に示すように前記
ビアフィル37を含む前記SiO2膜33上にCVD法
により第2層間絶縁膜としての例えば厚さ800nmの
Si3 N4 膜38を堆積した後、前記Si3 N4 膜38
にフォトエッチング技術により配線層に相当する形状を
有する深さ400nmの複数の溝39を形成した。さら
に、前記ビアフィル37上にに位置する前記溝39にフ
ォトエッチング技術によりスルーホール40を形成し
た。つづいて、図16の(E)に示すように前記溝39
およびスルーホール40を含む前記Si3 N4 膜38上
にスパッタ蒸着により厚さ900nmのCu膜41を堆
積した。Next, as shown in FIG. 16D, a Si 3 N 4 film 38 having a thickness of, for example, 800 nm is deposited as a second interlayer insulating film on the SiO 2 film 33 including the via fill 37 by the CVD method. And then the Si 3 N 4 film 38
A plurality of grooves 39 having a depth of 400 nm and having a shape corresponding to the wiring layer were formed by photoetching technique. Further, a through hole 40 was formed in the groove 39 located on the via fill 37 by a photo etching technique. Then, as shown in FIG.
A 900 nm-thickness Cu film 41 was deposited on the Si 3 N 4 film 38 including the through holes 40 by sputter deposition.
【0080】次いで、前述した図1に示すポリシング装
置の基板ホルダ5に図16の(E)に示す基板32を逆
さにして保持し、前記ホルダ5の支持軸4により前記基
板をローデル・ニッタ社製商品名;SUBA800から
なる研磨パッド2に300g/cm2 の加重を与え、前
記ターンテーブル1およびホルダ5をそれぞれ100p
pmの速度で互いに反対方向に回転させながら、前述し
たエッチバック工程で用いたのと同様な組成を有する研
磨液を供給管3から20ml/分の速度で前記研磨パッ
ド2に供給して前記基板32に堆積したCu膜41を前
記Si3 N4 膜38の表面が露出するまで研磨した。そ
の結果、図16の(E)に示す凸状のCu膜41は前記
研磨パッドと機械的に接触する表面から優先的にポリシ
ングされる、いわゆるエッチバックがなされた。このよ
うなエッチバックにより図16の(F)に示すように前
記溝39内に前記Si3 N4 膜38表面と面一な埋め込
みCu配線層42が形成された。同時に、前記スルーホ
ール40を通して前記ビアフィル37と接続される埋め
込みCu配線層42が形成された。また、前記ポリシン
グ装置のホルダ5による前記研磨パッド2への加重を解
除し、かつターンテーブル1およびホルダ5の回転の停
止した後において、前記Cu配線層42が前記研磨液に
接触されてもエッチングが進行することがなかった。Next, the substrate 32 shown in FIG. 16 (E) is held upside down on the substrate holder 5 of the polishing apparatus shown in FIG. 1, and the supporting shaft 4 of the holder 5 holds the substrate. Product name: SUBA800 polishing pad 2 is applied with a weight of 300 g / cm 2 , and the turntable 1 and holder 5 are each 100 p
While rotating in the opposite directions at a speed of pm, a polishing liquid having the same composition as that used in the above-mentioned etch-back process is supplied from the supply pipe 3 to the polishing pad 2 at a speed of 20 ml / min so that the substrate The Cu film 41 deposited on 32 was polished until the surface of the Si 3 N 4 film 38 was exposed. As a result, the convex Cu film 41 shown in (E) of FIG. 16 was subjected to preferential polishing from the surface that mechanically contacts the polishing pad, so-called etch back was performed. By such etching back, as shown in FIG. 16F, a buried Cu wiring layer 42 flush with the surface of the Si 3 N 4 film 38 was formed in the groove 39. At the same time, a buried Cu wiring layer 42 connected to the via fill 37 through the through hole 40 was formed. Further, even if the Cu wiring layer 42 is brought into contact with the polishing liquid after releasing the load on the polishing pad 2 by the holder 5 of the polishing device and stopping the rotation of the turntable 1 and the holder 5, the etching is performed. Never progressed.
【0081】したがって、実施例4によれば第1、第2
の層間絶縁膜33、39を有し、前記第1層間絶縁膜3
3にその表面と面一なビアフィル37が形成され、第2
層間絶縁膜39にその表面と面一なCu配線層42が形
成された多層配線構造を有し、かつ表面が平坦化された
半導体装置を製造することができた。Therefore, according to the fourth embodiment, the first and second
The first interlayer insulating film 3 having the interlayer insulating films 33 and 39 of
A via-fill 37, which is flush with the surface of the via 3, is formed on
It was possible to manufacture a semiconductor device having a multilayered wiring structure in which a Cu wiring layer 42 flush with the surface of the interlayer insulating film 39 was formed and the surface was flattened.
【0082】[0082]
【発明の効果】以上説明したように、本発明によればC
uまたはCu合金の浸漬時においてCu、Cu合金を殆
どエッチングせず、かつ浸漬時と研磨時との間で数倍な
いし数十倍のエッチング速度差を示す銅系金属用研磨液
を提供できる。As described above, according to the present invention, C
It is possible to provide a copper-based metal polishing liquid that hardly etches Cu or Cu alloy during immersion of u or Cu alloy and shows a difference in etching rate between immersion and polishing of several times to several tens of times.
【0083】また、本発明によれば半導体基板上の絶縁
膜に溝および/または開口部を形成し、前記絶縁膜上に
堆積されたCuまたはCu合金からなる配線材料膜を短
時間でエッチバックでき、ひいては前記絶縁膜にCuま
たはCu合金からなる埋め込み配線層を前記絶縁膜表面
と面一となるように形成した表面が平坦な半導体装置の
製造方法を提供できる。Further, according to the present invention, a groove and / or an opening is formed in the insulating film on the semiconductor substrate, and the wiring material film made of Cu or Cu alloy deposited on the insulating film is etched back in a short time. Therefore, it is possible to provide a method for manufacturing a semiconductor device in which a buried wiring layer made of Cu or a Cu alloy is formed in the insulating film so as to be flush with the surface of the insulating film.
【0084】さらに、本発明によれば半導体基板上の絶
縁膜に溝および/または開口部を形成し、前記絶縁膜上
に堆積されたCuまたはCu合金からなる配線材料膜を
短時間でエッチバックして絶縁膜表面と面一の埋め込み
配線層を形成することができ、さらにエッチバック後の
絶縁膜表面の有機物や残留配線材料が除去された清浄で
平坦な表面を有する半導体装置の製造方法を提供でき
る。Further, according to the present invention, a groove and / or an opening is formed in the insulating film on the semiconductor substrate, and the wiring material film made of Cu or Cu alloy deposited on the insulating film is etched back in a short time. A method for manufacturing a semiconductor device having a clean and flat surface, in which an embedded wiring layer flush with the surface of the insulating film can be formed, and further, organic substances and residual wiring material on the surface of the insulating film after etching back are removed. Can be provided.
【図1】本発明の研磨工程に使用されるポリシング装置
を示す概略図。FIG. 1 is a schematic view showing a polishing apparatus used in a polishing process of the present invention.
【図2】0.1重量%のアミノ酢酸、過酸化水素および
水からなる組成の研磨液における過酸化水素の量とその
研磨液に浸漬した時のCu膜のエッチング速度、研磨処
理時のCu膜のポリシング速度との関係を示す特性図。FIG. 2 shows the amount of hydrogen peroxide in a polishing liquid having a composition of 0.1% by weight of aminoacetic acid, hydrogen peroxide and water, the etching rate of a Cu film when immersed in the polishing liquid, and the Cu during polishing treatment. The characteristic view which shows the relationship with the polishing speed of a film.
【図3】凹凸を有するCu膜をアミノ酢酸、過酸化水素
および水からなる組成の研磨液に浸漬した時、ポリシン
グ装置を用いて研磨処理した時の状態を示す断面図。FIG. 3 is a cross-sectional view showing a state when a Cu film having irregularities is immersed in a polishing liquid having a composition of aminoacetic acid, hydrogen peroxide and water, and subjected to polishing treatment using a polishing device.
【図4】加工前、本発明の研磨液の浸漬後および研磨処
理後のCu膜表面のXPSによるスペクトル図。FIG. 4 is an XPS spectrum diagram of a Cu film surface before processing, after immersion of a polishing liquid of the present invention, and after polishing treatment.
【図5】0.9重量%のアミノ酢酸、過酸化水素および
水からなる組成の研磨液における過酸化水素の量とその
研磨液に浸漬した時のCu膜のエッチング速度、研磨処
理時のCu膜のポリシング速度との関係を示す特性図。FIG. 5 shows the amount of hydrogen peroxide in a polishing liquid having a composition of 0.9% by weight of aminoacetic acid, hydrogen peroxide and water, the etching rate of a Cu film when immersed in the polishing liquid, and the Cu during polishing treatment. The characteristic view which shows the relationship with the polishing speed of a film.
【図6】アミド硫酸、過酸化水素および水からなる組成
の研磨液における過酸化水素の量とその研磨液に浸漬し
た時のCu膜のエッチング速度、研磨処理時のCu膜の
ポリシング速度との関係を示す特性図。FIG. 6 shows the amount of hydrogen peroxide in a polishing liquid composed of amido sulfuric acid, hydrogen peroxide and water, the etching rate of the Cu film when immersed in the polishing liquid, and the polishing speed of the Cu film during polishing treatment. The characteristic diagram which shows a relationship.
【図7】本発明の研磨液のpHとCu膜表面に生成され
る酸化層の厚さ変化を示す特性図。FIG. 7 is a characteristic diagram showing changes in pH of the polishing liquid of the present invention and thickness of an oxide layer formed on the surface of a Cu film.
【図8】本発明の実施例1における半導体装置の製造工
程を示す断面図。FIG. 8 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the first embodiment of the invention.
【図9】実施例1の研磨処理(エッチバック工程)での
研磨液のpH変化を示す特性図。FIG. 9 is a characteristic diagram showing a pH change of the polishing liquid in the polishing process (etchback process) of Example 1.
【図10】実施例1の研磨処理(エッチバック工程)で
の研磨布の温度変化を示す特性図。FIG. 10 is a characteristic diagram showing a temperature change of the polishing pad in the polishing process (etchback process) of Example 1.
【図11】実施例1の研磨処理(エッチバック工程)で
のターンテーブルの駆動モータの電圧変化を示す特性
図。FIG. 11 is a characteristic diagram showing a voltage change of the drive motor of the turntable in the polishing process (etchback process) of the first embodiment.
【図12】本発明の実施例1におけるCu配線層形成直
後の表面、オゾン処理後のCu配線層表面、および希フ
ッ酸処理後のCu配線層表面のXPS分析により得られ
たスペクトル図。FIG. 12 is a spectrum diagram obtained by XPS analysis of the surface immediately after forming the Cu wiring layer, the surface of the Cu wiring layer after the ozone treatment, and the surface of the Cu wiring layer after the dilute hydrofluoric acid treatment in Example 1 of the present invention.
【図13】本発明の実施例2おける半導体装置の製造工
程を示す断面図。FIG. 13 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the second embodiment of the invention.
【図14】本発明の実施例3おける半導体装置の製造工
程を示す断面図。FIG. 14 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the third embodiment of the invention.
【図15】本発明の実施例4おける半導体装置の製造工
程を示す断面図。FIG. 15 is a sectional view showing a manufacturing process of a semiconductor device according to a fourth embodiment of the present invention.
【図16】本発明の実施例4おける半導体装置の製造工
程を示す断面図。FIG. 16 is a sectional view showing a manufacturing process of a semiconductor device according to a fourth embodiment of the present invention.
1…ターンテーブル、2…研磨パッド、3…供給管、5
…ホルダ、11、21、32…シリコン基板、12、2
5、36、41…Cu膜、13…酸化層、22、33…
SiO2 膜、23、39…溝、24、35…バリア層、
26、42…Cu配線層、37…ビアフィル。1 ... Turntable, 2 ... Polishing pad, 3 ... Supply pipe, 5
... Holders, 11, 21, 32 ... Silicon substrates, 12, 2
5, 36, 41 ... Cu film, 13 ... Oxide layer, 22, 33 ...
SiO 2 film, 23, 39 ... Groove, 24, 35 ... Barrier layer,
26, 42 ... Cu wiring layer, 37 ... Via fill.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/304 321 P M 21/3205 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 21/304 321 PM 21/3205
Claims (20)
る少なくとも1種の有機酸と酸化剤と水とを含有するこ
とを特徴とする銅系金属用研磨液。1. A copper-based metal polishing liquid containing at least one organic acid selected from aminoacetic acid and amidosulfuric acid, an oxidizing agent, and water.
特徴とする請求項1記載の銅系金属用研磨液。2. The polishing liquid for copper-based metals according to claim 1, wherein the oxidizing agent is hydrogen peroxide.
〜10重量%の量で含有され、かつ前記有機酸と前記酸
化剤の含有比率は重量割合で前記有機酸1に対して前記
酸化剤が20以上であることを特徴とする請求項1記載
の銅系金属用研磨液。3. The organic acid is 0.01% in the polishing liquid.
The content of the organic acid and the oxidizing agent is 20 wt% or more, and the content ratio of the organic acid and the oxidizing agent is 20 or more with respect to 1 of the organic acid by weight. Polishing solution for copper metal.
アルカリ剤が含有されることを特徴とする請求項1記載
の銅系金属用研磨液。4. The polishing solution for copper-based metals according to claim 1, further comprising an alkaline agent for adjusting the pH to 9-14.
する請求項1記載の銅系金属用研磨液。5. The polishing liquid for copper-based metals according to claim 1, further containing polishing abrasive grains.
4重量%の量で含有されることを特徴とする請求項5記
載の銅系金属用研磨液。6. The polishing abrasive contains 1 to 1 of the polishing liquid in the polishing liquid.
The copper-based metal polishing liquid according to claim 5, wherein the polishing liquid is contained in an amount of 4% by weight.
相当する溝および/または開口部を形成する工程と、 前記溝および/または開口部を含む前記絶縁膜上に銅ま
たは銅合金からなる配線材料膜を堆積する工程と、 アミノ酢酸およびアミド硫酸から選ばれる少なくとも1
種の有機酸と酸化剤と水とを含有する研磨液を用いて前
記配線材料膜を前記絶縁膜の表面が露出するまで研磨処
理することにより前記絶縁膜にその表面と面一の埋め込
み配線層を形成する工程とを具備したことを特徴とする
半導体装置の製造方法。7. A step of forming a groove and / or an opening corresponding to the shape of a wiring layer in an insulating film on a semiconductor substrate; and copper or a copper alloy on the insulating film including the groove and / or the opening. A wiring material film consisting of at least one selected from aminoacetic acid and amidosulfuric acid.
An embedded wiring layer flush with the surface of the insulating film by polishing the wiring material film with a polishing liquid containing a certain organic acid, an oxidizing agent, and water until the surface of the insulating film is exposed. And a step of forming a semiconductor device.
−Al合金、Cu−Si−Al合金またはCu−Ag合
金であることを特徴とする請求項7記載の半導体装置の
製造方法。8. The Cu alloy is a Cu—Si alloy, Cu
The method for manufacturing a semiconductor device according to claim 7, wherein the method is a -Al alloy, a Cu-Si-Al alloy, or a Cu-Ag alloy.
ターンテーブルと、前記テーブルの研磨パッドに前記研
磨液を供給する手段と、前記半導体基板を下面に保持
し、前記基板を前記研磨パッドに押圧して回転させる基
板ホルダとを備えたポリシング装置を用いて行われるこ
とを特徴とする請求項7記載の半導体装置の製造方法。9. The polishing process comprises a turntable covered with a polishing pad, a means for supplying the polishing liquid to the polishing pad of the table, the semiconductor substrate held on the lower surface, and the substrate being the polishing pad. 8. The method of manufacturing a semiconductor device according to claim 7, wherein the polishing is performed by using a polishing apparatus having a substrate holder that presses and rotates the substrate holder.
シング装置の前記テーブルの回転トルクの変化に基づい
てなされることを特徴とする請求項9記載の半導体装置
の製造方法。10. The method of manufacturing a semiconductor device according to claim 9, wherein the end point of the polishing process is detected based on a change in the rotation torque of the table of the polishing device.
パッドの温度変化に基づいてなされることを特徴とする
請求項9記載の半導体装置の製造方法。11. The method of manufacturing a semiconductor device according to claim 9, wherein the end point of the polishing process is detected based on a temperature change of the polishing pad.
パッドに供給される前記研磨液のpH変化に基づいてな
されることを特徴とする請求項9記載の半導体装置の製
造方法。12. The method of manufacturing a semiconductor device according to claim 9, wherein the end point of the polishing process is detected based on a change in pH of the polishing liquid supplied to the polishing pad.
に相当する溝および/または開口部を形成する工程と、 前記溝および/または開口部を含む前記絶縁膜上に銅ま
たは銅合金からなる配線材料膜を堆積する工程と、 アミノ酢酸およびアミド硫酸から選ばれる少なくとも1
種の有機酸と酸化剤と水とを含有する研磨液を用いて前
記配線材料膜を前記絶縁膜の表面が露出するまで研磨処
理することにより前記絶縁膜にその表面と面一の埋め込
み配線層を形成する工程と、 前記配線層を含む前記絶縁膜表面を溶存オゾン水溶液で
処理し、さらに希フッ酸水溶液で処理する工程とを具備
したことを特徴とする半導体装置の製造方法。13. A step of forming a groove and / or an opening corresponding to the shape of a wiring layer in an insulating film on a semiconductor substrate, and copper or a copper alloy on the insulating film including the groove and / or the opening. A wiring material film consisting of at least one selected from aminoacetic acid and amidosulfuric acid.
An embedded wiring layer flush with the surface of the insulating film by polishing the wiring material film with a polishing liquid containing a certain organic acid, an oxidizing agent, and water until the surface of the insulating film is exposed. And a step of treating the surface of the insulating film including the wiring layer with a dissolved ozone aqueous solution, and further treating with a dilute hydrofluoric acid aqueous solution.
u−Al合金、Cu−Si−Al合金またはCu−Ag
合金であることを特徴とする請求項13記載の半導体装
置の製造方法。14. The Cu alloy is a Cu—Si alloy, C
u-Al alloy, Cu-Si-Al alloy or Cu-Ag
14. The method of manufacturing a semiconductor device according to claim 13, wherein the method is an alloy.
と、前記テーブルの研磨パッドに前記研磨液を供給する
手段と、前記半導体基板を下面に保持し、前記基板を前
記研磨パッドに押圧して回転させる基板ホルダとを備え
たポリシング装置を用いて行われることを特徴とする請
求項13記載の半導体装置の製造方法。15. A turntable covered with a polishing pad, a means for supplying the polishing liquid to the polishing pad of the table, the semiconductor substrate held on the lower surface, and the substrate pressed against the polishing pad to rotate. 14. The method of manufacturing a semiconductor device according to claim 13, wherein the polishing is performed by using a polishing device having a substrate holder for making the substrate holder.
シング装置の前記テーブルの回転トルクの変化に基づい
てなされることを特徴とする請求項15記載の半導体装
置の製造方法。16. The method of manufacturing a semiconductor device according to claim 15, wherein the end point of the polishing process is detected based on a change in the rotation torque of the table of the polishing device.
パッドの温度変化に基づいてなされることを特徴とする
請求項15記載の半導体装置の製造方法。17. The method of manufacturing a semiconductor device according to claim 15, wherein the end point of the polishing process is detected based on a temperature change of the polishing pad.
パッドに供給される前記研磨液のpH変化に基づいてな
されることを特徴とする請求項15記載の半導体装置の
製造方法。18. The method of manufacturing a semiconductor device according to claim 15, wherein the end point of the polishing process is detected based on a change in pH of the polishing liquid supplied to the polishing pad.
が0.1〜25ppmであることを特徴とする請求項1
3記載の半導体装置の製造方法。19. The dissolved ozone aqueous solution has an ozone concentration of 0.1 to 25 ppm.
3. The method for manufacturing a semiconductor device according to 3.
0.05〜20%であることを特徴とする請求項13記
載の半導体装置の製造方法。20. The method of manufacturing a semiconductor device according to claim 13, wherein the dilute hydrofluoric acid solution has a hydrofluoric acid concentration of 0.05 to 20%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26361394A JP3556978B2 (en) | 1993-12-14 | 1994-10-27 | Polishing method for copper-based metal |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5-313406 | 1993-12-14 | ||
JP31340693 | 1993-12-14 | ||
JP26361394A JP3556978B2 (en) | 1993-12-14 | 1994-10-27 | Polishing method for copper-based metal |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001160595A Division JP3577002B2 (en) | 1993-12-14 | 2001-05-29 | Polishing liquid for copper-based metal |
JP2002212954A Division JP4128819B2 (en) | 1993-12-14 | 2002-07-22 | Manufacturing method of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07233485A true JPH07233485A (en) | 1995-09-05 |
JP3556978B2 JP3556978B2 (en) | 2004-08-25 |
Family
ID=26546104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26361394A Expired - Lifetime JP3556978B2 (en) | 1993-12-14 | 1994-10-27 | Polishing method for copper-based metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3556978B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0747939A3 (en) * | 1995-06-08 | 1998-10-14 | Kabushiki Kaisha Toshiba | Copper-based metal polishing solution and method for manufacturing a semiconductor device |
WO2000013217A1 (en) * | 1998-08-31 | 2000-03-09 | Hitachi Chemical Company, Ltd. | Abrasive liquid for metal and method for polishing |
US6117775A (en) * | 1997-10-31 | 2000-09-12 | Hitachi, Ltd. | Polishing method |
WO2001017006A1 (en) * | 1999-08-26 | 2001-03-08 | Hitachi Chemical Company, Ltd. | Polishing compound for chemimechanical polishing and polishing method |
EP1085067A1 (en) * | 1999-09-20 | 2001-03-21 | Fujimi Incorporated | Polishing composition and polishing process |
JP2001200242A (en) * | 1999-12-08 | 2001-07-24 | Eastman Kodak Co | Aqueous slurry |
EP1229093A1 (en) * | 2001-01-31 | 2002-08-07 | Fujimi Incorporated | Polishing composition and polishing method employing it |
US6509273B1 (en) | 1999-04-28 | 2003-01-21 | Hitachi, Ltd. | Method for manufacturing a semiconductor device |
US6527818B2 (en) | 2000-02-09 | 2003-03-04 | Jsr Corporation | Aqueous dispersion for chemical mechanical polishing |
US6797626B2 (en) | 2001-12-28 | 2004-09-28 | Fujikoshi Machinery Corp. | Method of polishing copper layer of substrate |
JP2004363516A (en) * | 2003-06-09 | 2004-12-24 | Sony Corp | Method for forming embedded wiring |
KR100511843B1 (en) * | 1995-09-20 | 2005-10-26 | 소니 가부시끼 가이샤 | Polishing slurry and polishing method using the polishing slurry |
US7067427B2 (en) | 2002-08-02 | 2006-06-27 | Nec Electronics Corporation | Manufacturing method of semiconductor device |
US7229570B2 (en) | 2002-08-02 | 2007-06-12 | Nec Electronics Corporation | Slurry for chemical mechanical polishing |
JP2007243206A (en) * | 2007-04-12 | 2007-09-20 | Hitachi Ltd | Method for manufacturing semiconductor device |
US7550388B2 (en) | 2004-03-24 | 2009-06-23 | Fujima Incorporated | Polishing composition and polishing method |
JP2013537581A (en) * | 2010-07-06 | 2013-10-03 | アトテック ドイチェランド ゲーエムベーハー | Method of treating a metal surface and apparatus formed by this method |
JPWO2014013977A1 (en) * | 2012-07-17 | 2016-06-30 | 株式会社フジミインコーポレーテッド | Composition for polishing alloy material and method for producing alloy material using the same |
CN116124807A (en) * | 2022-12-01 | 2023-05-16 | 江西省科学院应用物理研究所 | Preparation method of heterogeneous metal reinforced copper-based composite material EBSD sample |
-
1994
- 1994-10-27 JP JP26361394A patent/JP3556978B2/en not_active Expired - Lifetime
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6521574B1 (en) | 1995-06-08 | 2003-02-18 | Kabushiki Kaisha Toshiba | Copper-based metal polishing solution and method for manufacturing a semiconductor device |
US6046110A (en) * | 1995-06-08 | 2000-04-04 | Kabushiki Kaisha Toshiba | Copper-based metal polishing solution and method for manufacturing a semiconductor device |
EP0747939A3 (en) * | 1995-06-08 | 1998-10-14 | Kabushiki Kaisha Toshiba | Copper-based metal polishing solution and method for manufacturing a semiconductor device |
KR100511843B1 (en) * | 1995-09-20 | 2005-10-26 | 소니 가부시끼 가이샤 | Polishing slurry and polishing method using the polishing slurry |
US7563716B2 (en) | 1997-10-31 | 2009-07-21 | Renesas Technology Corp. | Polishing method |
US6117775A (en) * | 1997-10-31 | 2000-09-12 | Hitachi, Ltd. | Polishing method |
US7279425B2 (en) | 1997-10-31 | 2007-10-09 | Hitachi, Ltd. | Polishing method |
US7132367B2 (en) | 1997-10-31 | 2006-11-07 | Hitachi, Ltd. | Polishing method |
US6596638B1 (en) | 1997-10-31 | 2003-07-22 | Hitachi, Ltd. | Polishing method |
US6896825B1 (en) | 1998-08-31 | 2005-05-24 | Hitachi Chemical Company, Ltd | Abrasive liquid for metal and method for polishing |
US8038898B2 (en) | 1998-08-31 | 2011-10-18 | Hitachi Chemical Company, Ltd. | Abrasive liquid for metal and method for polishing |
US8491807B2 (en) | 1998-08-31 | 2013-07-23 | Hitachi Chemical Company, Ltd. | Abrasive liquid for metal and method for polishing |
WO2000013217A1 (en) * | 1998-08-31 | 2000-03-09 | Hitachi Chemical Company, Ltd. | Abrasive liquid for metal and method for polishing |
US6899821B2 (en) | 1998-08-31 | 2005-05-31 | Hitachi Chemical Company, Ltd. | Abrasive liquid for metal and method for polishing |
US6509273B1 (en) | 1999-04-28 | 2003-01-21 | Hitachi, Ltd. | Method for manufacturing a semiconductor device |
WO2001017006A1 (en) * | 1999-08-26 | 2001-03-08 | Hitachi Chemical Company, Ltd. | Polishing compound for chemimechanical polishing and polishing method |
EP1085067A1 (en) * | 1999-09-20 | 2001-03-21 | Fujimi Incorporated | Polishing composition and polishing process |
JP2001200242A (en) * | 1999-12-08 | 2001-07-24 | Eastman Kodak Co | Aqueous slurry |
US6527818B2 (en) | 2000-02-09 | 2003-03-04 | Jsr Corporation | Aqueous dispersion for chemical mechanical polishing |
EP1229093A1 (en) * | 2001-01-31 | 2002-08-07 | Fujimi Incorporated | Polishing composition and polishing method employing it |
US6797626B2 (en) | 2001-12-28 | 2004-09-28 | Fujikoshi Machinery Corp. | Method of polishing copper layer of substrate |
US7229570B2 (en) | 2002-08-02 | 2007-06-12 | Nec Electronics Corporation | Slurry for chemical mechanical polishing |
US7067427B2 (en) | 2002-08-02 | 2006-06-27 | Nec Electronics Corporation | Manufacturing method of semiconductor device |
JP2004363516A (en) * | 2003-06-09 | 2004-12-24 | Sony Corp | Method for forming embedded wiring |
US7550388B2 (en) | 2004-03-24 | 2009-06-23 | Fujima Incorporated | Polishing composition and polishing method |
JP4618267B2 (en) * | 2007-04-12 | 2011-01-26 | 株式会社日立製作所 | Manufacturing method of semiconductor device |
JP2007243206A (en) * | 2007-04-12 | 2007-09-20 | Hitachi Ltd | Method for manufacturing semiconductor device |
JP2013537581A (en) * | 2010-07-06 | 2013-10-03 | アトテック ドイチェランド ゲーエムベーハー | Method of treating a metal surface and apparatus formed by this method |
JPWO2014013977A1 (en) * | 2012-07-17 | 2016-06-30 | 株式会社フジミインコーポレーテッド | Composition for polishing alloy material and method for producing alloy material using the same |
CN116124807A (en) * | 2022-12-01 | 2023-05-16 | 江西省科学院应用物理研究所 | Preparation method of heterogeneous metal reinforced copper-based composite material EBSD sample |
Also Published As
Publication number | Publication date |
---|---|
JP3556978B2 (en) | 2004-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0165145B1 (en) | Abrasive solution for copper based metal and method for manufacturing semiconductor device | |
JP3556978B2 (en) | Polishing method for copper-based metal | |
US6426294B1 (en) | Copper-based metal polishing composition, method for manufacturing a semiconductor device, polishing composition, aluminum-based metal polishing composition, and tungsten-based metal polishing composition | |
KR100214749B1 (en) | Polishing chemical for cu metal and fabricating method of semiconductor device thereby | |
US5516346A (en) | Slurries for chemical mechanical polishing | |
US5209816A (en) | Method of chemical mechanical polishing aluminum containing metal layers and slurry for chemical mechanical polishing | |
EP0913442B1 (en) | Polishing method | |
JP3192968B2 (en) | Polishing liquid for copper-based metal and method for manufacturing semiconductor device | |
US20020090820A1 (en) | Tantalum removal during chemical mechanical polishing | |
US6316364B1 (en) | Polishing method and polishing solution | |
TWI459456B (en) | Cmp slurry/method for polishing ruthenium and other films | |
JP4327763B2 (en) | Polishing liquid for copper metal and method for polishing copper metal | |
JP3164213B2 (en) | Method of forming embedded metal wiring | |
JP3577002B2 (en) | Polishing liquid for copper-based metal | |
JP2002305198A (en) | Method for manufacturing electronic device | |
JP4128819B2 (en) | Manufacturing method of semiconductor device | |
JP4713767B2 (en) | Cleaning liquid and method for manufacturing semiconductor device | |
JP2004022855A (en) | Process for producing semiconductor device | |
KR100605943B1 (en) | Method for fabricating tungsten plug of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040416 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040514 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090521 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090521 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100521 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110521 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110521 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120521 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120521 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140521 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |