JPH07203706A - Autonomous travel working vehicle - Google Patents

Autonomous travel working vehicle

Info

Publication number
JPH07203706A
JPH07203706A JP6004619A JP461994A JPH07203706A JP H07203706 A JPH07203706 A JP H07203706A JP 6004619 A JP6004619 A JP 6004619A JP 461994 A JP461994 A JP 461994A JP H07203706 A JPH07203706 A JP H07203706A
Authority
JP
Japan
Prior art keywords
work
vehicle
ball
boundary
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6004619A
Other languages
Japanese (ja)
Inventor
Toshihiro Nagano
俊博 長野
Yasuhiko Miyamoto
康彦 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP6004619A priority Critical patent/JPH07203706A/en
Publication of JPH07203706A publication Critical patent/JPH07203706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

PURPOSE:To provide an autonomous travel working vehicle capable of autonomously traveling along the boundary between a worked land and an unworked land, having economic efficiency and not contaminating the worked land. CONSTITUTION:This autonomous travel working vehicle photographs the boundary part between a worked land C and an unworked land B by a CCD camera 26 with advance of a vehicle, detects a position of each ball 40 placed along a boundary L between the worked land and the unworked land in the previous working lane traveling in a photographed image picture, recognizes deviation of a body from a target position by comparing a line connecting these positions with a preset target line and autonomously travels by controlling a steering mechanism based on the recognized data. In the autonomous travel, balls 40 are newly placed on the boundary between the worked land and the unworked land at the opposite side of the advance direction of the vehicle by a ball placing device 11a (11b) to provide the next operating lane travel and the balls 40 placed on the worked land during the previous operating lane travel are recovered by a ball recovering device 20a (20b) and supplied through a ball feed pipe 25 to the ball placing device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、作業領域における未作
業地と既作業地との境界を検出し、検出された境界に沿
い自律走行して次の作業レ−ンの作業を行う自律走行作
業車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects the boundary between an unworked site and an already-worked site in a work area, and autonomously travels along the detected boundary to perform the next work lane. Regarding work vehicles.

【0002】[0002]

【従来の技術】従来、無人で自律走行する自律走行車に
対しては、自律走行のための自己位置検出として、電線
を地下に埋設し、この電線が発する磁界を磁気センサで
検出する技術が提案されているが(例えば、特開平1−
312610号公報)、ゴルフ場、河川敷堤防、公園等
の各種フィ−ルドで草刈、芝刈等の作業を無人で行う自
律走行作業車等のように、自律走行領域が広大な場合、
領域の全てに電線を埋設することは困難であり、設置費
用も大きなものとなる。
2. Description of the Related Art Conventionally, for an autonomous vehicle that is autonomously autonomously traveling, there is a technique in which an electric wire is buried underground and a magnetic sensor detects a magnetic field generated by the electric wire as self-position detection for autonomous traveling. Although proposed (for example, Japanese Patent Laid-Open No. 1-
No. 312610), a golf course, a river embankment, a field such as a park, etc., where an autonomous traveling area is large, such as an autonomous traveling vehicle that performs unmanned work such as mowing and lawn mowing.
It is difficult to embed the electric wire in the whole area, and the installation cost becomes large.

【0003】これに対処するため、作業領域において未
処理作業地としての未作業地と処理済み作業地としての
既作業地との境界部をモニタカメラ等の撮像手段により
撮像し、この撮像した画像から境界位置を検出し、この
境界に沿って自律走行し、次の作業レ−ンの作業を行う
自律走行作業車が開発されている。
In order to deal with this, a boundary portion between an unworked site as an unprocessed work site and an already worked site as a processed work site is imaged by an image pickup means such as a monitor camera, and the imaged image is taken. An autonomous traveling work vehicle has been developed which detects a boundary position from the vehicle and autonomously travels along the boundary to perform the work of the next work lane.

【0004】この境界検出については、特開昭61−1
39304号公報に、モニタカメラにより境界部を撮像
してこの撮像画像を平均明度差により2値化し、2値化
に当たって、微分値の正負の符号を検出し、車輌の進行
方向と照らし合わせて、作業済み/未作業・境界なの
か、或いは未作業/作業済み・境界なのかを識別し、現
在の作業行程で必要な境界のみを見い出し、この境界に
沿って自律走行する技術が開示されている。
Regarding this boundary detection, JP-A-61-1
In Japanese Patent No. 39304, a boundary portion is imaged by a monitor camera, the imaged image is binarized by an average lightness difference, binarization is performed, the positive and negative signs of a differential value are detected, and the sign is compared with a traveling direction of a vehicle. A technology for identifying whether a work / unworked / boundary or an unworked / worked / boundary is found, finding only a boundary required in the current work process, and autonomously traveling along the boundary is disclosed. .

【0005】[0005]

【発明が解決しようとする課題】しかし、上記の先行例
のような画像処理による倣い走行では、曇天等、光量の
少ない状態下においては、未作業地と既作業地との境界
の明度差が少なく、この明度差に基づき既作業地と未作
業地との境界を検出すると誤検出を生じ、既作業地と未
作業地との境界に沿った倣い走行が困難となる不都合が
ある。
However, in the copying traveling by the image processing as in the above-mentioned prior art example, the lightness difference at the boundary between the unworked site and the already-worked site may occur under a light amount such as cloudy weather. However, if the boundary between the already-worked site and the not-worked site is detected based on this difference in brightness, an erroneous detection occurs, which makes it difficult to follow along the boundary between the already-worked site and the unworked site.

【0006】これに対処するに作業地との明度差が大き
い白色の粉、例えば石灰粉等を走行作業時に既作業地と
未作業地との境界に散布し、次の作業レ−ン走行時に、
境界部を撮像した画像において、作業地と境界に沿い散
布した石灰粉による白線との明度差が大きいことから確
実に白線を検出して、既作業地と未作業地との境界の誤
検出を防止することが考えられるが、広大な作業地で作
業する場合には多量の石灰粉を自律走行作業車に搭載す
る必要があり、車輌重量の増大を招き、走行駆動源をエ
ンジンとする場合には燃費が悪化し、モ−タとする場合
には電力消費が増し、さらに一度散布された石灰粉は無
駄になるため、経済性が悪いという不都合があり、ま
た、石灰粉の散布により作業地を汚損するため、例え
ば、自律走行により清掃作業を行う自律走行作業車や、
ゴルフ場等のフィ−ルドにおいて、既作業地としての既
刈地と、未作業地としての未刈地との刈跡境界を検出し
て、この刈跡境界に沿い自律走行して草・芝刈作業を行
う自律走行作業車等には適用することができない不都合
がある。
To cope with this, white powder having a large difference in brightness from the work site, for example, lime powder, is sprayed on the boundary between the already-worked site and the unworked site at the time of traveling work, and at the time of the next work lane traveling. ,
In the image of the boundary part, the brightness difference between the work site and the white line due to the lime powder scattered along the boundary is large, so the white line is reliably detected, and the false detection of the boundary between the already-worked site and the unworked site is possible. It is possible to prevent it, but when working in a vast work area, it is necessary to mount a large amount of lime powder on the autonomous traveling work vehicle, which causes an increase in vehicle weight and when the traveling drive source is an engine. Fuel efficiency deteriorates, power consumption increases when used as a motor, and the lime powder that has been sprayed once is wasted, which is disadvantageous in terms of economic efficiency. To pollute the, for example, an autonomous traveling work vehicle that performs cleaning work by autonomous traveling,
In a field such as a golf course, it detects a cut boundary between an already-cut land that has been used as a work site and an uncut land that has not been used as a work site, and autonomously runs along this boundary to cut grass and lawn. There is an inconvenience that cannot be applied to an autonomous traveling work vehicle or the like that performs work.

【0007】本発明は上記事情に鑑み、確実に未作業地
と既作業地との境界に沿った自律走行を行い、且つ経済
性に優れ、作業地を汚損することのない自律走行作業車
を提供することを目的とする。
In view of the above circumstances, the present invention provides an autonomous traveling work vehicle which reliably performs autonomous traveling along the boundary between an unworked site and an already-worked site, is excellent in economic efficiency, and does not pollute the work site. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
本発明は、作業領域における既作業地と未作業地との境
界部を撮像手段により撮像し、撮像した画像に基づき境
界位置に対する車体のずれを認識し、境界位置に対する
車体のずれに基づき操舵機構を制御して境界に沿った倣
い走行を行う自律走行作業車において、車輌の進行方向
と逆側に、既作業地と未作業地との境界に沿い作業地に
標識体を載置する載置手段と、倣い走行による作業レ−
ン走行時に、前回の作業レ−ン走行時に作業地に載置さ
れた標識体を回収する回収手段と、回収した標識体を上
記載置手段に供給する供給手段と、撮像手段により撮像
した境界部の画像から作業地に載置された標識体の位置
を検出し、複数の標識体位置を結ぶ線と予め設定された
目標線とを比較して目標位置に対する車体のずれを認識
する画像処理手段と、上記画像処理手段により得た境界
認識デ−タに基づき操舵機構を制御する倣い走行制御手
段とを備えることを特徴とする。
In order to achieve the above object, the present invention is to image a boundary portion of a work area and an unworked area in a work area by an image pickup means, and based on the imaged image of a vehicle body with respect to the boundary position. In an autonomous work vehicle that recognizes the deviation and controls the steering mechanism based on the deviation of the vehicle body from the boundary position to follow the boundary along the boundary, in the opposite direction to the traveling direction of the vehicle Placement means for placing a sign body on the work site along the boundary of the road, and a work laser by copying traveling.
When traveling, the collecting means for collecting the marker placed on the work site during the previous traveling of the work lane, the supplying means for supplying the recovered marker to the placing means, and the boundary imaged by the imaging means. Image processing that detects the position of the sign placed on the work site from the image of the part and compares the line connecting the positions of the sign with a preset target line to recognize the deviation of the vehicle body from the target position Means and a contouring travel control means for controlling the steering mechanism based on the boundary recognition data obtained by the image processing means.

【0009】上記標識体は表面に作業地との明度差の大
きい色彩を施すことが望ましい。
[0009] It is desirable that the surface of the above-mentioned marker be colored with a large difference in brightness from the work site.

【0010】また、上記標識体は、球体を用いることが
望ましく、さらには、重心位置が球心から偏心した偏重
心ボ−ルを用いることが望ましい。
Further, it is desirable to use a spherical body as the above-mentioned marking body, and further it is desirable to use an eccentric center of gravity ball whose center of gravity is eccentric from the center of gravity.

【0011】[0011]

【作用】上記自律走行作業車においては、車輌走行に伴
い、撮像手段により既作業地と未作業地との境界部を撮
像し、撮像された画像から、前回の作業レ−ン走行時に
既作業地と未作業地との境界に沿い作業地に載置された
標識体の位置を検出し、複数の標識体位置を結ぶ線と予
め設定された目標線とを比較して目標位置に対する車体
のずれを認識し、この認識デ−タに基づき操舵機構が制
御されて境界に沿った自律走行が行われる。またこのと
き、次の作業レ−ン走行に備え載置手段によって車輌の
進行方向と逆側に既作業地と未作業地との境界に沿い標
識体が載置されると共に、前回の作業レ−ン走行時に作
業地に載置された標識体は、自律走行作業車に備えた回
収手段により回収されて供給手段を介し上記載置手段に
供給される。
In the above-mentioned autonomous traveling work vehicle, as the vehicle travels, the image of the boundary between the existing work site and the unworked site is imaged by the image pickup means, and from the imaged image, the existing work is carried out during the previous work lane travel. The position of the sign body placed on the work site along the boundary between the ground and the unworked place is detected, and the line connecting the plurality of mark body positions is compared with a preset target line to detect the position of the vehicle body relative to the target position. The shift is recognized, the steering mechanism is controlled based on this recognition data, and autonomous traveling is performed along the boundary. In addition, at this time, in preparation for the next work lane traveling, the marking means is placed by the placing means along the boundary between the existing work site and the non-work site on the side opposite to the traveling direction of the vehicle, and the previous work record is performed. The sign body placed on the work site during traveling is collected by the collecting means provided in the autonomously-operated work vehicle and supplied to the placing means via the supply means.

【0012】また、標識体の表面に、作業地との明度差
の大きい色彩を施すことで、境界部を撮像した画像から
確実に標識体を認識することが可能となる。
Further, by providing the surface of the sign with a color having a large difference in brightness from the work site, the sign can be surely recognized from the image of the boundary image.

【0013】また、標識体として球体を用いることで、
標識体の回収及び載置手段への標識体の供給が容易とな
り、さらには、球体として偏重心ボ−ルを用いること
で、作業地への球体の載置時に球体の転がりが直ちに止
まり、適正位置からの球体の逸脱が抑えられる。
Further, by using a sphere as a label,
It becomes easy to collect the labeled bodies and supply the labeled bodies to the mounting means. Furthermore, by using the eccentric ball as the spheres, the rolling of the spheres immediately stops when the spheres are placed on the work site, and it is appropriate. The deviation of the sphere from the position is suppressed.

【0014】[0014]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図面は本発明の一実施例を示し、図1はD−GP
S用移動局を備えた芝刈作業車の左右側面図とD−GP
S用固定局を示す説明図、図2は芝刈作業車における各
機構、装置の取付け位置関係を示す平面図、図3はボ−
ル載置装置の構成を示す説明図、図4はボ−ル回収装置
の構成を示す説明図、図5は集球機の平面図、図6は偏
重心ボ−ルの各態様を示す断面図、図7は制御装置のブ
ロック図、図8は操舵系の構成を示す説明図、図9は撮
像制御部の回路構成図、図10は走行経路及び作業領域
を示す説明図、図11乃至図13は主制御ル−チンのフ
ロ−チャ−ト、図14及び図15は自律走行制御ル−チ
ンのフロ−チャ−ト、図16はD−GPS無線通信ル−
チンのフロ−チャ−ト、図17は作業領域における最初
の外周刈の状態を示す説明図、図18はCCDカメラに
より撮像された画像において作業地に載置されたボ−
ル、各ボ−ル位置から求めた直線近似式と目標直線との
関係を示す説明図、図19はCCDカメラの取付状態、
撮像画像、及び直線近似の関係を示す説明図、図20及
び図21は草・芝刈作業による1行程の作業レ−ン終了
時の車輌シフト状態を示す説明図、図22は倣い走行に
よる草・芝刈作業状態の説明図である。
Embodiments of the present invention will be described below with reference to the drawings. The drawing shows an embodiment of the present invention, and FIG. 1 shows a D-GP.
Left and right side view of lawnmower equipped with S mobile station and D-GP
FIG. 2 is an explanatory view showing the S fixed station, FIG. 2 is a plan view showing the mounting position relationship of each mechanism and device in the lawn mower, and FIG.
4 is an explanatory view showing the structure of the ball mounting device, FIG. 4 is an explanatory view showing the structure of the ball collecting device, FIG. 5 is a plan view of the ball collector, and FIG. 6 is a cross section showing each mode of the eccentric gravity ball. FIG. 7, FIG. 7 is a block diagram of a control device, FIG. 8 is an explanatory diagram showing a configuration of a steering system, FIG. 9 is a circuit configuration diagram of an imaging control unit, FIG. 10 is an explanatory diagram showing a traveling route and a work area, and FIGS. 13 is a flow chart of the main control routine, FIGS. 14 and 15 are flow charts of the autonomous traveling control routines, and FIG. 16 is a D-GPS wireless communication routine.
FIG. 17 is a flow chart of the chin, FIG. 17 is an explanatory view showing the state of the first outer peripheral cutting in the work area, and FIG. 18 is a boat placed on the work site in the image taken by the CCD camera.
FIG. 19 is an explanatory view showing the relationship between a straight line approximation formula obtained from each ball position and a target straight line. FIG.
20 and 21 are explanatory views showing a captured image and a linear approximation relationship, FIG. 20 and FIG. 21 are explanatory views showing a vehicle shift state at the end of the work lane of one stroke by grass and lawn mowing work, and FIG. It is explanatory drawing of a lawn mowing work state.

【0015】図1(a),(b)において、符号1は無
人で自走可能な自律走行作業車を示し、本実施例におい
ては、ゴルフ場等の草・芝刈作業を行う芝刈作業車であ
り、草・芝刈作業領域において既刈地(既作業地)と未
刈地(未作業地)との刈跡境界に沿って倣い走行し草・
芝刈を行う。この芝刈作業車1は、エンジン駆動で走行
し、前後輪の操舵角を独立して制御することができるよ
うになっており、衛星からの電波を受信して自己位置を
測定するための衛星電波受信機、走行履歴に基づいて現
在位置を測定するための推測航法用センサ、走行障害物
を検出するためのセンサが搭載されると共に、草・芝刈
作業領域において刈跡境界に沿い作業地に標識体を載置
するための載置手段、既刈地と未刈地との境界部を撮像
し、この撮像画像から標識体を認識して刈跡境界に沿っ
た倣い走行を行う為の撮像手段、倣い走行による作業レ
−ン走行時、前回の作業レ−ン走行時に作業地に載置さ
れた標識体を回収するための回収手段、及び回収した標
識体を前記載置手段に供給する供給手段等が搭載され、
高精度な自律走行を行うことができる。
In FIGS. 1 (a) and 1 (b), reference numeral 1 indicates an autonomous traveling work vehicle that is self-propelled and is unmanned. In this embodiment, it is a lawn mowing work vehicle for performing grass / lawn mowing work on a golf course or the like. Yes, in the grass / lawn mowing work area, the grass is moved along the cut mark boundary between the already-cut land (worked land) and the uncut land (unworked land).
Mow the lawn. This lawnmower vehicle 1 is driven by an engine and can control the steering angles of the front and rear wheels independently, and is a satellite radio wave for receiving a radio wave from a satellite to measure its own position. It is equipped with a receiver, dead reckoning sensor for measuring the current position based on driving history, and sensor for detecting running obstacles. A placing means for placing a body, an image capturing means for capturing an image of a boundary portion between the already-cut land and the uncut land, recognizing the marker body from the captured image, and performing a copying traveling along the cut boundary. A collecting means for collecting a marker placed on the work site during traveling of the work lane by copying traveling, a previous traveling of the work lane, and a supply for supplying the collected marker to the placing means. Means etc. are installed,
Highly accurate autonomous driving can be performed.

【0016】前記衛星電波受信機は、本実施例において
は、GPS衛星からの電波を受信して自己位置を測定す
るためのGPS受信機であり、既知の地点に配置された
固定局で位置観測を行って補正情報(ディファレンシャ
ル情報)を移動局にフィ−ドバックする、いわゆるディ
ファレンシャルGPS(以下、D−GPSと略記する)
用の移動局GPS受信機である。
In the present embodiment, the satellite radio receiver is a GPS receiver for receiving radio waves from GPS satellites to measure its own position, and position observation is carried out by a fixed station arranged at a known point. So as to feed back the correction information (differential information) to the mobile station, so-called differential GPS (hereinafter abbreviated as D-GPS).
Is a mobile station GPS receiver for.

【0017】周知のように、GPSによる測位誤差の要
因としては、衛星及び受信機の時計の誤差、衛星の軌道
の誤差、電離層による電波の遅れ、大気圏による電波の
遅れ、マルチパス等があり、その他に、最も大きな誤差
要因としてセレクタブル・アベイラビリティ(S/A)
と呼ばれる運用者による意図的な精度劣化がある。これ
らの要因による誤差のうち、同位相の誤差は既知の地点
の固定局で捕捉した各衛星に対応する補正情報を利用す
ることにより除去することができ、移動局での測位精度
を数m程度まで飛躍的に向上することができる。
As is well known, factors of GPS positioning errors include satellite and receiver clock errors, satellite orbit errors, ionospheric radio wave delay, atmospheric radio wave delay, and multipath. In addition, the largest error factor is selectable availability (S / A)
There is a deliberate deterioration in accuracy called by the operator. Of the errors due to these factors, the in-phase error can be removed by using the correction information corresponding to each satellite captured by the fixed station at a known point, and the positioning accuracy at the mobile station is about several meters. Can be dramatically improved.

【0018】このため、前記芝刈作業車1には、移動局
GPS受信機のアンテナ2と、固定局からのディファレ
ンシャル情報を受信するための無線通信機のアンテナ3
とが立設されており、車外の既知の地点には図1(c)
に示すように、固定局GPS受信機のアンテナ51と、
移動局GPS受信機へディファレンシャル情報を送信す
るための無線通信機のアンテナ52とを備えた固定局5
0が配置される。
For this reason, the lawnmower vehicle 1 has an antenna 2 for a mobile station GPS receiver and an antenna 3 for a wireless communication device for receiving differential information from a fixed station.
And (3) are installed upright, and at a known location outside the vehicle,
As shown in, an antenna 51 of the fixed station GPS receiver,
Fixed station 5 with an antenna 52 of a wireless communication device for transmitting differential information to a mobile station GPS receiver
0 is placed.

【0019】また、前記推測航法用センサとしては、地
磁気センサ4と車速センサの一例としての車輪エンコ−
ダ5とが前記芝刈作業車1に備えられ、前記障害物検出
用センサとしては、超音波センサあるいは光センサ等の
無接触型センサ6a,6bが前記芝刈作業車1の前後部
に取付けられるとともに、マイクロスイッチ等を使用し
た接触型センサ7a,7bが前記芝刈作業車1の前後端
に取付られている。
As the dead reckoning sensor, a geomagnetic sensor 4 and a wheel encoder as an example of a vehicle speed sensor.
And a contactless sensor 6a, 6b such as an ultrasonic sensor or an optical sensor as the obstacle detection sensor is attached to the front and rear parts of the lawn mowing work vehicle 1. Contact type sensors 7a and 7b using micro switches or the like are attached to the front and rear ends of the lawnmower working vehicle 1.

【0020】また、前記芝刈作業車1の車体1a下部に
は、草・芝刈作業を行うため図2に示すようにモ−ア等
の刈刃9aを複数備えた刈刃機構9が備えられ、車載の
エンジンから前後輪10a,10bに動力を伝達する動
力伝達機構における変速機のPTO軸、図示しない油圧
クラッチ機構、ユニバ−サルジョイント等を介して刈刃
機構9に動力伝達し、図示しない伝動機構を介して各刈
刃9aを回転させて草・芝刈を行うよう構成されてい
る。
Further, a cutting blade mechanism 9 having a plurality of cutting blades 9a such as mowers for carrying out grass / lawn mowing work is provided below the vehicle body 1a of the lawn mowing work vehicle 1, Power is transmitted to the cutting blade mechanism 9 via the PTO shaft of the transmission, a hydraulic clutch mechanism (not shown), a universal joint, etc. in the power transmission mechanism that transmits power from the vehicle-mounted engine to the front and rear wheels 10a, 10b, and transmission (not shown). The cutting blades 9a are rotated through a mechanism to cut grass and lawn.

【0021】前記載置手段としては、2組のボ−ル載置
装置11a,11bを備え、ボ−ル載置装置11a,1
1bは、図1(b)及び図2に示すように車輪10b,
10a及び刈刃機構15と干渉しない位置で車体1aの
右側にそれぞれ取付られており、草・芝刈作業走行時に
標識体としての偏重心ボ−ル40を既刈地Cと未刈地B
との刈跡境界Lに沿い、作業地に間欠的に載置する。図
3に示すように、各ボ−ル載置装置11a,11bは、
車体1aに固定され下方に向けて傾斜し車輌進行方向と
逆側に偏重心ボ−ル40を送出するボ−ル送出管12を
備え、ボ−ル送出管12の先端にヒンジ機構13を介し
揺動自在にスロ−プ14が設置され、さらにこのスロ−
プ14の先端に、作業地に接地して転動する小車輪15
を側面に備え、且つ送出された偏重心ボ−ル40を確実
に刈跡境界線に沿い作業地に載置しボ−ル40の載置位
置精度を高めるべくガイド部14aが形成されて構成さ
れ、作業地の起伏に応じてスロ−プ14が揺動し、常に
送出された偏重心ボ−ル40を作業地に安定して載置す
る。さらに、作業地に間欠的に偏重心ボ−ル40を載置
するため、前記ボ−ル送出管12の中途の底部に、一定
時間毎に作動されるリニアソレノイド16により上下作
動するピストン17が配設される。
As the above-mentioned placing means, two sets of ball placing devices 11a and 11b are provided, and the ball placing devices 11a and 1b are provided.
1b is a wheel 10b, as shown in FIG. 1 (b) and FIG.
10a and the cutting blade mechanism 15 are attached to the right side of the vehicle body 1a at positions where they do not interfere with each other, and an eccentric center of gravity ball 40 as a marking body is attached to the cut land C and the uncut land B during traveling of grass and lawn mowing work.
It is placed intermittently on the work site along the boundary L of the cut mark. As shown in FIG. 3, each ball mounting device 11a, 11b is
A ball delivery pipe 12 is provided which is fixed to the vehicle body 1a, inclines downward, and delivers an eccentricity ball 40 to the side opposite to the vehicle traveling direction. A tip end of the ball delivery pipe 12 is provided with a hinge mechanism 13 therebetween. A slop 14 is installed so that it can swing freely.
A small wheel 15 that rolls on the tip of the roller 14 while touching the work area
Is provided on the side surface, and the discharged eccentric center of gravity ball 40 is surely placed on the work site along the cut line boundary and the guide portion 14a is formed in order to improve the placement position accuracy of the ball 40. Then, the slop 14 swings in accordance with the ups and downs of the work site, and the eccentric ball 40 constantly fed is stably placed on the work site. Further, since the eccentric ball 40 is intermittently placed on the work site, a piston 17 vertically operated by a linear solenoid 16 which is operated at regular intervals is provided at the bottom of the ball delivery pipe 12 in the middle thereof. It is arranged.

【0022】なお、ここで芝刈作業車1の前進Fによる
草・芝刈作業時には、車輌後方側に偏重心ボ−ル40を
送出し作業地に載置するボ−ル載置装置11aを用い、
後進Rによる草・芝刈作業時には他方のボ−ル載置装置
11bを使用する。また、本実施例では、刈跡境界に沿
う芝刈作業車1の倣い走行による草・芝刈作業におい
て、既刈地Cを常に車体1aの左外側に位置させる。そ
して、ボ−ル載置装置11a,11bによる偏重心ボ−
ル40の載置位置は、図2に示すように、それぞれ車輪
10b,10aでボ−ル40を踏み潰さない車輪内側の
位置で、且つ刈刃機構9によるボ−ル40の損傷、散乱
を防止すべく車輌進行方向に対し、刈刃機構9の後方に
設定する。
In addition, at the time of grass / lawn mowing work by the forward movement F of the lawn mowing work vehicle 1, a ball placing device 11a for sending an eccentric center of gravity ball 40 to place the eccentricity ball 40 on the rear side of the vehicle is used.
At the time of grass / lawn mowing work by reverse R, the other ball placing device 11b is used. In addition, in the present embodiment, in the grass / lawn mowing work by the lawnmower work vehicle 1 following the cut boundary, the already-cut land C is always positioned on the left outer side of the vehicle body 1a. And the eccentric center of gravity ball by the ball mounting devices 11a and 11b.
As shown in FIG. 2, the mounting position of the ball 40 is a position on the inside of the wheel 40 where the wheel 40 is not trampled by the wheels 10b and 10a, and damage and scattering of the ball 40 by the cutting blade mechanism 9 is caused. In order to prevent this, it is set behind the cutting blade mechanism 9 with respect to the vehicle traveling direction.

【0023】また、前記回収手段として、車体1aの左
側に2組のボ−ル回収装置20a,20bを備え(図1
(a)、図2参照)、倣い走行前進Fによる草・芝刈り
作業時には、車輌前方側に載置されているボ−ル40を
回収するボ−ル回収機20aを用い、後進Rによる草・
芝刈作業時には他方のボ−ル回収機20bを使用する。
各ボ−ル回収装置20a,20bは、図4に示すよう
に、倣い走行による作業レ−ン走行時、前回の作業レ−
ン走行時に作業地に載置された偏重心ボ−ル40を集球
する集球機21と、集球機21により集球したボ−ル4
0を車体1aに固定されたボ−ル貯留部24に搬送し、
貯留部24に揺動自在に枢支されるスクリュ−コンベヤ
22とから構成される。上記集球機21は、スクリュ−
コンベヤ22の先端に回動自在に枢支され、且つ作業地
に接地して車輌の進行に伴い回動し、図5に示すよう
に、作業地に載置されたボ−ル40を車輌の進行に伴い
集球機21に寄せ集めるガイド板23を両側面に備え、
ガイド板23により寄せ集められたボ−ル40を溝21
aにより狭持してその回動によりスクリュ−コンベヤ2
2に移送する。そして、集球機21の溝21aに狭持さ
れたボ−ル40は、スクリュ−コンベヤ22の爪22a
によりスクリュ−コンベヤ22内に掻き落とされて、ス
クリュ−22bの回動によりボ−ル貯留部24に搬送さ
れる。
As the recovery means, two sets of ball recovery devices 20a and 20b are provided on the left side of the vehicle body 1a (see FIG. 1).
(A), FIG. 2). During grass / lawn mowing work by copying traveling forward F, a ball collecting machine 20a that collects the ball 40 placed on the front side of the vehicle is used, and the grass by rearward R is used.・
The other ball collecting machine 20b is used during lawn mowing.
As shown in FIG. 4, each of the ball collecting devices 20a and 20b has a previous work level when the work range is traveled by copying.
The ball collector 21 that collects the eccentric ball 40 placed on the work site during traveling, and the ball 4 that collects the ball 4 by the ball collector 21.
0 is conveyed to the ball storage section 24 fixed to the vehicle body 1a,
It is composed of a screw conveyor 22 pivotably supported by a storage portion 24. The ball collector 21 is a screw
It is rotatably supported by the tip of the conveyor 22 and is grounded on the work site to rotate as the vehicle advances. As shown in FIG. 5, the ball 40 placed on the work site is mounted on the vehicle. With the guide plates 23 gathered on the ball collector 21 as it progresses,
The balls 40 gathered by the guide plate 23 are attached to the groove 21.
The screw conveyor 2 is clamped by a and is rotated by the rotation.
Transfer to 2. The ball 40 held in the groove 21a of the ball collector 21 is provided with the claw 22a of the screw conveyor 22.
It is scraped off into the screw conveyor 22 by the screw conveyor 22 and is conveyed to the ball reservoir 24 by the rotation of the screw 22b.

【0024】ここで、芝刈作業車1の倣い走行による草
・芝刈り作業において、刈残しを防止すべく芝刈オ−バ
ラップ量Oを実現するため、前回の作業レ−ン走行時の
芝刈作業車1の車体位置に対し、刈刃機構9の各刈刃9
aによる刈幅Wから上記芝刈オ−バラップ量Oを減算し
た位置で車輌走行する必要がある。このため、後述する
撮像手段としてのCCDカメラにより既刈地Cと未刈地
Bとの境界部を撮像して得た画像から、制御装置60に
より、刈跡境界Lに沿い作業地に載置された各ボ−ル4
0を認識して各ボ−ルの位置を検出し、各ボ−ル位置を
結ぶ線を直線近似式により直線近似した直線と、予め設
定された所定の芝刈オ−バラップ量Oを得るよう設定さ
れる目標直線式とを比較し、直線近似式により得られる
直線が目標直線に一致するよう操舵機構を制御して走行
する。すなわち、既刈地Cと未刈地Bとの刈跡境界Lに
沿い載置されたボ−ル40位置を検出することにより刈
跡境界Lの位置を間接的に認識し、各ボ−ル40を結ぶ
直線近似式によって得られる直線と上記目標直線とを一
致させるよう操舵機構を制御して走行することで、刈跡
境界Lに沿った倣い走行を行うのである。
Here, in the grass / lawn mowing work by the traveling of the lawn mowing vehicle 1, the lawn mowing work vehicle at the time of the last work lane traveling is realized in order to realize the lawn mowing overlap amount O in order to prevent the uncut portion. Each cutting blade 9 of the cutting blade mechanism 9 with respect to the vehicle body position 1
It is necessary to drive the vehicle at a position where the lawn mowing overlap amount O is subtracted from the mowing width W by a. Therefore, from the image obtained by imaging the boundary portion between the already-cut land C and the uncut land B with the CCD camera as an image pickup means described later, the controller 60 places the image on the work site along the cut-line boundary L. Each ball 4
It is set so that the position of each ball is detected by recognizing 0 and the line connecting the ball positions is linearly approximated by a linear approximation formula, and a preset lawn mowing overlap amount O is obtained. Then, the steering mechanism is controlled so that the straight line obtained by the linear approximation formula matches the target straight line. That is, the position of the cut boundary L is indirectly recognized by detecting the position of the ball 40 placed along the cut boundary L between the already-cut land C and the uncut land B, and each ball is recognized. By controlling the steering mechanism so that the straight line obtained by the straight line approximation formula connecting 40 and the target straight line are made to travel, the contour travel along the cut boundary L is performed.

【0025】従って、倣い走行における作業レ−ン走行
時に、前回の作業レ−ン走行時にボ−ル載置装置11a
(11b)により作業地に載置されたボ−ル40をボ−
ル回収機20b(20a)により回収するため、図2に
示すように、芝刈作業車1の前後方向の車体中心線Mに
対し平行な前記ボ−ル載置装置11a(11b)におけ
るボ−ル送出口中心線N1 とボ−ル回収機20a(20
b)における集球機21の溝21a中心線N2 との幅Q
は、刈幅Wから上記オ−バラップ量Oを減算した値と同
様の値に設定する。
Therefore, when the work lane travels in the copying travel, the ball mounting device 11a is used in the previous work lane travel.
The ball 40 placed on the work site is moved by the step (11b).
As shown in FIG. 2, the ball is mounted on the ball mounting device 11a (11b) parallel to the vehicle body centerline M in the front-rear direction of the lawnmower working vehicle 1 so as to be collected by the ball collecting machine 20b (20a). Outlet center line N1 and ball recovery machine 20a (20
Width Q with groove 21a centerline N2 of ball collector 21 in b)
Is set to a value similar to the value obtained by subtracting the overlap amount O from the cutting width W.

【0026】また、各ボ−ル貯留部24に蓄えられた偏
重心ボ−ル40を前記ボ−ル載置装置11a,11bに
供給するため、供給手段として貯留部24の底部に連通
し、前記ボ−ル送出管12にそれぞれ連通接続するボ−
ル供給管25を備え、ボ−ル供給管25は、ボ−ル貯留
部24側をボ−ル送出管12側よりも高く設定すること
で、自重により偏重心ボ−ル40を転動して前記ボ−ル
送出管12に供給するよう構成されている。
Further, in order to supply the eccentric center of gravity balls 40 stored in each of the ball storage parts 24 to the ball mounting devices 11a and 11b, they are connected to the bottom of the storage part 24 as a supply means. Balls connected to the ball delivery pipes 12 so as to communicate with each other.
The ball supply pipe 25 rolls the eccentric center ball 40 by its own weight by setting the ball reservoir 24 side higher than the ball delivery pipe 12 side. Is configured to be supplied to the ball delivery pipe 12.

【0027】上記偏重心ボ−ル40は、重心を球心から
偏心させるため、図6(a)に示すように、2つの樹脂
製中空半球体41a,41bの一方41bに比重の大き
い、例えば鉛、鉄等の重錘42を埋め込むか或は係合
し、或は同図(b)に示すようにビス止めし、これら半
球体41a,41bを接合することで容易に構成でき、
また同図(c)に示すように、樹脂製中空球体43の内
部に経時硬化する樹脂製粘着剤(接着剤)に鉛、鉄等の
比重の大きい粉を混合した混合物44を注入して球体4
3の内部に接着硬化後、構成することで、偏重心ボ−ル
40のオ−トメ−ション化に適応させても良い。さら
に、同図(d)に示すように、中空の樹脂製球体を形成
する際に、ブロ−成形等により中空部45を偏らせ、球
心に対し重心位置を偏心させれば、偏重心ボ−ル40を
より簡易に構成することができる。
Since the eccentric center of gravity ball 40 decenters the center of gravity from the spherical center, as shown in FIG. 6 (a), one of the two resin hollow hemispheres 41a, 41b, which has a large specific gravity, such as lead, is used. , The weight 42 of iron or the like is embedded or engaged, or screwed as shown in FIG. 3B, and these hemispheres 41a and 41b can be easily joined to each other.
Further, as shown in FIG. 3C, a sphere is prepared by injecting a mixture 44 in which powder having a large specific gravity such as lead or iron is mixed into a resin adhesive (adhesive) which is cured with time into the resin hollow sphere 43. Four
It may be adapted to the automation of the eccentric center of gravity ball 40 by being configured after the adhesive is hardened in the inside of 3. Further, as shown in FIG. 3D, when forming a hollow resin spherical body, if the hollow portion 45 is eccentric by blow molding or the like and the center of gravity is eccentric with respect to the center of gravity, the eccentric center of gravity is reduced. -The rule 40 can be configured more simply.

【0028】また、偏重心ボ−ル40は、要するに、重
心が球心から偏心したものであれば良く、これらの構成
に限定されることなく種々採用できる。
In addition, the eccentric center of gravity ball 40 is not limited to these structures, and may be variously adopted as long as the center of gravity is eccentric from the spherical center.

【0029】尚、偏重心ボ−ル40は、表面に作業地
(緑色、黄緑色、枯葉色)に対し明度差の大きい、例え
ば白色の色彩が施されており、撮像画像において、その
明度差、あるいは明度差による輝度差等から確実に認識
される。また、偏重心ボ−ル40は球体のため、回収装
置20a,20bによる回収が容易であり、且つ回収機
20a,20bにより回収後、容易に載置装置11a,
11bに供給することができ、取り扱いに優れる。さら
に、前述のように、画像処理により各ボ−ル40の位置
を検出し、各ボ−ルの位置を結ぶ直線近似式を求める
際、ボ−ル40が左右に散らばっていると刈跡境界Lに
沿った正確な直線近似式を得られず倣い走行の精度が低
下するが、偏重心ボ−ル40は、重心位置が球心から偏
心しているため、平地のみならず作業地に起伏や多少の
傾斜が有っても、ボ−ル載置装置11a,11bから作
業地への送出後、直ちに回動が停止してその場に止ま
り、車輌進行方向左右に散らばることなく既刈地Cと未
刈地Bとの刈跡境界Lに沿い適正位置に載置されるの
で、常に刈跡境界Lに沿った正確な直線近似式を得るこ
とができ、倣い走行精度の低下が防止される。
The eccentric center of gravity ball 40 has a large difference in lightness with respect to the work site (green, yellowish green, dead leaf color), for example, white, on the surface thereof. , Or the difference in brightness due to the difference in brightness is surely recognized. Further, since the eccentric center of gravity ball 40 is a sphere, it can be easily collected by the collecting devices 20a, 20b, and after being collected by the collecting devices 20a, 20b, the placing device 11a, 20b can be easily mounted.
It can be supplied to 11b and is easy to handle. Further, as described above, when the positions of the balls 40 are detected by image processing and the straight line approximation formulas connecting the positions of the balls are obtained, if the balls 40 are scattered left and right, the cut boundary Although an accurate straight-line approximation formula along L cannot be obtained, the accuracy of the sprinting travel is reduced. Even if there is an inclination, the rotation immediately stops after being sent from the ball placing devices 11a and 11b to the work place and stops there, and the land is not scattered to the left and right in the vehicle advancing direction. Since it is placed at an appropriate position along the cut boundary L with the uncut land B, an accurate linear approximation formula along the cut boundary L can always be obtained, and a reduction in the copy traveling accuracy is prevented.

【0030】また、前記撮像手段として例えば固体撮像
素子(CCD)を使用したCCDカメラ26が採用さ
れ、芝刈作業車1の車体1a左側面に固定され車体1a
の左側に延設されたア−ム27の先端上部に回転機構部
28を介して回転自在に設置されている(図1(a)、
図2参照)。CCDカメラ26は、回転機構部28にお
ける後述するステップモ−タ28aにより回転され、倣
い走行において車輌前進時に、予め規定された位置に回
転修正されて車輌前方を撮像し、作業地に載置されたボ
−ル40を含む既刈地Cと未刈地Bとの境界部を撮像
し、また、倣い走行における車輌後進時には、車輌後方
側の境界部を撮像するため、車輌前進時に対し、180
度回転されて同様に予め規定された位置に修正固定され
る。また、CCDカメラ26は、倣い走行における車輌
前進時及び後進時共に、既刈地Cと未刈地Bの境界部を
撮像するため、所定の取付高さh、画角θA 、及び附角
θB を有する。
A CCD camera 26 using, for example, a solid-state image pickup device (CCD) is adopted as the image pickup means and is fixed to the left side surface of the vehicle body 1a of the lawnmower work vehicle 1 and is fixed to the vehicle body 1a.
Is rotatably installed on the upper end of the arm 27 extending to the left side of the arm via a rotating mechanism 28 (FIG. 1 (a),
See FIG. 2). The CCD camera 26 is rotated by a step motor 28a, which will be described later, in the rotation mechanism section 28, and is rotated and corrected to a predetermined position when the vehicle is moving forward in copying travel, and the front of the vehicle is imaged and placed on the work site. The boundary portion between the already-cut land C and the uncut land B including the ball 40 is imaged, and the boundary portion on the vehicle rear side is imaged when the vehicle travels backward in copying travel.
It is rotated once, and is similarly corrected and fixed in a predetermined position. Further, the CCD camera 26 images the boundary portion between the already-cut land C and the un-cut land B both when the vehicle is moving forward and when moving backward in copying, so that the predetermined mounting height h, the angle of view θA, and the angle of attachment θB are set. Have.

【0031】また、図7に示すように、前記芝刈作業車
1には、複数のマイクロコンピュ−タ等から構成される
制御装置60が搭載されており、この制御装置60にC
CDカメラ26及びセンサ・アクチュエ−タ類が接続さ
れて、該制御装置60により、撮像手段(CCDカメラ
26)により撮像した既作業地(既刈地C)と未作業地
(未刈地B)との境界部の画像から作業地に境界(刈跡
境界L)に沿い載置された標識体(偏重心ボ−ル40)
の位置を検出し、複数の各標識体位置を結ぶ線と予め設
定された目標線とを比較して目標位置に対する車体のず
れを認識する画像処理手段としての機能、及び、この認
識デ−タに基づき後述する操舵機構を制御する倣い走行
制御手段としての機能が実現される。さらに制御装置6
0は、移動局GPS受信機30、固定局50からのディ
ファレンシャル情報を受信するための無線通信機31が
接続され、D−GPSによる自己位置測位機能、推測航
法による自己位置測位機能、自律走行を制御する自律走
行制御機能を実現するようになっている。
Further, as shown in FIG. 7, the lawnmower working vehicle 1 is equipped with a controller 60 composed of a plurality of microcomputers and the like.
A CD camera 26 and a sensor / actuator are connected to each other, and the control device 60 causes the control unit 60 to capture an image of an already-worked land (already-cut land C) and an unworked land (un-cut land B). From the image of the boundary part with and, the sign body (eccentric gravity ball 40) placed along the boundary (cut mark boundary L) on the work site.
And a function as an image processing means for recognizing the displacement of the vehicle body with respect to the target position by comparing a line connecting a plurality of respective marker positions with a preset target line, and this recognition data. Based on this, a function as a copy traveling control means for controlling a steering mechanism described later is realized. Further control device 6
A mobile station GPS receiver 30 and a wireless communication device 31 for receiving differential information from the fixed station 50 are connected to 0, and a self-positioning function by D-GPS, a self-positioning function by dead-reckoning navigation, and autonomous traveling are performed. It is designed to realize an autonomous traveling control function for controlling.

【0032】詳細には、前記CCDカメラ26を制御す
ると共にCCDカメラ26からの信号を処理する撮像制
御部61、各センサ・アクチュエ−タ類の信号を処理す
る各検出部、すなわち推測航法位置検出部62、D−G
PS位置検出部63、及び障害物検出部64が備えら
れ、また、これらの撮像制御部61、各検出部62,6
3,64により得られたデ−タに基づき走行制御等を行
うための走行制御部65、この走行制御部65によって
参照される作業デ−タ・マップが格納されている作業デ
−タ蓄積部66、前記走行制御部65からの指示によっ
て車輌制御を行う車輌制御部67が備えられ、さらに、
この車輌制御部67からの出力に基づいて芝刈作業車1
の各機構部を駆動するため、駆動制御部68、標識体制
御部69、操舵制御部70、及び刈刃制御部71が備え
られている。
Specifically, the image pickup control section 61 for controlling the CCD camera 26 and processing the signals from the CCD camera 26, the detection sections for processing the signals of the respective sensors and actuators, that is, dead reckoning position detection. Part 62, DG
A PS position detector 63 and an obstacle detector 64 are provided, and the image pickup controller 61 and the detectors 62, 6 are also provided.
A traveling control unit 65 for performing traveling control and the like based on the data obtained by 3, 64, and a work data storage unit in which a work data map referred to by this traveling control unit 65 is stored. 66, a vehicle control unit 67 for performing vehicle control according to an instruction from the traveling control unit 65, and
Based on the output from the vehicle control unit 67, the lawn mower 1
A drive control unit 68, a marker control unit 69, a steering control unit 70, and a cutting blade control unit 71 are provided for driving each of the mechanical units.

【0033】前記撮像制御部61では、作業領域におけ
る倣い走行時、車輌進行方向デ−タに基づき前記CCD
カメラ26を回転機構部28におけるステップモ−タ2
8aにより回転し、回転角度センサ29により検出され
るCCDカメラ26の回転角度を車輌の前後進に応じて
予め設定された角度に一致するよう修正してCCDカメ
ラ26の撮像方向を固定し、CCDカメラ26によって
撮像された既刈地Cと未刈地Bとの境界部の画像から作
業地に載置された偏重心ボ−ル40の位置を検出し、各
ボ−ル40の位置を結ぶ直線近似式を求め、この直線近
似式デ−タを前記走行制御部65に出力する。
In the image pickup control section 61, the CCD based on the data of the traveling direction of the vehicle at the time of copying traveling in the work area.
The step motor 2 in the rotation mechanism section 28 is used for the camera 26.
The CCD camera 26 is rotated by 8a and the rotation angle of the CCD camera 26 detected by the rotation angle sensor 29 is corrected to match a preset angle in accordance with the forward and backward movement of the vehicle to fix the image pickup direction of the CCD camera 26. The position of the eccentric gravity ball 40 placed on the work site is detected from the image of the boundary between the already-cut land C and the uncut land B captured by the camera 26, and the positions of the respective balls 40 are connected. A straight-line approximation formula is obtained, and this straight-line approximation formula data is output to the traveling control unit 65.

【0034】前記推測航法位置検出部62は、車輪エン
コ−ダ5によって検出される車速を積分して走行距離を
求め、走行距離を地磁気センサ4により検出した走行方
向の変化に対応させて累積することにより、基準地点か
らの走行履歴を算出して自車輌の現在位置を測定し、測
位デ−タを前記走行制御部65に出力する。尚、走行方
向を認識するためのセンサとしては、地磁気センサ4に
限定されることなく、ジャイロ等を用いても良い。
The dead reckoning position detecting section 62 integrates the vehicle speed detected by the wheel encoder 5 to obtain the traveling distance, and accumulates the traveling distance in correspondence with the change in the traveling direction detected by the geomagnetic sensor 4. As a result, the travel history from the reference point is calculated, the current position of the vehicle is measured, and the positioning data is output to the travel control unit 65. The sensor for recognizing the traveling direction is not limited to the geomagnetic sensor 4, and a gyro or the like may be used.

【0035】前記D−GPS位置検出部63は、前記移
動局GPS受信機30を介して捕捉したGPS衛星群
(3次元測位の場合には少なくとも4個、2次元測位の
場合には少なくとも3個)200からの航法メッセ−
ジ、すなわち、衛星の時計補正係数、軌道情報、衛星の
暦、衛星の配置等の測位情報と、無線通信機31を介し
て受信した固定局50からのディファレンシャル情報と
から自車輌の位置を高精度に測定し、その測位デ−タを
前記走行制御部65に出力する。
The D-GPS position detecting section 63 includes a group of GPS satellites captured through the mobile station GPS receiver 30 (at least four in the case of three-dimensional positioning and at least three in the case of two-dimensional positioning). ) Navigation Messe from 200-
In other words, the position of the vehicle is determined from the positioning information such as the satellite clock correction coefficient, orbit information, satellite calendar, and satellite placement, and the differential information received from the fixed station 50 via the wireless communication device 31. It measures with accuracy and outputs the positioning data to the traveling control unit 65.

【0036】前記D−GPS位置検出部63に対する固
定局50は、固定局GPS受信機53が接続されるD−
GPS固定局部54、このD−GPS固定局部54から
のディファレンシャル情報を送信するためのD−GPS
情報送信部55、このD−GPS情報送信部55に接続
される無線通信機56等から構成されている。
The fixed station 50 for the D-GPS position detector 63 is a D-to which a fixed station GPS receiver 53 is connected.
GPS fixed station 54, D-GPS for transmitting differential information from this D-GPS station 54
The information transmitter 55 includes a wireless communication device 56 connected to the D-GPS information transmitter 55.

【0037】前記D−GPS固定局部54では、前記固
定局GPS受信機53を介して受信した衛星群200か
らの測位情報を処理してディファレンシャル補正デ−タ
を作成する。このディファレンシャル補正デ−タは、前
記D−GPS情報送信部55において無線通信のパケッ
トデ−タに変換され、無線通信機56を介して送信され
る。
In the D-GPS fixed station section 54, the positioning information from the satellite group 200 received via the fixed station GPS receiver 53 is processed to create differential correction data. The differential correction data is converted into wireless communication packet data in the D-GPS information transmitting section 55 and transmitted via the wireless communication device 56.

【0038】尚、本実施例においては、D−GPSの固
定局50を、前記芝刈作業車1の移動局を対象とした特
定の装置として任意の位置に設置するようにしている
が、ディファレンシャル情報を送信する無線局を備えた
既存のD−GPS固定局、あるいは、通信衛星を介して
ディファレンシャル情報を送信する既存のD−GPS固
定局等を利用することも可能である。
In this embodiment, the D-GPS fixed station 50 is installed at an arbitrary position as a specific device for the mobile station of the lawnmower work vehicle 1. It is also possible to use an existing D-GPS fixed station equipped with a wireless station for transmitting the information, or an existing D-GPS fixed station for transmitting differential information via a communication satellite.

【0039】また、前記障害物検出部64は、予測でき
ない障害物を無接触型センサ6a,6b、及び接触型セ
ンサ7a,7bによって検出し、検出信号を前記走行制
御部65に出力する。
The obstacle detecting section 64 detects an unpredictable obstacle by the non-contact type sensors 6a, 6b and the contact type sensors 7a, 7b, and outputs a detection signal to the traveling control section 65.

【0040】前記走行制御部65では、撮像制御部6
1、推測航法位置検出部62、D−GPS位置検出部6
3からの各測位デ−タを適宜選択し、作業デ−タ蓄積部
66の作業デ−タを参照して現在の自車輌の位置と目標
位置との誤差量を算出し、走行経路や車輌制御指示を決
定する。
In the traveling control unit 65, the image pickup control unit 6
1. Dead reckoning position detection unit 62, D-GPS position detection unit 6
Each positioning data from No. 3 is appropriately selected, the error amount between the current position of the own vehicle and the target position is calculated by referring to the work data of the work data storage unit 66, and the traveling route and the vehicle are calculated. Determine control instructions.

【0041】この場合、作業領域への移動に際しては、
前記D−GPS位置検出部63での測位精度を設定レベ
ルと比較し、設定レベルを満足する場合、D−GPS位
置検出部63からの測位デ−タを使用し、設定レベルを
満足しない場合、前記推測航法位置検出部62からの測
位デ−タを使用して自律走行制御を行う。そして、作業
領域における草・芝刈作業では、前記撮像制御部61か
らの直線近似式と予め設定された目標直線式とを比較
し、直線近似式により得られる直線が目標直線式による
目標直線と一致するよう倣い走行を制御する。尚、上記
障害物検出部64により障害物が検出されたときには、
障害物回避あるいは車輌停止を指示する。
In this case, when moving to the work area,
The positioning accuracy in the D-GPS position detecting unit 63 is compared with a set level, and when the set level is satisfied, the positioning data from the D-GPS position detecting unit 63 is used, and when the set level is not satisfied, The autonomous traveling control is performed using the positioning data from the dead reckoning position detecting unit 62. Then, in the grass / lawn mowing work in the work area, the straight line approximation formula from the imaging control unit 61 is compared with a preset target straight line formula, and the straight line obtained by the straight line approximation formula matches the target straight line by the target straight line formula. Control the copying travel. When an obstacle is detected by the obstacle detection unit 64,
Instruct to avoid obstacles or stop the vehicle.

【0042】前記作業デ−タ蓄積部66は、固定デ−タ
が記憶されているROMエリアと、制御実行中のワ−ク
デ−タが記憶されるRAMエリアとから構成され、RO
Mエリアには、草・芝刈作業を行う作業領域の地形デ−
タや複数の作業領域を含む領域全体の地形デ−タ等が予
め格納されており、RAMエリアには、後述するよう
に、推測航法による測位デ−タを補正するため設定時間
内でD−GPSの測位デ−タ等が蓄積されるようになっ
ている。
The work data storage unit 66 is composed of a ROM area in which fixed data is stored and a RAM area in which work data under control is stored.
Topographic data of the work area for grass and lawn mowing work in the M area
Data and terrain data of the entire area including a plurality of work areas are stored in advance. In the RAM area, as described later, in order to correct positioning data by dead reckoning, D- GPS positioning data and the like are stored.

【0043】前記車輌制御部67では、前記走行制御部
65からの指示を具体的な制御指示量に変換し、駆動制
御部68、標識体制御部69、操舵制御部70、刈刃制
御部71に出力する。これにより、駆動制御部68で
は、変速アクチュエ−タ、前後進切換アクチュエ−タ、
スロットルアクチュエ−タ、ブレ−キアクチュエ−タ等
の走行制御アクチュエ−タ32を制御して車輌走行制御
を行うと共に、油圧ポンプ33を制御して各機能部を駆
動するための油圧を発生させ、標識体制御部69では、
ボ−ル載置装置11a,11bにおけるリニアソレノイ
ド16を選択的に駆動してボ−ル載置装置11a,11
bによる作業地への標識体としてのボ−ル載置の制御を
行うと共に、各油圧制御弁34a,34bを介してボ−
ル回収装置20a,20bにおけるスクリュ−コンベヤ
22のスクリュ−22aを作動させる油圧の供給・遮断
を行って各ボ−ル回収装置20a,20bによる作業地
に載置されたボ−ル回収の制御を行い、操舵制御部70
では、前輪舵角センサ35a、後輪舵角センサ35bか
らの出力に基づいて前輪操舵用油圧制御弁36a、後輪
操舵用油圧制御弁36bを介して操舵制御(操舵量フィ
−ドバック制御)を行い、刈刃制御部71では、刈刃制
御用油圧制御弁37を介して前記油圧クラッチ機構を動
作して刈刃機構9の制御を行う。
In the vehicle control unit 67, the instruction from the traveling control unit 65 is converted into a specific control instruction amount, and the drive control unit 68, the marker control unit 69, the steering control unit 70, the cutting blade control unit 71. Output to. As a result, the drive control unit 68 causes the speed change actuator, the forward / reverse switching actuator,
A traveling control actuator 32 such as a throttle actuator or a brake actuator is controlled to control the vehicle traveling, and a hydraulic pump 33 is controlled to generate a hydraulic pressure for driving each functional unit. In the body control unit 69,
By selectively driving the linear solenoid 16 in the ball mounting devices 11a and 11b, the ball mounting devices 11a and 11
In addition to controlling the mounting of the ball as a marker on the work site by means of b, the ball is controlled via the respective hydraulic control valves 34a and 34b.
The control of the ball collecting devices 20a and 20b for collecting the balls placed on the work site is performed by supplying and shutting off the hydraulic pressure for operating the screw 22a of the screw conveyor 22 in the ball collecting devices 20a and 20b. The steering control unit 70
Then, steering control (steering amount feedback control) is performed via the front wheel steering hydraulic control valve 36a and the rear wheel steering hydraulic control valve 36b based on the outputs from the front wheel steering angle sensor 35a and the rear wheel steering angle sensor 35b. Then, the cutting blade control unit 71 controls the cutting blade mechanism 9 by operating the hydraulic clutch mechanism via the cutting blade control hydraulic control valve 37.

【0044】図8に示すように、芝刈作業車1の操舵系
は、エンジンEによって駆動される前記油圧ポンプ33
に、前記操舵制御部70によって制御される前輪操舵用
油圧制御弁36a及び後輪操舵用油圧制御弁36bが接
続されると共に、各油圧制御弁36a,36bに、前輪
用油圧シリンダ38a、後輪用油圧シリンダ38bがそ
れぞれ接続されており、各油圧シリンダ38a,38b
により、前輪操舵機構39a、後輪操舵機構39bが独
立して駆動される構成となっている。
As shown in FIG. 8, the steering system of the lawnmower working vehicle 1 includes a hydraulic pump 33 driven by an engine E.
Is connected to a front wheel steering hydraulic control valve 36a and a rear wheel steering hydraulic control valve 36b which are controlled by the steering control section 70, and the front wheel hydraulic cylinder 38a and the rear wheel are connected to the respective hydraulic control valves 36a and 36b. Hydraulic cylinders 38b are connected to the respective hydraulic cylinders 38a, 38b.
Thus, the front wheel steering mechanism 39a and the rear wheel steering mechanism 39b are independently driven.

【0045】そして、各操舵機構39a,39bに取付
けられた各舵角センサ35a,35bにより検出された
前後輪の各舵角が前記操舵制御部70に入力されると、
検出された舵角と目標舵角との偏差をなくすよう、前記
操舵制御部70によって各油圧制御弁36a,36bを
介して各操舵機構39a,39bが制御される。
When the steering angles of the front and rear wheels detected by the steering angle sensors 35a and 35b attached to the steering mechanisms 39a and 39b are input to the steering control section 70,
The steering control unit 70 controls the steering mechanisms 39a and 39b through the hydraulic control valves 36a and 36b so as to eliminate the deviation between the detected steering angle and the target steering angle.

【0046】図9は、前記撮像制御部61の具体的回路
構成を示し、撮像制御部61は、CPU80に、ワ−ク
デ−タを保持するためのRAM81、制御用固定デ−タ
及び制御プログラムが格納されているROM82、各種
のデ−タ、制御信号の入出力のためのI/Oインタ−フ
ェイス83が、デ−タバス84及びアドレスバス85を
介して接続されたマイクロコンピュ−タを中心として構
成される。そして、前記走行制御部65から倣い走行が
指示されると車輌進行方向デ−タに基づきI/Oインタ
−フェイス83からステップモ−タ駆動回路86を介し
てステップモ−タ28aに制御信号を出力してステップ
モ−タ28aを動作し、車輌前進時には、CCDカメラ
26を車輌前方側に向け、回転角度センサ29により検
出されるCCDカメラ26の角度が車輌前進に応じ予め
設定された角度に一致するよう修正し、また、車輌後進
時には、CCDカメラ26を車輌後方側に向け、同様に
回転角度センサ29により検出される角度が車輌後進に
応じ予め設定された角度に一致するように修正し、CC
Dカメラ26位置の修正固定後、CCDカメラ26を作
動させて撮像を制御すると共に、ビデオメモリ87に格
納された撮像画像を処理し、画像中のボ−ル40を認識
してそのボ−ル40の位置を検出し、各ボ−ル40の位
置を結ぶ直線近似式を求め、その直線近似式のデ−タを
前記走行制御部65に出力する。
FIG. 9 shows a specific circuit configuration of the image pickup control section 61. The image pickup control section 61 has a CPU 80, a RAM 81 for holding work data, fixed data for control and control. A ROM 82 in which a program is stored, various data, and an I / O interface 83 for inputting / outputting control signals are connected to a microcomputer via a data bus 84 and an address bus 85. Configured as the center. When the traveling control unit 65 instructs the copying traveling, a control signal is output from the I / O interface 83 to the step motor 28a via the step motor drive circuit 86 based on the vehicle traveling direction data. The step motor 28a is operated to move the CCD camera 26 toward the front of the vehicle when the vehicle is moving forward so that the angle of the CCD camera 26 detected by the rotation angle sensor 29 matches a preset angle according to the vehicle moving forward. When the vehicle is moving backward, the CCD camera 26 is directed toward the vehicle rear side, and the angle detected by the rotation angle sensor 29 is corrected so as to match a preset angle according to the vehicle moving backward.
After the position of the D camera 26 is corrected and fixed, the CCD camera 26 is operated to control the image pickup, the imaged image stored in the video memory 87 is processed, and the ball 40 in the image is recognized and the ball is recognized. The position of 40 is detected, the linear approximation formula connecting the positions of the balls 40 is obtained, and the data of the linear approximation formula is output to the traveling control unit 65.

【0047】CCDカメラ26からのビデオ信号はアン
プ88で増幅され、同期回路89、A/D変換器90に
それぞれ供給される。同期回路89では、ビデオ信号か
ら同期信号を分離してタイミング信号を生成し、A/D
変換器90及びアドレス制御回路91に供給する。
The video signal from the CCD camera 26 is amplified by the amplifier 88 and supplied to the synchronizing circuit 89 and the A / D converter 90, respectively. The synchronizing circuit 89 separates the synchronizing signal from the video signal to generate a timing signal, and the A / D
It is supplied to the converter 90 and the address control circuit 91.

【0048】A/D変換器90ではアンプ88からのビ
デオ信号を、タイミング信号に同期してデジタル画像に
変換し、デ−タバス92を介して切換回路93に出力す
る。また、アドレス制御回路91では、タイミング信号
に同期してアドレスデ−タを生成し、アドレスバス94
を介して切換回路93に供給する。
The A / D converter 90 converts the video signal from the amplifier 88 into a digital image in synchronization with the timing signal and outputs it to the switching circuit 93 via the data bus 92. Further, the address control circuit 91 generates address data in synchronization with the timing signal, and the address bus 94
Is supplied to the switching circuit 93 via.

【0049】切換回路93は、CPU80側のデ−タバ
ス84及びアドレスバス85と、A/D変換器90側の
デ−タバス92及びアドレスバス94とのいずれか一方
を選択的にビデオメモリ87に接続するものであり、ア
ドレス制御回路91から切換回路93にアドレスデ−タ
が供給されている間は、A/D変換器90側のデ−タバ
ス92をビデオメモリ87に接続して画像デ−タが書き
込まれるようにし、この間、CPU80によるビデオメ
モリ87へのアクセスを禁止する。
The switching circuit 93 selectively stores one of the data bus 84 and the address bus 85 on the CPU 80 side and the data bus 92 and the address bus 94 on the A / D converter 90 side in the video memory 87. While address data is being supplied from the address control circuit 91 to the switching circuit 93, the data bus 92 on the A / D converter 90 side is connected to the video memory 87 and the image data is connected. The CPU 80 is prohibited from accessing the video memory 87 during this period.

【0050】そして、CCDカメラ26からのビデオ信
号の供給が停止し、CPU80のビデオメモリ87への
アクセスが可能になると、ビデオメモリ87から画像デ
−タが読み出され、この画像デ−タが処理されて画像中
におけるボ−ル40の位置を検出して、各ボ−ル40の
位置を結ぶ直線近似式を算出し、I/Oインタ−フェイ
ス83から前記走行制御部65に直線近似式のデ−タが
出力される。
When the supply of the video signal from the CCD camera 26 is stopped and the video memory 87 of the CPU 80 can be accessed, the image data is read from the video memory 87, and this image data is read. The position of the ball 40 in the image which has been processed is detected, a straight line approximation formula connecting the positions of the balls 40 is calculated, and a straight line approximation formula from the I / O interface 83 to the traveling control unit 65 is calculated. Data is output.

【0051】以下、図10に示すような複数の区画の作
業領域に対し、無人で草・芝刈作業を行う場合について
説明する。この場合、芝刈作業車1は作業開始に当たっ
て任意の準備位置100に待機しているものとすると、
最初の作業領域102への移動、この作業領域102に
おける草・芝刈作業、作業領域102から次の作業領域
108への移動、この作業領域108における草・芝刈
作業、戻り位置110への移動が、図11〜図16に示
すプログラムに従って自律的に行われる。
The case where unmanned grass / lawn mowing work is performed on a plurality of divided work areas as shown in FIG. 10 will be described below. In this case, assuming that the lawnmower vehicle 1 is waiting at an arbitrary preparation position 100 before starting work,
The movement to the first work area 102, the grass and lawn mowing work in this work area 102, the movement from the work area 102 to the next work area 108, the grass and lawn mowing work in this work area 108, and the movement to the return position 110 It is performed autonomously according to the programs shown in FIGS.

【0052】まず、図11〜図13に示す主制御ル−チ
ンでは、ステップS101で、G−DPSを用いて現在の自
己位置である準備位置100を計測する。この位置計測
は、緯度、経度等のD−GPSの測位デ−タ(必要に応
じて高度デ−タも加えられる)を、作業デ−タ蓄積部6
6に格納されている測地系のデ−タに変換することによ
り行われる。尚、この測地系へのデ−タ変換は、D−G
PS位置検出部63で行っても良く、あるいは、走行制
御部65において行っても良い。
First, in the main control routine shown in FIGS. 11 to 13, in step S101, the G-DPS is used to measure the preparation position 100 which is the current self position. For this position measurement, D-GPS positioning data such as latitude and longitude (altitude data is also added if necessary) is used as work data storage unit 6
It is performed by converting into the data of the geodetic system stored in 6. In addition, the data conversion to this geodetic system is DG
It may be performed by the PS position detection unit 63 or the travel control unit 65.

【0053】次いで、ステップS102へ進むと、作業デ−
タ蓄積部66を参照して最初の作業領域102の地形デ
−タを読出し、計測した準備位置100から作業開始地
点までの経路101を生成してステップS103へ進む。ス
テップS103では、後述する図14及び図15の自律走行
制御ル−チンを実行して作業開始位置へ車輌を移動し、
ステップS104で、刈刃制御用油圧制御弁37を開弁して
油圧クラッチ機構に油圧を供給し、刈刃9aを作動させ
て草・芝刈作業を開始し、まず、予め作業デ−タ蓄積部
66に格納されている作業領域デ−タを参照してD−G
PS・推測航法により作業領域に沿い経路103の外周
刈を行う(図17参照)。
Then, in step S102, the work data
The topographical data of the first work area 102 is read out by referring to the data storage unit 66, a route 101 from the measured preparation position 100 to the work start point is generated, and the process proceeds to step S103. In step S103, the autonomous traveling control routine of FIGS. 14 and 15 described later is executed to move the vehicle to the work start position,
In step S104, the cutting blade control hydraulic control valve 37 is opened to supply the hydraulic pressure to the hydraulic clutch mechanism to operate the cutting blade 9a to start the grass / lawn mowing work. DG by referring to the work area data stored in 66
The outer periphery of the route 103 is cut along the work area by PS / dead reckoning (see FIG. 17).

【0054】すなわち、ステップS105で、前述のステッ
プS103と同様に自律走行時のD−GPSあるいは推測航
法により自己位置を検出した後、ステップS106で、作業
デ−タ蓄積部66の作業デ−タを参照し、作業領域10
2の境界に沿う経路103に対する現在位置との誤差量
を求める。
That is, in step S105, the self-position is detected by D-GPS or dead reckoning during autonomous driving as in step S103 described above, and then in step S106, the work data in the work data storage unit 66 is detected. Work area 10
The amount of error from the current position with respect to the path 103 along the boundary of 2 is obtained.

【0055】次に、ステップS107へ進み、前記ステップ
S106で求めた誤差量に応じて前後輪の各目標舵角に対す
る操舵量を決定し、ステップS108で、前輪操舵用油圧制
御弁36a、後輪操舵用油圧制御弁36bを介して、前
輪操舵機構39a、後輪操舵機構39bをそれぞれ駆動
し、前輪舵角センサ35a及び後輪舵角センサ35bに
より前後輪10a,10bの各舵角を検出して目標舵角
を得るよう制御する。
Then, the process proceeds to step S107, and the step
The steering amount for each target steering angle of the front and rear wheels is determined according to the error amount obtained in S106, and in step S108, the front wheel steering mechanism is operated via the front wheel steering hydraulic control valve 36a and the rear wheel steering hydraulic control valve 36b. 39a and the rear wheel steering mechanism 39b are respectively driven, and the front wheel steering angle sensor 35a and the rear wheel steering angle sensor 35b detect the respective steering angles of the front and rear wheels 10a and 10b to perform control so as to obtain the target steering angle.

【0056】その後、ステップS109へ進み、例えば測位
デ−タによる現在の自車輌位置から作業領域における外
周刈の終了地点P0 に達したか否かを調べ、終了地点P
0 に達していないときには、前述のステップS105に戻っ
て、外周刈作業を続行し、外周刈の終了地点P0 に達し
たときには、ステップS109からステップS110へ進み、予
め作業デ−タ蓄積部66にセットされているデ−タに基
づき車輌方向を変更し、作業領域における経路104の
最初の作業レ−ンのみD−GPS・推測航法により一定
速(例えば、3〜6Km/h)で直線走行して草・芝刈
作業を行うと共に、次の作業レ−ンから既刈地Cと未刈
地Bとの刈跡境界Lに沿い倣い走行させるため、ボ−ル
載置装置を作動させて標識体としての偏重心ボ−ル40
を作業地に載置する。
After that, the process proceeds to step S109, and it is checked whether or not the end point P0 of the outer circumference cutting in the work area has been reached from the current vehicle position based on the positioning data, and the end point P is determined.
When it has not reached 0, the process returns to the above-mentioned step S105 to continue the outer peripheral cutting work, and when it reaches the end point P0 of the outer peripheral cutting, the process proceeds from step S109 to step S110 and is stored in the work data accumulating unit 66 in advance. The vehicle direction is changed based on the set data, and only the first work lane of the route 104 in the work area travels straight at a constant speed (for example, 3 to 6 km / h) by D-GPS / dead reckoning. In order to carry out grass and lawn mowing work along the cutting line and to move along the cut mark boundary L between the already cut land C and the uncut land B from the next work lane, the ball placing device is operated to activate the marker. Center of gravity ball 40 as
Are placed on the work site.

【0057】すなわち、最初の作業レ−ンの草・芝刈作
業は車輌前進状態で行うため、ステップS111で、偏重心
ボ−ル40を車輌後方側に送出して作業地に載置するボ
−ル載置装置11aを選択し、該ボ−ル載置装置11a
の作動を開始させ、ステップS112で、D−GPS・推測
航法により自車輌位置を検出し、ステップS113で作業デ
−タ蓄積部66にセットされているデ−タを参照し、外
周刈終了地点P01から作業レ−ン終端点P1 までの区間
a(図10参照)を直進走行する経路に対する現在の自
己位置の誤差量を求め、ステップS114で、誤差量に応じ
て前後輪の各目標舵角に対する操舵量を決定し、ステッ
プS115で、各油圧制御弁36a,36bを介して前後輪
操舵機構39a,39bを駆動し、目標舵角を得るよう
制御する。
That is, since the grass and lawn mowing work of the first work lane is performed while the vehicle is moving forward, in step S111, the eccentric gravity ball 40 is sent to the rear side of the vehicle and placed on the work site. The ball mounting device 11a is selected, and the ball mounting device 11a is selected.
Operation is started, the vehicle position is detected by D-GPS / dead reckoning in step S112, and the data set in the work data storage unit 66 is referred to in step S113 to determine the outer peripheral cutting end point. The error amount of the current self-position with respect to the straight traveling route in the section a (see FIG. 10) from P01 to the work lane terminal point P1 is obtained, and in step S114, the target steering angles of the front and rear wheels are determined according to the error amount. The steering amount with respect to is determined, and in step S115, the front and rear wheel steering mechanisms 39a and 39b are driven via the respective hydraulic pressure control valves 36a and 36b to perform control so as to obtain the target steering angle.

【0058】そして、ステップS116で、測位デ−タによ
る現在の自車輌位置から作業レ−ン終端地点P1 に達し
たかを調べ、終端地点P1 に達していないときにはステ
ップS112へ戻り、直進走行による草・芝刈作業、及びボ
−ル載置装置11aによる作業地へのボ−ル載置を継続
し、作業レ−ン終端地点P1 に達したときには、ステッ
プS116からステップS117へ進み、ボ−ル載置装置11a
の作動を停止させる。
Then, in step S116, it is checked whether or not the work lane end point P1 has been reached from the current vehicle position based on the positioning data. If the end point P1 has not been reached, the process returns to step S112, and the vehicle travels straight ahead. The grass and lawn mowing work and the ball placing device 11a continue to place the ball on the work site, and when the work lane end point P1 is reached, the process proceeds from step S116 to step S117. Placement device 11a
Stop the operation of.

【0059】そこで、最初の作業レ−ンにおいて、車輌
の前進、一定速直進走行により草・芝刈作業が行われ、
且つ、このときボ−ル載置装置11aのリニアソレノイ
ド16が一定時間毎に作動されることで、一定時間毎
に、ピストン17が上下作動して偏重心ボ−ル40が車
輌後方側に送出され、既刈地Cと未刈地Bとの刈跡境界
Lに沿い、所定の間隔で作業地に偏重心ボ−ル40が載
置され、次の作業レ−ンの倣い走行に備えられる。
Therefore, in the first work lane, the grass and lawn mowing work is performed by the forward movement of the vehicle and straight traveling at a constant speed.
Further, at this time, the linear solenoid 16 of the ball mounting device 11a is operated at regular intervals, so that the piston 17 is vertically moved at regular intervals and the eccentric ball 40 is delivered to the rear side of the vehicle. The eccentric ball 40 is placed on the work site along the cut boundary L between the already-cut land C and the uncut land B at a predetermined interval to prepare for the next running run of the work lane. .

【0060】なお、本実施例では、作業地に載置された
ボ−ル40を含む既刈地Cと未刈地Bとの境界部をCC
Dカメラ26により撮像した画像において、各ボ−ル4
0の位置を結ぶ直線近似式を基準に倣い走行時の車体の
ずれを判断するため、最初の作業レ−ンにおいては、D
−GPS・推測航法により直線走行を行わせる必要があ
る。
In this embodiment, the boundary portion between the already-cut land C and the uncut land B including the ball 40 placed on the work site is CC.
In the image captured by the D camera 26, each ball 4
Since the deviation of the vehicle body during traveling is determined based on the linear approximation formula connecting the positions of 0, D is set in the first work lane.
-It is necessary to drive in a straight line using GPS and dead reckoning.

【0061】また、作業地に載置する各ボ−ル間の載置
間隔Kは、車輌走行速度を低下させるかリニアソレノイ
ド16に対するON,OFF信号の出力周期時間を短く
し、載置間隔を短く設定すれば、標識体としてのボ−ル
40を基準とする倣い走行精度が向上するが、反面、ボ
−ル40の必要個数が多くなり、走行速度を速くするか
或はリニアソレノイド16への信号出力周期時間を長く
して載置間隔を長く設定すれば、ボ−ル40の必要個数
が少なくなるが、倣い走行精度が低下する。このため、
ボ−ル載置間隔Kは、数十cm〜数m間隔が望ましい。
また、芝刈作業車1の走行速度があまり遅いと草・芝刈
作業効率が悪化し、また速いと刈ムラが生じるため、走
行速度は3〜6Km/h程度が望ましく、これに応じ
て、適宜、ボ−ル載置装置11a,11bのリニアソレ
ノイド16に対する出力周期時間を設定する。
The placement interval K between the balls placed on the work site is set by reducing the traveling speed of the vehicle or by shortening the output cycle time of the ON / OFF signal to the linear solenoid 16. If the length is set to be short, the traveling accuracy of copying based on the ball 40 as a sign is improved, but on the other hand, the required number of the balls 40 is increased and the traveling speed is increased or the linear solenoid 16 is used. When the signal output cycle time is set to be long and the mounting interval is set to be long, the required number of the balls 40 is reduced, but the copying traveling accuracy is reduced. For this reason,
The ball mounting interval K is preferably several tens of cm to several m.
Further, if the traveling speed of the lawn mowing vehicle 1 is too slow, the grass / lawn mowing work efficiency is deteriorated, and if it is too fast, uneven cutting occurs. Therefore, it is desirable that the traveling speed is about 3 to 6 km / h. The output cycle time of the ball mounting devices 11a and 11b with respect to the linear solenoid 16 is set.

【0062】そして、最初の作業レ−ンの終端地点P1
に達し、ステップS117で、ボ−ル載置装置11aの作動
を停止させた後、ステップS118へ進み、車輌のシフト処
理を行い車輌を次の作業レ−ンにシフトさせ、操舵機構
39a,39bを制御して、前回の草・芝刈作業による
既刈地Cと未刈地との刈跡境界Lに沿った経路105の
倣い走行を一定速(例えば、3〜6Km/h)走行によ
り行う。
Then, the end point P1 of the first work lane
In step S117, after the operation of the ball placing device 11a is stopped, the process proceeds to step S118, the vehicle shift processing is performed, the vehicle is shifted to the next work lane, and the steering mechanisms 39a and 39b are operated. Control is performed to follow the path 105 along the cut line boundary L between the already-cut land C and the uncut land by the previous grass / lawn mowing work at a constant speed (for example, 3 to 6 km / h).

【0063】次いで、ステップS119へ進み、芝刈作業車
1の前後進状態に応じてCCDカメラ26の撮像方向を
ステップモ−タ28aを駆動して修正し、修正後、CC
Dカメラ26を作動させる。すなわち、制御装置60内
の車輌前後進制御デ−タに基づき車輌前進Fと判断され
るときには、作業デ−タ蓄積部66に予めセットされて
いる設定角度位置となるようCCDカメラ26を車輌前
方に向け、車輌後進Rと判断されるときには、CCDカ
メラ26を車輌後方に向けて、作業地に載置された偏重
心ボ−ル40を含む既刈地Cと未刈地Bとの境界部の撮
像を開始させる。その結果、CCDカメラ26からのビ
デオ信号が、適宜、ビデオメモリ87に画像デ−タとし
て書き込まれる。そして、ステップS120へ進み、この草
・芝刈作業領域において、今回の作業レ−ンが最終の作
業レ−ンか否かを、例えば、現在の自車輌位置デ−タと
作業デ−タ蓄積部66に格納されている作業領域の測地
デ−タとを比較することにより調べる。
Next, in step S119, the image pickup direction of the CCD camera 26 is corrected by driving the step motor 28a according to the forward / backward movement state of the lawn mowing work vehicle 1, and after correction, CC
The D camera 26 is operated. That is, when it is determined that the vehicle is in the forward direction F based on the vehicle forward / backward movement control data in the control device 60, the CCD camera 26 is moved forward of the vehicle so as to reach the set angle position preset in the work data storage unit 66. When it is determined that the vehicle is moving backward R, the CCD camera 26 is turned to the rear of the vehicle and the boundary portion between the already-cut land C and the uncut land B including the eccentricity ball 40 placed on the work site. To start imaging. As a result, the video signal from the CCD camera 26 is appropriately written in the video memory 87 as image data. Then, in step S120, whether or not the work lane of this time is the final work lane in this grass / lawn mowing work area is determined by, for example, the current vehicle position data and the work data accumulation unit. Check by comparing with the geodetic data of the work area stored in 66.

【0064】そして、今回の作業レ−ンは最終の作業レ
−ンではなく、次にも作業レ−ンが有ると判断されると
きには、ステップS121へ進み、車輌の前後進状態に応じ
て、車輌前進時にはボ−ル回収装置20a及びボ−ル載
置装置11aのみ作動開始させ、後進時には他方のボ−
ル回収装置20b及びボ−ル載置装置11bのみ作動を
開始させる。また、最終の作業レ−ンのときには(図1
0における最終作業レ−ンの経路106)、次の作業レ
−ンがなく、標識体としてのボ−ル40を作業地に載置
する必要がないので、ステップS122へ進み、車輌の前後
進状態に応じてボ−ル回収装置20a,20bのみ、そ
の一方を選択して作動を開始させる。
When it is determined that the current work lane is not the final work lane and there is another work lane, the process proceeds to step S121, in accordance with the forward / backward traveling state of the vehicle. When the vehicle is moving forward, only the ball recovery device 20a and the ball mounting device 11a are activated, and when moving backward, the other ball is recovered.
Only the ball collecting device 20b and the ball mounting device 11b are activated. At the final work lane (see Fig. 1
0, there is no next work lane, and there is no need to place the ball 40 as a marker on the work site. Therefore, the process proceeds to step S122, and the vehicle moves forward and backward. Only one of the ball recovery devices 20a and 20b is selected according to the state, and the operation is started.

【0065】次いで、ステップS123へ進み、CCDカメ
ラ26により撮像された既刈地Cと未刈地Bとの境界部
の画像デ−タを、ビデオメモリ87から読み出し、ステ
ップS124で、画像中に撮像されている各偏重心ボ−ル4
0を、そのボ−ル40の球体形状、あるいは作業地に対
する明度の差、あるいは輝度階調の差等により認識し
(図18(a)参照)、図18(b)に示すように、画
像における左下隅を原点とし、画像上下軸をY、左右軸
をXとして画像上の全ての各ボ−ル40の中心位置Gを
求め、これら各ボ−ルの位置Gから最少2乗法あるいは
ハフ変換により各ボ−ル40を結ぶ直線近似式y=ax
+bを算出する。
Then, the process proceeds to step S123, where the image data of the boundary between the already-cut land C and the uncut land B imaged by the CCD camera 26 is read out from the video memory 87. Each eccentric gravity ball 4 being imaged
0 is recognized by the spherical shape of the ball 40, the difference in brightness with respect to the work site, the difference in luminance gradation, or the like (see FIG. 18A), and as shown in FIG. The center position G of all the balls 40 on the image is obtained with the lower left corner of the origin as the origin, the vertical axis of the image as Y, and the horizontal axis as X, and the least squares method or Hough transform is performed from the position G of each of these balls. Approximate straight line y = ax connecting each ball 40 by
Calculate + b.

【0066】ここで、偏重心ボ−ル40は、常に、既刈
地Cと未刈地Bとの刈跡境界Lに沿い略一定の間隔で作
業地上に載置されていることから、画像上において各ボ
−ル40を結ぶ直線近似式により、間接的に刈跡境界L
の位置を認識することができるのである。
Here, since the eccentric center of gravity ball 40 is always placed on the working ground along the cut boundary L between the already-cut land C and the uncut land B at a substantially constant interval, The straight line approximation formula connecting the balls 40 above indirectly cuts the boundary L
The position of can be recognized.

【0067】そして、ステップS125へ進み、上記直線近
似式y=ax+bによる直線と、図18(b)に破線で
示すように、車輌の進行方向に応じ予め設定されている
画像上の目標直線y=cx+dとを比較し、目標直線に
対する直線近似式による直線の偏差量Z、及び偏差角θ
とを算出し、これら偏差角θ及び偏差量Zにより、車体
1aがどの方向にどれだけずれているのかを認識する
(なお、偏差量Zの+−により車体1aが進行方向左右
のどちら側にずれているのかが判る)。
Then, the process proceeds to step S125, and the straight line obtained by the straight line approximation formula y = ax + b and the target straight line y on the image preset according to the traveling direction of the vehicle as shown by the broken line in FIG. 18 (b). = Cx + d, and the deviation amount Z and deviation angle θ of the straight line from the straight line approximation formula with respect to the target straight line
And the deviation amount Z and the deviation amount Z are used to recognize how much the vehicle body 1a is deviated in which direction. You can see if they are out of alignment.)

【0068】すなわち、図19(a),(b)に示すよ
うに、CCDカメラ26が地上高hに、附角θB を有し
て取付られ、CCDカメラ26により撮像される作業地
の視野範囲をS、光軸Fの作業地に対する投影線をFX
とすると、この投影線FX のカメラ中心から偏差σ1 を
有し投影線FX に平行な作業地上の直線Lh 、及び、カ
メラ中心から偏差σ2 を有して投影線FX に所定角度θ
D で交差する直線Laは、CCDカメラのレンズ球面収
差等の影響で同図(c)に示すような画像デ−タとして
得られ、同図(d)に示すように、直線Lh',La'とし
て画面上の左下隅を原点とするX,Y座標上に直線近似
することができる。
That is, as shown in FIGS. 19 (a) and 19 (b), the CCD camera 26 is mounted at a height h above the ground with an included angle θB, and the field of view of the work site imaged by the CCD camera 26. S, the projection line of the optical axis F on the work site is FX
Then, the projection line FX has a deviation σ1 from the camera center and is parallel to the projection line FX on the work ground straight line Lh, and the projection line FX has a deviation σ2 from the camera center at a predetermined angle θ.
The straight line La intersecting at D is obtained as image data as shown in FIG. 7C due to the influence of the spherical aberration of the lens of the CCD camera, and as shown in FIG. A straight line can be approximated on the X and Y coordinates with the origin at the lower left corner of the screen.

【0069】従って、CCDカメラ26の車体1aへの
取付状態(地上高h、附角θB 、画角θA 等)を考慮
し、予め実験等により、所定の芝刈オ−バラップ量Oを
得る車体位置で、作業地に載置されたボ−ル40を含む
既刈地Cと未刈地Bとの境界部をCCDカメラ26によ
り撮像し、このとき、画像上の各ボ−ル40による直線
近似式により得られる直線を、目標直線として、予め作
業デ−タ蓄積部66のROMエリアに格納しておき、倣
い走行時、画像上の各ボ−ル40の位置から求めた直線
近似式により得られる直線が、上記目標直線に一致する
よう前後輪10a,10bの舵角を、各操舵機構39
a,39bを制御することにより修正することで、既刈
地Cと未刈地Bとの刈跡境界Lに沿い、所定の芝刈オ−
バラップ量Oを有し倣い走行して次作業レ−ンの草・芝
刈作業を行うことが可能となる。
Therefore, in consideration of the mounting state of the CCD camera 26 to the vehicle body 1a (ground height h, angle of attachment θB, angle of view θA, etc.), the vehicle body position for obtaining a predetermined lawn mowing overlap amount O by experiments etc. in advance. Then, the CCD camera 26 captures an image of the boundary between the already-cut land C and the uncut land B including the ball 40 placed on the work site, and at this time, a straight line approximation is made by each ball 40 on the image. The straight line obtained by the formula is stored as a target straight line in the ROM area of the work data accumulating unit 66 in advance, and is obtained by the straight line approximation formula obtained from the position of each ball 40 on the image during the copying run. The steered angles of the front and rear wheels 10a and 10b are set so that the obtained straight line coincides with the target straight line.
By correcting by controlling a and 39b, a predetermined lawn mowing operation is performed along the cut line boundary L between the already-cut land C and the uncut land B.
It becomes possible to carry out grass and lawn mowing work for the next work lane by carrying out profiling with the burlap amount O.

【0070】なお、上記目標直線は、車輌前進時と後進
時とで画像が左右反転するため、当然、車輌前進時と後
進時とで変える必要がある。
Since the image of the target straight line is horizontally reversed when the vehicle is moving forward and when it is moving backward, it is necessary to change the target straight line when the vehicle is moving forward and when it is moving backward.

【0071】そして、ステップS125における認識結果に
基づき、ステップS126で車体1aのずれを修正するよう
前後輪10a,10b各々の目標舵角を設定する。この
目標舵角の設定は、例えば前記偏差角θと偏差量Zとを
パラメ−タとして作業デ−タ蓄積部66に予め格納され
ているテ−ブルを参照することにより行う。
Then, based on the recognition result in step S125, the target steering angles of the front and rear wheels 10a, 10b are set in step S126 so as to correct the deviation of the vehicle body 1a. The target rudder angle is set, for example, by referring to a table stored in advance in the work data storage unit 66 using the deviation angle θ and the deviation amount Z as parameters.

【0072】その後、ステップS127で、前,後輪舵角セ
ンサ35a,35bからの信号を入力処理して前,後輪
10a,10bの舵角をそれぞれ算出すると、ステップ
S128へ進み、先ず前輪舵角と前輪目標舵角とを比較す
る。そして前輪舵角が前輪目標舵角と等しいかあるいは
それよりも大きいと判断されるときにはステップS129へ
進み、前輪操舵用油圧制御弁36aをOFFして前輪用
油圧シリンダ38aを介して前輪操舵機構39aを動作
し、前輪10aの舵角を減じ、前輪舵角が前輪目標舵角
よりも小さいときにはステップS130へ進み、前輪操舵用
油圧制御弁36aをONして逆に前輪10aの舵角を増
加させるよう制御する。
Thereafter, in step S127, the signals from the front and rear wheel steering angle sensors 35a and 35b are input to calculate the steering angles of the front and rear wheels 10a and 10b, respectively.
The process proceeds to S128, in which the front wheel steering angle and the front wheel target steering angle are first compared. When it is determined that the front wheel steering angle is equal to or larger than the front wheel target steering angle, the process proceeds to step S129, the front wheel steering hydraulic control valve 36a is turned off, and the front wheel steering mechanism 39a is turned on via the front wheel hydraulic cylinder 38a. To decrease the steering angle of the front wheel 10a, and when the front wheel steering angle is smaller than the front wheel target steering angle, the process proceeds to step S130, and the front wheel steering hydraulic control valve 36a is turned on to increase the steering angle of the front wheel 10a. Control.

【0073】次いで、ステップS131へ進み、後輪舵角と
後輪目標舵角とを比較し、後輪舵角が後輪目標舵角と等
しいかあるいはそれよりも大きいときにはステップS132
へ進み、後輪操舵用油圧制御弁36bをOFFして後輪
用油圧シリンダ38bを介して後輪操舵機構39bを動
作し、後輪10bの舵角を減じ、後輪舵角が目標後輪舵
角よりも小さいときにはステップS133へ進み、逆に後輪
操舵用油圧制御弁36bをONして後輪10bの舵角を
増加させるよう制御する。そして、ステップS134で、予
め設定された制御インタ−バルが経過したかを判断し、
制御インタ−バルが経過するまでの間、ステップS127〜
S134を繰り返し、前後輪10a,10bの舵角が目標舵
角に一致するよう舵角フィ−ドバック制御を継続し、制
御インタ−バルが経過すると、ステップS135へ進み、現
在の自車輌位置を例えば現在の自己位置測位デ−タによ
り検出し、ステップS136で、現在の自車輌位置がこの作
業レ−ンの終端地点に達したか否かを判断し、作業レ−
ンの終端地点に達していないときには、前記ステップS1
23へ戻る。
Next, the process proceeds to step S131, the rear wheel steering angle and the rear wheel target steering angle are compared, and if the rear wheel steering angle is equal to or larger than the rear wheel target steering angle, step S132
Then, the rear wheel steering hydraulic control valve 36b is turned off and the rear wheel steering mechanism 39b is operated via the rear wheel hydraulic cylinder 38b to reduce the steering angle of the rear wheel 10b so that the rear wheel steering angle is the target rear wheel. When the steering angle is smaller than the steering angle, the process proceeds to step S133, and conversely, the rear wheel steering hydraulic control valve 36b is turned on to control the steering angle of the rear wheel 10b to be increased. Then, in step S134, it is determined whether the preset control interval has elapsed,
Until the control interval elapses, step S127-
By repeating S134, the rudder angle feedback control is continued so that the rudder angles of the front and rear wheels 10a and 10b match the target rudder angle, and when the control interval elapses, the process proceeds to step S135, where the current position of the vehicle is, for example, Detected by the current self-positioning data, in step S136, it is judged whether or not the current vehicle position has reached the end point of this work lane, and
If it has not reached the end point of
Return to 23.

【0074】これにより、刈跡境界に対する車体1aの
ずれ認識とこのずれ認識に基づく舵角制御とを制御イン
タ−バルにより定まる一定時間毎に繰り返し、既刈地C
と未刈地Bとの刈跡境界Lに沿った芝刈作業車1の倣い
走行による草・芝刈が実現される。
As a result, the recognition of the displacement of the vehicle body 1a with respect to the boundary of the cut mark and the steering angle control based on this displacement recognition are repeated at fixed intervals determined by the control interval, and the cut land C
The lawn mowing work vehicle 1 follows the cutting boundary B between the uncut area B and the uncut area B to perform grass / lawn mowing.

【0075】やがて、倣い走行による1行程(1列)の
作業レ−ン終端地点に達すると、ステップS136からステ
ップS137へ進み、CCDカメラ26による撮像を停止さ
せ、ステップS138で、現在作動されているボ−ル回収装
置20aあるいは20b、ボ−ル載置装置11aあるい
は11bの作動を停止させる。
Eventually, when the work lane end point of one stroke (one row) due to the copy traveling is reached, the process proceeds from step S136 to step S137, the image pickup by the CCD camera 26 is stopped, and in step S138, it is operated at present. The operation of the ball collecting device 20a or 20b and the ball mounting device 11a or 11b which are present is stopped.

【0076】そして、ステップS139で、現在の自車輌位
置から、1区画(作業領域102)の全作業を終了した
か否かを判断する。そして未だ作業領域102の全作業
を終了していないときには前記ステップS118へ戻り、車
輌のシフト処理を行い次行程(次の作業レ−ン)の倣い
走行による草・芝刈作業を行う。
Then, in step S139, it is determined whether or not all work for one section (work area 102) has been completed from the current vehicle position. When all the work in the work area 102 has not been completed yet, the process returns to step S118, the vehicle shift processing is performed, and the grass / lawn mowing work is performed by following the traveling of the next stroke (next work lane).

【0077】ここで、図20に示すように、芝刈作業車
1の前進Fによる草・芝刈作業1行程の作業レ−ン終端
地点P2 に達したときには、作業デ−タ蓄積部66によ
る作業デ−タ、及び予めセットされている制御デ−タに
基づき、終端点位置の草・芝の刈残しを防ぐため、その
まま前進状態で点P3 まで前進し、その後、点P3 から
点P2 まで後退Rし、点P2 から右前方に前進し、所定
の芝刈オ−バラップ量Oを得る位置P4 で、各油圧制御
弁36a,36b、各シリンダ38a,38bを介して
各操舵機構39a,39bを制御して、車体1aを前回
の作業レ−ン走行時と平行状態にし、すなわち各刈刃9
aによる幅Wから芝刈オ−バラップ量Oを減算した分だ
け芝刈作業車1を横シフトさせた後、今度は車輌を後進
R状態として、前記ステップS119ないしS139を実行し、
CCDカメラ26により車輌後方を撮像して前回の作業
レ−ン前進走行時にボ−ル載置装置11aにより作業地
に載置された各ボ−ル40の画像上の位置から直線近似
式を求め、この直線近似式によって得られる直線が車輌
後進時の目標直線に一致するよう各操舵機構39a,3
9bを制御することで、刈跡境界Lに沿った倣い走行に
より草・芝刈作業を行う。またこのとき、ボ−ル回収装
置20bにより前回の作業レ−ン走行時に作業地に載置
されたボ−ル40が回収されると共に、ボ−ル載置装置
11bにより次の作業レ−ンの倣い走行に備え、既刈地
Cと未刈地Bとの刈跡境界Lに沿ってボ−ル40が作業
地に新たに載置される。
As shown in FIG. 20, when the work lane end point P2 of one stroke of grass / lawn mowing work by the forward movement F of the lawn mowing work vehicle 1 is reached, the work data accumulated by the work data accumulating portion 66 is used. -Based on the control data and preset control data, in order to prevent uncut grass and grass at the end point position, the robot continues to move forward to point P3, and then moves backward from point P3 to point P2. Then, the steering mechanism 39a, 39b is controlled through the hydraulic control valves 36a, 36b and the cylinders 38a, 38b at the position P4 where the vehicle moves forward from the point P2 to the right and obtains a predetermined lawn mowing overlap amount O. So that the vehicle body 1a is in a parallel state with the previous work lane traveling, that is, each cutting blade 9
After laterally shifting the lawnmower work vehicle 1 by the amount obtained by subtracting the lawn mowing overlap amount O from the width W by a, the vehicle is set to the reverse R state, and the steps S119 to S139 are executed.
An image of the rear of the vehicle is taken by the CCD camera 26, and a linear approximation formula is obtained from the positions on the image of each ball 40 placed on the work site by the ball placing device 11a during the previous traveling of the work lane. , Each of the steering mechanisms 39a, 3a so that the straight line obtained by this straight line approximation formula coincides with the target straight line when the vehicle is moving backward.
By controlling 9b, grass and lawn mowing work is performed by following along the cut boundary L. At this time, the ball collecting device 20b collects the ball 40 placed on the work site during the previous traveling of the work lane, and the ball placing device 11b collects the next work lane. The ball 40 is newly placed on the work site along the cut trace boundary L between the already-cut land C and the uncut land B in preparation for the copying travel of FIG.

【0078】また、図21に示すように、芝刈作業車1
の後進Rにより草・芝刈作業1行程の作業レ−ン終端地
点P5 に達したときには、同様に、作業デ−タ蓄積部6
6のデ−タに基づき、終端点位置の草・芝の刈残しを防
ぐため、点P6 までそのまま後退し、その後、点P5 ま
で前進して点P5 から右後方に後進し、所定の芝刈オ−
バラップ量Oを得る位置P7 で、操舵機構39a,39
bを制御して、車体1aを前の作業レ−ン走行時と平行
状態にし、今度は車輌を前進状態として、CCDカメラ
26により車輌前方を撮像し、前回の作業レ−ン後進走
行時にボ−ル載置装置11bにより載置された各ボ−ル
40の画像上の位置から直線近似式を求め、この直線近
似式による直線が車輌前進時の目標直線に一致するよう
操舵機構39a,39bを制御して、刈跡境界Lに沿い
倣い走行してこの作業レ−ンの草・芝刈作業を行う。こ
のとき、ボ−ル回収装置20aにより前回載置されたボ
−ル40が回収されると共に、ボ−ル載置装置11aに
より次の作業レ−ン走行に備え刈跡境界Lに沿ってボ−
ル40が作業地に新たに載置される。
Further, as shown in FIG. 21, the lawnmower work vehicle 1
When the work lane end point P5 of one stroke of grass / lawn mowing work is reached by the reverse R, the work data accumulating unit 6 is similarly operated.
In order to prevent the grass and lawn from being left uncut at the end point position, the robot retreats to point P6 as it is, then moves forward to point P5, and moves backward from point P5 to the right rear, based on the data of No. −
At the position P7 for obtaining the barlap amount O, the steering mechanisms 39a, 39
By controlling b, the vehicle body 1a is brought into a parallel state with the previous traveling of the work lane, this time the vehicle is set in the forward traveling state, the front of the vehicle is imaged by the CCD camera 26, and the vehicle is traveled backward during the previous traveling of the work lane. -A linear approximation formula is obtained from the position on the image of each ball 40 placed by the ball placement device 11b, and steering mechanisms 39a, 39b are arranged so that the straight line obtained by this linear approximation formula coincides with the target straight line when the vehicle is moving forward. Is controlled to travel along the cut line boundary L to perform grass / lawn mowing work for this work lane. At this time, the ball 40 placed previously is collected by the ball collecting device 20a, and the ball mounting device 11a prepares a ball along the cut mark boundary L in preparation for the next work lane traveling. −
The rule 40 is newly placed on the work site.

【0079】従って、図22のように前進と後進とを交
互に繰り返しながら芝刈作業車1は倣い走行を行い、作
業領域102の草・芝刈作業が行われる。
Therefore, as shown in FIG. 22, the lawn mowing work vehicle 1 travels along a line while alternately repeating forward movement and backward movement to perform grass / lawn mowing work in the work area 102.

【0080】そして、1区画(作業領域102)での作
業を終了するまでステップS118〜S139を繰返して、前後
進による倣い走行により1区画の草・芝刈作業を継続
し、1区画の全作業を終了したとき、刈刃制御用油圧制
御弁37を閉弁して刈刃機構9の作動を停止させ、ステ
ップS139からステップS140へ進んで、全区画の作業を終
了したか否かを判断する。ここでは、まだ、次の作業領
域108での作業を終了していないため、前述のステッ
プS102へ戻り、同様の手順で作業領域102から作業領
域108への経路107を生成すると、図14及び図1
5の自律走行制御ル−チンに従って次の作業領域108
に移動し、作業領域108の草・芝刈作業を行う。
Then, steps S118 to S139 are repeated until the work in one section (work area 102) is completed, and the grass and lawn mowing work in one section is continued by the follow-up movement by forward and backward movement, and all the work in one section is performed. When the cutting operation is completed, the cutting blade control hydraulic control valve 37 is closed to stop the operation of the cutting blade mechanism 9, and the process proceeds from step S139 to step S140 to determine whether or not the work for all the sections is completed. Here, since the work in the next work area 108 has not been completed yet, the process returns to step S102 described above, and if the route 107 from the work area 102 to the work area 108 is generated by the same procedure, the steps shown in FIGS. 1
Next work area 108 according to the autonomous traveling control routine of FIG.
Then, the grass and lawn mowing work in the work area 108 is performed.

【0081】やがて、全区画の作業を終了すると、ステ
ップS140からステップS141へ進み、作業デ−タ蓄積部6
6を参照して戻り位置110への経路109を生成する
と、ステップS142で、図14及び図15の自律走行制御
ル−チンに従って戻り位置110まで移動し、ル−チン
を終了して車輌を停止させる。
When the work of all the sections is finished, the process proceeds from step S140 to step S141, and the work data storage unit 6
When the route 109 to the return position 110 is generated with reference to FIG. 6, the vehicle moves to the return position 110 in accordance with the autonomous traveling control routine of FIGS. 14 and 15 in step S142, ends the routine, and stops the vehicle. Let

【0082】次に、図14及び図15に示す自律走行制
御ル−チンによる経路101,103,104,10
7,109における自律走行について説明する。尚、前
述の主制御ル−チンにおいては、自己位置の測位デ−タ
と作業デ−タ蓄積部66の作業デ−タとから経路10
1,103,104,107,109を生成するように
しているが、経路101,103,104,107,1
09そのものを予め作業デ−タ蓄積部66に記憶させて
おいても良い。
Next, the routes 101, 103, 104 and 10 by the autonomous traveling control routine shown in FIGS.
The autonomous running in 7, 109 will be described. In the main control routine described above, the route 10 is calculated from the positioning data of the self position and the work data of the work data storage unit 66.
1, 103, 104, 107, 109 are generated, but the routes 101, 103, 104, 107, 1 are generated.
09 itself may be stored in the work data storage unit 66 in advance.

【0083】D−GPSによる自己位置の測定では、単
独のGPSに比較してはるかに良好な精度が得られる
が、衛星の捕捉状態や電波の受信状態等によっては、自
律走行制御時に必要とするタイミングで必要とする精度
が得られない場合がある。従って、ステップS201で、現
在のD−GPSの精度情報を得ると、ステップS202で、
この精度情報を、作業デ−タ蓄積部66に予め記憶され
ている規定の位置精度評価設定値と比較し、ステップS2
03で、D−GPSの測位精度が設定レベルを満足するか
否かを判断する。
In the self-position measurement by D-GPS, much better accuracy can be obtained as compared with the case of a single GPS, but it is necessary for autonomous traveling control depending on the satellite capturing state and the radio wave receiving state. The accuracy required for timing may not be obtained. Therefore, when the current D-GPS accuracy information is obtained in step S201, in step S202
This accuracy information is compared with a prescribed position accuracy evaluation set value stored in advance in the work data storage unit 66, and step S2
At 03, it is determined whether or not the positioning accuracy of D-GPS satisfies the set level.

【0084】そして、D−GPSの測位精度が設定レベ
ルを満足する場合には、ステップS204へ進んで、芝刈作
業車1の移動速度を、作業デ−タ蓄積部66に記憶され
ている通常速度(例えば5km/h)となるよう制御
し、ステップS205で、G−DPSの位置情報と経路情報
とから自車輌位置の誤差量を求めると、ステップS206
で、誤差量に応じて前後輪の操舵量を決定する。
When the positioning accuracy of the D-GPS satisfies the set level, the process proceeds to step S204, and the moving speed of the lawnmower work vehicle 1 is set to the normal speed stored in the work data storage unit 66. (For example, 5 km / h), and in step S205, when the error amount of the vehicle position is obtained from the position information of the G-DPS and the route information, step S206
Then, the steering amounts of the front and rear wheels are determined according to the error amount.

【0085】次いで、ステップS207へ進むと、前輪操舵
用油圧制御弁36a、後輪操舵用油圧制御弁36bを介
して前輪操舵機構39a、後輪操舵機構39bをそれぞ
れ駆動し、目標舵角を得るよう制御し、ステップS208
で、D−GPSで測位した現在位置と目標位置とを比較
し、ステップS209で、目標位置に到達したか否かを判断
する。その結果、目標位置に到達していないときには、
ステップS204へ戻って現在位置をD−GPSによって測
位しながら走行を続け、目標位置に到達したとき、ステ
ップS225で、車輌を停止してル−チンを抜ける。
Next, in step S207, the front wheel steering mechanism 39a and the rear wheel steering mechanism 39b are respectively driven via the front wheel steering hydraulic control valve 36a and the rear wheel steering hydraulic control valve 36b to obtain the target steering angle. Control, step S208
Then, the current position measured by D-GPS is compared with the target position, and it is determined in step S209 whether or not the target position has been reached. As a result, when the target position is not reached,
Returning to step S204, the vehicle continues traveling while positioning the current position by the D-GPS, and when the target position is reached, the vehicle is stopped and the routine is exited in step S225.

【0086】一方、前記ステップS203で、D−GPSの
測位精度が設定レベルを満足しない場合には、前記ステ
ップS203からステップS210へ分岐し、推測航法による自
律走行を行う。すなわち、ステップS210で、車輌の移動
速度を、作業デ−タ蓄積部66に記憶されている低速度
(例えば、3km/h)に設定することにより、車輌の
スリップによって生じる推測航法の累積誤差が最小とな
るようにし、ステップS211で、推測航法による位置情報
と経路情報とから自車輌位置の誤差量を求める。
On the other hand, if the positioning accuracy of the D-GPS does not satisfy the set level in step S203, the process branches from step S203 to step S210 and the dead reckoning autonomous driving is performed. That is, in step S210, by setting the moving speed of the vehicle to the low speed (for example, 3 km / h) stored in the work data storage unit 66, the cumulative error of dead reckoning caused by the slip of the vehicle is reduced. Then, in step S211, the error amount of the vehicle position is obtained from the position information and the route information based on dead reckoning.

【0087】次いで、ステップS212で、誤差量に応じて
前後輪の操舵量を決定すると、ステップS213で、前輪操
舵用油圧制御弁36a、後輪操舵用油圧制御弁36bを
介して前輪操舵機構39a、後輪操舵機構39bをそれ
ぞれ駆動し、目標舵角を得るよう制御する。そして、ス
テップS214で、推測航法による現在位置と目標位置とを
比較し、ステップS215で、目標位置に到達したか否かを
判断する。
Next, in step S212, the steering amounts of the front and rear wheels are determined in accordance with the error amount. In step S213, the front wheel steering mechanism 39a is operated via the front wheel steering hydraulic control valve 36a and the rear wheel steering hydraulic control valve 36b. The rear wheel steering mechanism 39b is driven to control the target steering angle. Then, in step S214, the current position by dead-reckoning and the target position are compared, and in step S215, it is determined whether or not the target position has been reached.

【0088】目標位置に到達していないときには、ステ
ップS215からステップS210へ戻って現在位置を推測航法
によって測位しながら自律走行を続け、目標位置に到達
したとき、ステップS215からステップS216へ進んで車輌
を停止すると、ステップS217で、D−GPSによる現在
位置計測を行い、測位デ−タを作業デ−タ蓄積部66の
RAMエリアに蓄積する。
When the target position is not reached, the process returns from step S215 to step S210 to continue autonomous traveling while positioning the current position by dead reckoning. When the target position is reached, the process proceeds from step S215 to step S216. When is stopped, the current position is measured by the D-GPS and the positioning data is stored in the RAM area of the work data storage unit 66 in step S217.

【0089】その後、ステップS218へ進み、予め設定さ
れたデ−タ蓄積設定時間と、前記ステップS217における
デ−タ蓄積時間とを比較し、ステップS219で、設定時間
が経過したか否かを調べる。そして、設定時間が経過し
ていないときには、ステップS217へ戻ってD−GPSに
よる測位デ−タの蓄積を続行し、設定時間が経過する
と、D−GPSによる測位デ−タの蓄積を終了してステ
ップS220へ進む。
Then, the process proceeds to step S218, and the preset data accumulation set time is compared with the data accumulation time set in step S217, and it is checked in step S219 whether the set time has elapsed. . Then, when the set time has not elapsed, the process returns to step S217 to continue accumulating the positioning data by the D-GPS, and when the set time elapses, the accumulation of the positioning data by the D-GPS ends. Proceed to step S220.

【0090】ステップS220では、蓄積したD−GPSに
よる測位デ−タを平均し、この平均値より現在位置を求
めると、ステップS221へ進んで、現在位置と目標位置と
を比較し、ステップS222で、真の目標位置に到達してい
るか否かを判断する。その結果、真の目標に到達してい
ると判断される場合、前述のステップS225で車輌を停止
してル−チンを抜け、真の目標位置に到達していないと
判断される場合には、ステップS223で、推測航法の測位
デ−タをD−GPSによる測位デ−タの平均値で補正す
ると、ステップS224へ進んで真の目標位置への経路を生
成し、前述のステップS210へ戻って走行を再開し、真の
目標位置に到達するまで以上の処理を繰返す。
In step S220, the accumulated positioning data by D-GPS is averaged, and the current position is obtained from this average value. Then, the process proceeds to step S221, the current position is compared with the target position, and in step S222. , Determine whether the true target position has been reached. As a result, when it is determined that the true target position is reached, when it is determined that the vehicle is stopped and the routine is exited in step S225 described above and the true target position is not reached, When the dead reckoning positioning data is corrected by the average value of the positioning data by D-GPS in step S223, the process proceeds to step S224, a route to the true target position is generated, and the process returns to step S210. The traveling is restarted, and the above processing is repeated until the true target position is reached.

【0091】すなわち、D−GPSの測位精度が悪化し
た場合においても、一定の地点に留まって所定時間測定
を続けることにより測位精度を向上することができ、自
律走行中にD−GPSによって必要な位置精度が得られ
ない場合、一旦、推測航法によって目標位置まで走行し
て停止し、停止状態でD−GPSの測位デ−タを設定時
間累積して平均値を取ることにより、正確な現在位置を
知ることができる。そして、推測航法による位置がずれ
ていた場合には、D−GPSの測位デ−タの設定時間の
平均値で推測航法の測位デ−タを補正することにより、
常に正確な自律走行を行うことができるのである。
That is, even if the positioning accuracy of the D-GPS deteriorates, the positioning accuracy can be improved by staying at a certain point and continuing the measurement for a predetermined time, which is required by the D-GPS during autonomous traveling. If the position accuracy is not obtained, the dead-reckoning navigation is performed to the target position and then stopped, and in the stopped state, the D-GPS positioning data is accumulated for a set time and the average value is taken to obtain the accurate current position. You can know. If the dead-reckoning position is displaced, the dead-reckoning positioning data is corrected by the average value of the set times of the D-GPS positioning data.
It is possible to always perform accurate autonomous driving.

【0092】また、D−GPSにおける固定局50と移
動局との間のデ−タ通信は、図16に示すD−GPS無
線通信ル−チンによりパケットデ−タで行われる。この
デ−タ通信では、ステップS301で、移動局GPS受信機
30を初期化し、ステップS302で、固定局GPS受信機
53を、無線通信機31,56を介したデ−タ送信で初
期化すると、ステップS303へ進み、固定局50からのデ
ィファレンシャル情報を無線デ−タ通信により得る。
Data communication between the fixed station 50 and the mobile station in D-GPS is carried out by packet data by the D-GPS wireless communication routine shown in FIG. In this data communication, the mobile station GPS receiver 30 is initialized in step S301, and the fixed station GPS receiver 53 is initialized by data transmission via the wireless communication devices 31 and 56 in step S302. , Proceeds to step S303 to obtain the differential information from the fixed station 50 by wireless data communication.

【0093】次いで、ステップS304へ進むと、D−GP
S位置検出部63で、固定局50からのディファレンシ
ャル情報を移動局GPS受信機30から得られる測位デ
−タに適用し、ディファレンシャル演算を行って自車輌
位置を測定する。そして、その測位情報を走行制御部6
5に送ると、ステップS303へ戻り、次のデ−タ処理を繰
返す。この場合、固定局50とのディファレンシャル演
算は、移動局受信機30固有の機能によって行っても良
い。
Next, in step S304, the D-GP
In the S position detection unit 63, the differential information from the fixed station 50 is applied to the positioning data obtained from the mobile station GPS receiver 30, and the differential operation is performed to measure the own vehicle position. Then, the positioning information is transmitted to the travel control unit 6
When sent to step 5, the process returns to step S303 to repeat the next data processing. In this case, the differential calculation with the fixed station 50 may be performed by a function unique to the mobile station receiver 30.

【0094】なお、本実施例では、草・芝刈作業におい
て、既刈地Cに対し未刈地Bが常に、芝刈作業車1の右
側になるようにし、ボ−ル回収装置20a,20b及び
CCDカメラ26を車体1aの左側にそれぞれ設置する
と共に、ボ−ル載置装置11a,11bを車体1aの右
側に設置するようにしているが(図2参照)、既刈地C
に対して未刈地Bが前進方向左側(後進方向右側)にな
るようにしても良く、この場合には、ボ−ル回収装置2
0a,20b及びCCDカメラ26を車体1aの右側
に、ボ−ル載置装置11a,11bを車体1aの左側に
設置する。
In this embodiment, in the grass and lawn mowing work, the uncut land B is always on the right side of the lawn mowing work vehicle 1 with respect to the already cut land C, and the ball collecting devices 20a, 20b and the CCD are provided. The cameras 26 are installed on the left side of the vehicle body 1a and the ball mounting devices 11a and 11b are installed on the right side of the vehicle body 1a (see FIG. 2).
On the other hand, the uncut land B may be on the left side in the forward direction (right side in the reverse direction). In this case, the ball collecting device 2
0a, 20b and the CCD camera 26 are installed on the right side of the vehicle body 1a, and the ball mounting devices 11a, 11b are installed on the left side of the vehicle body 1a.

【0095】また、本実施例では1台のCCDカメラ2
6を、倣い走行時において、車輌の進行方向に応じて向
きを変えることで、車輌前進時には車輌前方に向け、後
進時には車輌後方に向けて、作業地に載置されたボ−ル
40を含む既刈地Cと未刈地Bとの境界部を撮像するよ
うにしているが、図23及び図24に示すように、車体
1aの左側の前後にそれぞれCCDカメラ26a,26
bを取付け、車体前側に設置されたCCDカメラ26a
により、倣い走行において車輌前進時に車輌前方の作業
地に載置されたボ−ル40を含む既刈地Cと未刈地Bと
の境界部を撮像し、後側に設置されたCCDカメラ26
bにより車輌後進時に、同様に車輌後方の境界部を撮像
するようにしても良い。この場合には、CCDカメラを
回転させるための回転機構部28、ステップモ−タ28
a、回転角度センサ29が不要となり、且つ撮像制御部
61においてステップモ−タ駆動回路86も不要とな
る。そして、前述の主制御ル−チンにおけるステップS1
19において、車輌の進行方向に応じ車輌前進時には前側
に設置されたCCDカメラ26aのみを作動させ、後進
時には後側に設置されたCCDカメラ26bのみを作動
させるようにすれば良い。
In this embodiment, one CCD camera 2 is used.
6 includes a ball 40 placed on the work site by changing its direction in accordance with the traveling direction of the vehicle during sprinting so as to face the front of the vehicle when the vehicle moves forward and to the rear of the vehicle when the vehicle moves backward. Although the image of the boundary between the already-cut land C and the uncut land B is taken, as shown in FIGS. 23 and 24, the CCD cameras 26a, 26 are provided on the left and right sides of the vehicle body 1a, respectively.
CCD camera 26a installed on the front side of the vehicle body with b attached
As a result, the image of the boundary portion between the already-cut land C and the un-cut land B including the ball 40 placed on the work area in front of the vehicle during the forward traveling of the vehicle during copying is imaged, and the CCD camera 26 installed at the rear side.
Similarly, when the vehicle is moving backward, the image of the boundary portion behind the vehicle may be taken. In this case, a rotation mechanism section 28 for rotating the CCD camera and a step motor 28
a, the rotation angle sensor 29 becomes unnecessary, and the step motor drive circuit 86 in the image pickup control section 61 becomes unnecessary. Then, step S1 in the main control routine described above.
In 19, depending on the traveling direction of the vehicle, only the CCD camera 26a installed on the front side is operated when the vehicle is moving forward, and only the CCD camera 26b installed on the rear side is operated when driving the vehicle backward.

【0096】また、本実施例では、準備位置100から
作業領域102への移動、作業領域102、108間の
移動、各作業領域102、108における最初の外周刈
及び最初の作業レ−ンの作業走行、及び作業領域108
から戻り位置110への移動を、D−GPSあるいは推
測航法により無人で自律走行するようにしているが、こ
れらを有人により走行するようにしても良い。
Further, in the present embodiment, the movement from the preparation position 100 to the work area 102, the movement between the work areas 102 and 108, the first outer peripheral cutting in each work area 102 and 108 and the work of the first work lane. Travel and work area 108
From D to GPS to the return position 110, unmanned autonomous driving is performed by D-GPS or dead reckoning. However, these may be manned.

【0097】さらに、図25に示すように、CCDカメ
ラ26により撮像された画像において、車輌に最も近
い、例えば2つのボ−ル40の位置を順次検出し、この
2つのボ−ル中心Gを結ぶ線yを求め、この線yが予め
設定された目標直線y0 に一致するよう操舵機構39
a,39bを制御すれば、曲線状の境界に対しても倣い
走行することが可能となる。従って、図26に示すよう
に、草・芝刈領域において草・芝刈を輪刈(渦巻き状)
に行うこともでき、この場合は外周の第1周の草・芝刈
をD−GPSあるいは推測航法により行い、既刈地Cと
未刈地Bとの境界に沿いボ−ル載置装置11によりボ−
ル40を載置し、第2周以降をCCDカメラ26により
作業地に載置されたボ−ル40を含む境界部を撮像し、
上述のように、操舵機構39a,39bを制御すること
で、刈跡境界Lに沿う倣い走行が可能となる。この場合
には、車体進行方向後方に刈跡境界Lに沿いボ−ル40
を載置する1つのボ−ル載置装置11、車輌進行方向前
方に載置されているボ−ル40を回収する1つのボ−ル
回収装置20、及び車輌前方を撮像する1つのCCDカ
メラ26のみで対処することができ、常に倣い走行時に
は進行方向が一定であることからCCDカメラ26は車
体進行方向に向けて固定させておけば良く、CCDカメ
ラ26を回転させるための回転機構部28等を省略する
ことができる。また、周回状に倣い走行することから、
前述の主制御ル−チンにおいて外周刈と同時にボ−ル載
置を開始させ、第2周目からボ−ル回収装置20の作動
を開始させ、ステップS110〜S116の直線走行処理、ステ
ップS117、ステップS118の車輌シフト処理が不要とな
り、且つCCDカメラ26は固定であることからステッ
プS119も不要となる。そして、ボ−ル載置装置11及び
ボ−ル回収装置20は1つであることからステップS120
〜S122も不要となり、ステップS136で作業終了かを判断
し、1区画の作業終了と判断されるときステップS137へ
進むようにすれば良く、これに伴いステップS139が不要
となる。
Further, as shown in FIG. 25, in the image taken by the CCD camera 26, the positions of, for example, the two balls 40 closest to the vehicle are sequentially detected, and the two ball centers G are detected. A connecting line y is obtained, and the steering mechanism 39 is adjusted so that the line y coincides with a preset target straight line y0.
By controlling a and 39b, it becomes possible to travel along a curved boundary. Therefore, as shown in FIG. 26, in the grass / lawn mowing area, the grass / lawn mowing is cut in a spiral manner.
In this case, the grass and lawn mowing on the first circumference of the outer circumference is performed by D-GPS or dead reckoning, and the ball placing device 11 is installed along the boundary between the already-cut land C and the uncut land B. BO
The ball 40 is mounted, and the CCD camera 26 images the boundary portion including the ball 40 mounted on the work site from the second circumference onward.
As described above, by controlling the steering mechanisms 39a and 39b, it becomes possible to follow the cut boundary L. In this case, the ball 40 is formed along the cut mark boundary L behind the vehicle body in the traveling direction.
Ball mounting device 11 for mounting the vehicle, one ball collecting device 20 for collecting the ball 40 mounted in front of the vehicle traveling direction, and one CCD camera for imaging the front of the vehicle It is sufficient to fix the CCD camera 26 toward the vehicle body traveling direction because the traveling direction is always constant during the copying travel, and the rotation mechanism portion 28 for rotating the CCD camera 26 can be used. Etc. can be omitted. Also, because it travels in a circular fashion,
In the above-mentioned main control routine, the ball mounting is started at the same time as the outer circumference cutting, the operation of the ball collecting device 20 is started from the second circumference, and the straight traveling processing of steps S110 to S116, step S117, The vehicle shift process of step S118 is unnecessary, and since the CCD camera 26 is fixed, step S119 is also unnecessary. Then, since there is only one ball placing device 11 and one ball collecting device 20, step S120
Steps S122 to S122 are also unnecessary, and if it is determined in step S136 whether or not the work is completed, the process proceeds to step S137 when it is determined that the work for one section is completed, and accordingly step S139 is unnecessary.

【0098】さらに、以上、芝刈作業車に適用した例に
つき説明したが、これに限定されることなく、例えば、
床面等の清掃作業を行う自律走行作業車に適用し、既清
掃作業地と未清掃作業地との境界に標識体を載置し、上
述と同様に境界に沿い倣い走行し、順次作業レ−ンの清
掃を進めることもできる。
Further, although the example applied to the lawnmower working vehicle has been described above, the present invention is not limited to this, and for example,
It is applied to an autonomous mobile work vehicle that performs cleaning work on the floor surface, etc., a sign is placed at the boundary between the already-cleaned work site and the uncleaned work site, travels along the boundary in the same manner as described above, and the work records are sequentially processed. -You can also proceed with the cleaning.

【0099】また、標識体は偏重心ボ−ルのみに限定さ
れず、単なる球体、あるいは円錐体、円筒体、多角形体
等を用いるようにしても良い。
The marking body is not limited to the eccentric center of gravity ball, but may be a sphere, a cone, a cylinder, a polygon, or the like.

【0100】[0100]

【発明の効果】以上説明したように本発明によれば、車
輌走行に伴い、撮像手段により既作業地と未作業地との
境界部を撮像し、撮像された画像から、前回の作業レ−
ン走行時に既作業地と未作業地との境界に沿い作業地に
載置された標識体の位置を検出し、複数の標識体位置を
結ぶ線と予め設定された目標線とを比較して目標位置に
対する車体のずれを認識し、この認識デ−タに基づき操
舵機構が制御されて境界に沿った倣い走行が行われるの
で、確実に既作業地と未作業地との境界に沿い自律走行
することが可能となり、倣い走行の精度が向上して作業
性を向上することができる。また、このとき、次の作業
レ−ン走行に備え載置手段によって車輌の進行方向と逆
側に既作業地と未作業地との境界に沿い標識体が載置さ
れると共に、前回の作業レ−ン走行時に作業地に載置さ
れた標識体は、自律走行作業車に備えた回収手段により
回収されて供給手段を介し上記載置手段に供給されるの
で、自律走行作業車に搭載する標識体は必要最小限で良
く、車輌重量の増大が抑制され、且つ標識体は繰り返し
使用されるため、経済性に優れ、また作業地を汚損する
こともない。
As described above, according to the present invention, the image of the boundary between the existing work site and the unworked site is imaged by the image pickup device as the vehicle travels, and the previous work record is taken from the imaged image.
The position of the sign placed on the work site along the boundary between the already-worked site and the unworked site is detected during traveling, and the line connecting the positions of multiple sign objects is compared with the preset target line. The displacement of the vehicle body with respect to the target position is recognized, and the steering mechanism is controlled based on this recognition data to follow along the boundary, so that autonomous traveling is reliably carried out along the boundary between the existing work site and the unworked site. It is possible to improve the accuracy of the copy traveling and improve the workability. Further, at this time, in preparation for the next work lane traveling, the marking means is placed along the boundary between the already-worked site and the unworked site on the side opposite to the traveling direction of the vehicle by the mounting means, and the previous work is performed. Since the marker placed on the work site during lane traveling is collected by the collecting means provided in the autonomous traveling work vehicle and supplied to the above-mentioned placing means via the supplying means, it is mounted on the autonomous traveling work vehicle. The number of markings is minimal, the increase in vehicle weight is suppressed, and since the markings are used repeatedly, they are economically efficient and do not pollute the work site.

【0101】また、上記標識体の表面に、作業地との明
度差の大きい色彩を施すことで、境界部を撮像した画像
から確実に標識体を認識して、撮像画像において倣い走
行の基準となる標識体の位置を確実に検出することが可
能となり、倣い走行精度が向上する。
Further, by providing the surface of the sign body with a color having a large lightness difference from the work site, the sign body can be surely recognized from the image of the boundary portion, and can be used as a reference for copying travel in the picked-up image. It becomes possible to reliably detect the position of the sign body, and the accuracy of the copy traveling is improved.

【0102】また、上記標識体として球体を用いること
で、作業地に載置された標識体の回収、及び回収した標
識体の載置手段への供給が容易となり、取り扱いに優
れ、標識体を回収する回収手段、及び作業地に標識体を
載置するための載置手段の構成を簡素にして実現でき
る。
Further, by using a sphere as the above-mentioned marker, it becomes easy to collect the marker placed on the work site and to supply the recovered marker to the mounting means, and it is easy to handle the marker. This can be realized by simplifying the configurations of the collecting means for collecting and the mounting means for mounting the marker on the work site.

【0103】さらに、球体として偏重心ボ−ルを用いる
ことで、作業地への球体の載置時に球体の転がりが直ち
に止まり、既作業地と未作業地との境界に沿う適正位置
からの球体の逸脱が抑えられ、撮像画像において各ボ−
ルの位置を結ぶ線は、既作業地と未作業地との境界に対
し、常に平行な線として得られ、この線と目標線とを比
較して車体のずれを認識するため、目標位置に対する車
体のずれを適正に認識することが可能となり、これによ
って、倣い走行精度をより向上することができる。
Further, by using the eccentric ball as the sphere, the rolling of the sphere immediately stops when the sphere is placed on the work site, and the sphere from the proper position along the boundary between the existing work site and the unworked site. Deviation is suppressed, and each
The line connecting the position of the vehicle is always obtained as a line parallel to the boundary between the work site and the unworked site. Since the line is compared with the target line to recognize the deviation of the vehicle body, It is possible to properly recognize the displacement of the vehicle body, and thereby, it is possible to further improve the copy traveling accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】D−GPS用移動局を備えた芝刈作業車とD−
GPS用固定局を示す説明図
FIG. 1 is a lawnmower equipped with a D-GPS mobile station and D-
Explanatory drawing showing fixed station for GPS

【図2】芝刈作業車における各機構、装置の取付け位置
関係を示す平面図
FIG. 2 is a plan view showing a mounting position relationship of each mechanism and device in the lawnmower work vehicle.

【図3】ボ−ル載置装置の構成を示す説明図FIG. 3 is an explanatory diagram showing a configuration of a ball mounting device.

【図4】ボ−ル回収装置の構成を示す説明図FIG. 4 is an explanatory diagram showing a configuration of a ball recovery device.

【図5】集球機の平面図FIG. 5 is a plan view of the ball collector.

【図6】偏重心ボ−ルの各態様を示す断面図FIG. 6 is a cross-sectional view showing each mode of the eccentric center of gravity ball.

【図7】制御装置のブロック図FIG. 7 is a block diagram of a control device.

【図8】操舵制御系の構成を示す説明図FIG. 8 is an explanatory diagram showing a configuration of a steering control system.

【図9】撮像制御部の回路構成図FIG. 9 is a circuit configuration diagram of an imaging control unit.

【図10】走行経路及び作業領域を示す説明図FIG. 10 is an explanatory diagram showing a travel route and a work area.

【図11】主制御ル−チンのフロ−チャ−トFIG. 11: Flow chart of main control routine

【図12】主制御ル−チンのフロ−チャ−ト(続き)FIG. 12 Flow chart of main control routine (continued)

【図13】主制御ル−チンのフロ−チャ−ト(続き)FIG. 13 Flow chart of main control routine (continued)

【図14】自律走行制御ル−チンのフロ−チャ−トFIG. 14: Flow chart of autonomous traveling control routine

【図15】自律走行制御ル−チンのフロ−チャ−ト(続
き)
[Fig. 15] Flow chart of autonomous driving control routine (continued)

【図16】D−GPS無線通信ル−チンのフロ−チャ−
FIG. 16 is a flowchart of a D-GPS wireless communication routine.
To

【図17】作業領域における最初の外周刈の状態を示す
説明図
FIG. 17 is an explanatory view showing the state of the first outer peripheral cutting in the work area.

【図18】CCDカメラにより撮像された画像において
作業地に載置されたボ−ル、各ボ−ル位置から求めた直
線近似式と目標直線との関係を示す説明図
FIG. 18 is an explanatory view showing the relationship between the ball placed on the work site, the linear approximation formula obtained from each ball position, and the target straight line in the image captured by the CCD camera.

【図19】CCDカメラの取付状態、撮像画像、及び直
線近似の関係を示す説明図
FIG. 19 is an explanatory diagram showing a relationship between a mounting state of a CCD camera, a captured image, and a linear approximation.

【図20】草・芝刈作業による1行程の作業レ−ン終了
時の車輌シフト状態を示す説明図
FIG. 20 is an explanatory view showing a vehicle shift state at the end of a work lane for one stroke by grass / lawn mowing work.

【図21】草・芝刈作業による1行程の作業レ−ン終了
時の車輌シフト状態を示す説明図
FIG. 21 is an explanatory diagram showing a vehicle shift state at the end of the work lane for one stroke by grass / lawn mowing work.

【図22】倣い走行による草・芝刈作業状態の説明図FIG. 22 is an explanatory diagram of a grass / lawn mowing work state by copying traveling.

【図23】CCDカメラ取付の他の例を示す芝刈作業車
の右側面図
FIG. 23 is a right side view of the lawn mower showing another example of mounting the CCD camera.

【図24】CCDカメラ取付の他の例を示す芝刈作業車
の平面図
FIG. 24 is a plan view of a lawn mowing vehicle showing another example of mounting a CCD camera.

【図25】画像処理の他の例を示す説明図FIG. 25 is an explanatory diagram showing another example of image processing.

【図26】草・芝刈作業を輪刈に行った場合の説明図FIG. 26 is an explanatory diagram when the grass and lawn mowing work is performed on the ring cutting.

【符号の説明】[Explanation of symbols]

1 芝刈作業車(自律走行作業車) 1a 車体 11a,11b ボ−ル載置装置(載置手段) 20a,20b ボ−ル回収装置(回収手段) 25 ボ−ル供給管(供給手段) 26 CCDカメラ(撮像手段) 39a,39b 操舵機構 40 偏重心ボ−ル(標識体) 60 制御装置 102,108 作業領域 B 未刈地 C 既刈地 DESCRIPTION OF SYMBOLS 1 Lawn mowing work vehicle (autonomous traveling work vehicle) 1a Vehicle body 11a, 11b Ball mounting device (mounting means) 20a, 20b Ball collecting device (collecting means) 25 Ball supply pipe (supplying means) 26 CCD Cameras (imaging means) 39a, 39b Steering mechanism 40 Eccentric gravity balls (signs) 60 Control devices 102, 108 Working area B Uncut land C Cut land

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G06T 1/00 Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display area G06T 1/00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 作業領域における既作業地と未作業地と
の境界部を撮像手段により撮像し、撮像した画像に基づ
き境界位置に対する車体のずれを認識し、境界位置に対
する車体のずれに基づき操舵機構を制御して境界に沿っ
た倣い走行を行う自律走行作業車において、 車輌の進行方向と逆側に、既作業地と未作業地との境界
に沿い作業地に標識体を載置する載置手段と、 倣い走行による作業レ−ン走行時に、前回の作業レ−ン
走行時に作業地に載置された標識体を回収する回収手段
と、 回収した標識体を上記載置手段に供給する供給手段と、 撮像手段により撮像した境界部の画像から作業地に載置
された標識体の位置を検出し、複数の各標識体位置を結
ぶ線と予め設定された目標線とを比較して目標位置に対
する車体のずれを認識する画像処理手段と、 上記画像処理手段により得た認識デ−タに基づき操舵機
構を制御する倣い走行制御手段と、を備えることを特徴
とする自律走行作業車。
1. A boundary portion between an already-worked site and an unworked site in a work area is imaged by an imaging means, a displacement of a vehicle body with respect to a boundary position is recognized based on the captured image, and steering is performed based on the displacement of the vehicle body with respect to the boundary position. In an autonomous mobile work vehicle that controls the mechanism and follows the boundary, mounts a marker on the work site along the boundary between the existing work site and the unworked site on the side opposite to the traveling direction of the vehicle. Placing means, a collecting means for collecting the marker placed on the work site during the previous traveling of the work lane when the work lane travels by copying traveling, and supplying the collected marker to the above-mentioned placing means. The position of the marker placed on the work site is detected from the image of the boundary imaged by the supply means and the image capturing means, and the line connecting the plurality of marker positions is compared with the preset target line. Image to recognize the displacement of the car body from the target position And management means, recognition de were obtained by the image processing unit - autonomous work vehicle, characterized in that it comprises a scanning running control means for controlling the steering mechanism on the basis of the data, the.
【請求項2】 標識体は表面に、作業地との明度差の大
きい色彩を施すことを特徴とする請求項1記載の自律走
行作業車。
2. The autonomous traveling work vehicle according to claim 1, wherein a surface of the sign body is colored with a large difference in brightness from the work site.
【請求項3】 標識体として、球体を用いることを特徴
とする請求項1あるいは請求項2記載の自律走行作業
車。
3. The autonomous traveling work vehicle according to claim 1, wherein a sphere is used as the marker.
【請求項4】 球体として、重心位置が球心から偏心し
た偏重心ボ−ルを用いることを特徴とする請求項3記載
の自律走行作業車。
4. The autonomous traveling work vehicle according to claim 3, wherein an eccentric center of gravity ball whose center of gravity is eccentric from the center of gravity is used as the sphere.
JP6004619A 1994-01-20 1994-01-20 Autonomous travel working vehicle Pending JPH07203706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6004619A JPH07203706A (en) 1994-01-20 1994-01-20 Autonomous travel working vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6004619A JPH07203706A (en) 1994-01-20 1994-01-20 Autonomous travel working vehicle

Publications (1)

Publication Number Publication Date
JPH07203706A true JPH07203706A (en) 1995-08-08

Family

ID=11589082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6004619A Pending JPH07203706A (en) 1994-01-20 1994-01-20 Autonomous travel working vehicle

Country Status (1)

Country Link
JP (1) JPH07203706A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1185274A (en) * 1997-09-10 1999-03-30 Fuji Heavy Ind Ltd Travel track detecting device for autonomous travel vehicle
JP2007199965A (en) * 2006-01-25 2007-08-09 Matsushita Electric Works Ltd Autonomous mobile device
JP2013233129A (en) * 2012-05-10 2013-11-21 Ihi Star Machinery Corp Control apparatus for working machine and control method for working machine
JP2020154733A (en) * 2019-03-20 2020-09-24 Thk株式会社 Mobile robot, control system of the same, control method of the same
KR20210157043A (en) * 2020-06-19 2021-12-28 대한민국(농촌진흥청장) Autonomous agricultural machine device to increase the recognition rate of autonomous traveling path and operation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1185274A (en) * 1997-09-10 1999-03-30 Fuji Heavy Ind Ltd Travel track detecting device for autonomous travel vehicle
JP2007199965A (en) * 2006-01-25 2007-08-09 Matsushita Electric Works Ltd Autonomous mobile device
JP2013233129A (en) * 2012-05-10 2013-11-21 Ihi Star Machinery Corp Control apparatus for working machine and control method for working machine
JP2020154733A (en) * 2019-03-20 2020-09-24 Thk株式会社 Mobile robot, control system of the same, control method of the same
WO2020189102A1 (en) * 2019-03-20 2020-09-24 Thk株式会社 Mobile robot, mobile robot control system, and mobile robot control method
US11797012B2 (en) 2019-03-20 2023-10-24 Thk Co., Ltd. Mobile robot, mobile robot control system, and mobile robot control method
TWI834828B (en) * 2019-03-20 2024-03-11 日商Thk股份有限公司 Mobile robot, mobile robot control system and mobile robot control method
US12055938B2 (en) 2019-03-20 2024-08-06 Thk Co., Ltd. Mobile robot, mobile robot control system, and mobile robot control method
KR20210157043A (en) * 2020-06-19 2021-12-28 대한민국(농촌진흥청장) Autonomous agricultural machine device to increase the recognition rate of autonomous traveling path and operation method thereof

Similar Documents

Publication Publication Date Title
US5528888A (en) Autonomous mowing vehicle and apparatus for detecting boundary of mowed field
CN108688659B (en) Vehicle travel control device
US20200143710A1 (en) Extrinsic Parameter of On-Board Sensor
CN106132187B (en) Control device for work vehicle
US8200428B2 (en) Multi-vehicle high integrity perception
US20180359916A1 (en) Automatic Working System, Self-Moving Device And Control Method Thereof
CN105955257A (en) Bus automatic driving system based on fixed route and driving method thereof
CN105607635A (en) Panoramic optic visual navigation control system of automatic guided vehicle and omnidirectional automatic guided vehicle
CN111724614B (en) Traffic control system for automatic driving vehicle
CN101842660A (en) A device and a method for checking an attitude of a vehicle
JP6822815B2 (en) Road marking recognition device
JP7003224B2 (en) Autonomous traveling work machine
US12078505B2 (en) Roadway mapping device
US11335195B2 (en) Traffic control system
CN112537294B (en) Automatic parking control method and electronic equipment
CN112071105A (en) High-precision map-based automatic driving receiving method and device for parking lot
WO2023274339A1 (en) Self-propelled working system
JPH07222509A (en) Self-traveling working vehicle
JPH07203706A (en) Autonomous travel working vehicle
JPH0949729A (en) Method for driving mobile working machine and method for forming working data
JPH07184415A (en) Autonomously traveling working vehicle
JPH07104847A (en) Traveling controller for autonomously traveling vehicle
US20220137631A1 (en) Autonomous work machine, control device, autonomous work machine control method, control device operation method, and storage medium
JPH07222508A (en) Self-traveling working vehicle
CN215729433U (en) Double-antenna RTK positioning and orienting unmanned agricultural machine control system based on Beidou