JPH07197165A - High wear resistant free cutting aluminum alloy and its production - Google Patents

High wear resistant free cutting aluminum alloy and its production

Info

Publication number
JPH07197165A
JPH07197165A JP35045093A JP35045093A JPH07197165A JP H07197165 A JPH07197165 A JP H07197165A JP 35045093 A JP35045093 A JP 35045093A JP 35045093 A JP35045093 A JP 35045093A JP H07197165 A JPH07197165 A JP H07197165A
Authority
JP
Japan
Prior art keywords
aluminum alloy
high wear
alloy
less
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35045093A
Other languages
Japanese (ja)
Inventor
Akira Ichinose
晃 市之瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP35045093A priority Critical patent/JPH07197165A/en
Publication of JPH07197165A publication Critical patent/JPH07197165A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To obtain a high wear resistant free cutting aluminum alloy being suitable to a compressor parts, etc., of an automobile having excellent strength, wear resistance, machinability and workability (cold forging property, etc.). CONSTITUTION:This aluminum alloy has composition contg. 1.0-15.0wt.% Si, 0.1-1.0wt.% Fe, 1.0-5.0wt.% Cu, 0.2-1.5wt.% Mg, 0.1-0.5wt.% Mn, 0.05-0.5wt.% Cr, 0.05-1.0wt.% Ni, <=0.3wt.% Ti and the balance Al with inevitable impurities and if necessary, containing 0.02-0.1% Sr and further, at least 2 kinds of 0.1-2.0wt.% Pb, 0.1-2.0wt.% Sn, 0.1-2.0wt.% Bi. This aluminum alloy is cast to make a cast ingot and, thereafter, a homogenizing treatment is executed to the ingot at 500-600 deg.C for >=4hr to obtain the high wear resistant free cutting aluminum alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高強度、高耐磨耗性、快
削性および耐食性等が要求される自動車部品、例えば空
調装置のコンプレッサー部品として使用されるピスト
ン、プレート、スクロール等の材料として好適な高耐磨
耗性快削アルミニウム合金とその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to automobile parts required to have high strength, high wear resistance, free-cutting property and corrosion resistance, such as pistons, plates and scrolls used as compressor parts for air conditioners. The present invention relates to a high wear-resistant free-cutting aluminum alloy suitable as a material and a method for producing the same.

【0002】[0002]

【従来の技術とその課題】従来、高強度、高耐磨耗性が
要求される自動車部品、機械部品にはAl−Si系合金
であるJIS4032合金(押出材)、JISAC8A
合金(鋳物材)、JISADC12(ダイカスト材)等
が用いられてきたが、アルミニウムの需要を拡大するた
めに、より高品質の材料が要求されている。例えば、ル
ームエアコンやカーエアコンのコンプレッサー部品の中
で強い磨耗を受ける部品には鉄系の材料が用いられてき
たが、最近では軽量化のためにアルミニウム合金を用い
る場合が多くなっている。このような部品には前記JI
SAC8A合金、JISADC12合金が使用されてき
たが、フロンガス規制によりさらに強度、耐磨耗性に優
れたアルミニウム合金が必要になっている。またこれら
の部品の形状は複雑化してきており、鍛造等の成形加工
時の加工性に優れ、機械加工時の切削性がよく切削工具
の長寿命化が可能な材料が求められている。これらの要
求に対し、前記従来合金の押出材や鋳造棒では耐磨耗性
が不十分であり、鋳物材やダイカスト材では強度および
靱性が不十分である。また切削性に関しては、全ての材
料について切削性改善のために耐磨耗性に寄与するS
i、Mg、Cu等の硬化元素の添加量に制約を受ける等
の問題がある。
2. Description of the Related Art Conventionally, automobile parts and machine parts which are required to have high strength and high abrasion resistance are JIS4032 alloy (extruded material) which is Al-Si alloy, JISAC8A.
Although alloys (cast materials), JIS ADC12 (die casting materials), etc. have been used, higher quality materials are required to expand the demand for aluminum. For example, iron-based materials have been used for parts that are subject to strong wear among compressor parts of room air conditioners and car air conditioners, but recently, aluminum alloys are often used for weight reduction. For such parts, JI
SAC8A alloy and JIS ADC12 alloy have been used, but due to the CFC gas regulation, an aluminum alloy having more excellent strength and abrasion resistance is required. In addition, the shapes of these parts have become complicated, and there is a demand for a material that is excellent in workability during forming such as forging, has good machinability during machining, and can prolong the life of the cutting tool. In order to meet these requirements, the extruded materials and cast rods of the conventional alloys have insufficient wear resistance, and the cast materials and die cast materials have insufficient strength and toughness. As for machinability, S contributes to wear resistance for all materials to improve machinability.
There is a problem that the addition amount of hardening elements such as i, Mg and Cu is restricted.

【0003】上記従来合金より強度、耐磨耗性に優れた
合金としてA390合金(Al−18wt%Si−5wt%
Cu−0.6wt%Mg合金)があり、その強度および靱
性をさらに改善するために、A390合金の鋳物あるい
は押出材を鍛造加工して使用することが検討されてい
る。しかしこの合金は加工性が悪く、鍛造加工は熱間鍛
造で行わなければならず、またSi含有量が高いため、
切削性が悪く切削工具寿命が短くなり製造コストが高い
という問題がある。
A390 alloy (Al-18 wt% Si-5 wt% as an alloy having strength and abrasion resistance superior to those of the conventional alloys described above.
Cu-0.6 wt% Mg alloy), and in order to further improve its strength and toughness, it is considered to use a cast or extruded material of A390 alloy by forging. However, this alloy has poor workability, the forging process must be performed by hot forging, and since the Si content is high,
There is a problem that the machinability is poor and the life of the cutting tool is shortened and the manufacturing cost is high.

【0004】また上記各種Al−Si系合金の切削性、
加工性を改善するために、NaFやNaCl等のフラッ
クスの状態でNaを溶湯に添加し、鋳塊としたときのS
i系晶出物の形状を球状あるいは粒状とし、かつ微細化
する改良処理も行われているが、十分な効果は得られて
おらず、フラックス成分により鋳造時に溶湯を濾過する
セラミックチューブフィルターが破損し易いという問題
がある。
The machinability of the above various Al--Si alloys,
In order to improve workability, when Na is added to the molten metal in the state of flux such as NaF or NaCl to form an ingot, S
The i-type crystallized product has been spherical or granular, and improvements have been made to refine it, but sufficient effects have not been obtained and the ceramic tube filter that filters the molten metal during casting due to the flux component is damaged. There is a problem that it is easy to do.

【0005】[0005]

【課題を解決するための手段】本発明はこのような状況
に鑑み鋭意検討の結果、強度、耐磨耗性はもとより、切
削性、加工性にも優れた高耐磨耗性快削アルミニウム合
金とその製造方法を開発したものである。
As a result of intensive studies in view of such a situation, the present invention is a high wear-resistant free-cutting aluminum alloy excellent not only in strength and wear resistance but also in machinability and workability. And its manufacturing method were developed.

【0006】即ち第1発明は、Si1.0〜15.0wt
%、Fe0.1〜1.0wt%、Cu1.0〜5.0wt
%、Mg0.2〜1.5wt%、Mn0.1〜0.5wt
%、Cr0.05〜0.5wt%、Ni0.05〜1.0
wt%、Ti0.3wt%以下を含有し、さらにPb0.1
〜2.0wt%、Sn0.1〜2.0wt%、Bi0.1〜
2.0wt%のうちの2種以上を含有し、残部がAlと不
可避的不純物とからなることを特徴とする高耐磨耗性快
削アルミニウム合金である。
That is, the first invention is Si 1.0 to 15.0 wt.
%, Fe 0.1-1.0 wt%, Cu 1.0-5.0 wt
%, Mg 0.2 to 1.5 wt%, Mn 0.1 to 0.5 wt
%, Cr 0.05 to 0.5 wt%, Ni 0.05 to 1.0
wt%, Ti less than 0.3 wt%, Pb0.1
~ 2.0wt%, Sn0.1 ~ 2.0wt%, Bi0.1
A high wear-resistant free-cutting aluminum alloy containing at least two of 2.0 wt% and the balance being Al and unavoidable impurities.

【0007】第2発明は、Si1.0〜15.0wt%、
Fe0.1〜1.0wt%、Cu1.0〜5.0wt%、M
g0.2〜1.5wt%、Mn0.1〜0.5wt%、Cr
0.05〜0.5wt%、Ni0.05〜1.0wt%、S
r0.02〜0.1wt%、Ti0.3wt%以下を含有
し、さらにPb0.1〜2.0wt%、Sn0.1〜2.
0wt%、Bi0.1〜2.0wt%のうちの2種以上を含
有し、残部がAlと不可避的不純物とからなることを特
徴とする高耐磨耗性快削アルミニウム合金である。
The second invention is Si 1.0 to 15.0 wt%,
Fe 0.1-1.0 wt%, Cu 1.0-5.0 wt%, M
g 0.2-1.5 wt%, Mn 0.1-0.5 wt%, Cr
0.05-0.5 wt%, Ni 0.05-1.0 wt%, S
r 0.02-0.1 wt%, Ti 0.3 wt% or less, Pb 0.1-2.0 wt%, Sn 0.1-2.
It is a high wear-resistant free-cutting aluminum alloy, characterized by containing two or more of 0 wt% and Bi 0.1-2.0 wt%, and the balance being Al and unavoidable impurities.

【0008】第3発明は、Si1.0〜15.0wt%、
Fe0.1〜1.0wt%、Cu1.0〜5.0wt%、M
g0.2〜1.5wt%、Mn0.1〜0.5wt%、Cr
0.05〜0.5wt%、Ni0.05〜1.0wt%、T
i0.3wt%以下を含有し、さらにPb0.1〜2.0
wt%、Sn0.1〜2.0wt%、Bi0.1〜2.0wt
%のうちの2種以上を含有し、残部がAlと不可避的不
純物とからなるアルミニウム合金溶湯を鋳造して鋳塊と
した後、該鋳塊に500〜560℃の温度で4時間以上
保持する均質化処理を施すことを特徴とする高耐磨耗性
快削アルミニウム合金の製造方法である。
The third invention is Si 1.0 to 15.0 wt%,
Fe 0.1-1.0 wt%, Cu 1.0-5.0 wt%, M
g 0.2-1.5 wt%, Mn 0.1-0.5 wt%, Cr
0.05 to 0.5 wt%, Ni 0.05 to 1.0 wt%, T
i 0.3 wt% or less, and Pb 0.1 to 2.0
wt%, Sn 0.1-2.0 wt%, Bi 0.1-2.0 wt
% Of the aluminum alloy and the balance is Al and inevitable impurities, and a molten aluminum alloy is cast into an ingot, and the ingot is held at a temperature of 500 to 560 ° C. for 4 hours or more. A method for producing a high wear-resistant free-cutting aluminum alloy, characterized by performing homogenization treatment.

【0009】第4発明は、Si1.0〜15.0wt%、
Fe0.1〜1.0wt%、Cu1.0〜5.0wt%、M
g0.2〜1.5wt%、Mn0.1〜0.5wt%、Cr
0.05〜0.5wt%、Ni0.05〜1.0wt%、S
r0.02〜0.1wt%、Ti0.3wt%以下を含有
し、さらにPb0.1〜2.0wt%、Sn0.1〜2.
0wt%、Bi0.1〜2.0wt%のうちの2種以上を含
有し、残部がAlと不可避的不純物とからなるアルミニ
ウム合金溶湯を鋳造して鋳塊とした後、該鋳塊に500
〜560℃の温度で4時間以上保持する均質化処理を施
すことを特徴とする高耐磨耗性快削アルミニウム合金の
製造方法である。
The fourth invention is Si 1.0 to 15.0 wt%,
Fe 0.1-1.0 wt%, Cu 1.0-5.0 wt%, M
g 0.2-1.5 wt%, Mn 0.1-0.5 wt%, Cr
0.05-0.5 wt%, Ni 0.05-1.0 wt%, S
r 0.02-0.1 wt%, Ti 0.3 wt% or less, Pb 0.1-2.0 wt%, Sn 0.1-2.
After casting an aluminum alloy melt containing two or more of 0 wt% and Bi 0.1 to 2.0 wt% and the balance of Al and unavoidable impurities to form an ingot, 500 is cast into the ingot.
A method for producing a high wear-resistant free-cutting aluminum alloy, characterized by carrying out a homogenizing treatment for holding at a temperature of ˜560 ° C. for 4 hours or more.

【0010】[0010]

【作用】まず本発明合金の合金組成の限定理由について
説明する。Siはアルミニウム合金のマトリックス中に
あって主に耐磨耗性を改善するとともに、熱膨張係数を
低下させる。またアルミニウム合金のヤング率を高め、
密度を低下させるので軽量化にも寄与する。その含有量
を1.0〜15.0wt%と限定したのは、1.0wt%未
満ではその効果が十分ではなく、15.0wt%を超える
と初晶Siおよび共晶Siが粗大化して加工が困難とな
り、切削性も低下して切削工具の寿命が著しく短くなる
ためである。
First, the reasons for limiting the alloy composition of the alloy of the present invention will be described. Si is mainly present in the matrix of the aluminum alloy to improve the wear resistance and lowers the coefficient of thermal expansion. Also, increase the Young's modulus of aluminum alloy,
Since it reduces the density, it also contributes to weight reduction. The content is limited to 1.0 to 15.0 wt% because when it is less than 1.0 wt%, the effect is not sufficient, and when it exceeds 15.0 wt%, primary crystal Si and eutectic Si are coarsened and processed. This is because it becomes difficult to perform cutting, the machinability is deteriorated, and the life of the cutting tool is significantly shortened.

【0011】Feはアルミニウム合金の硬度を高め、耐
磨耗性を向上させるが、その含有量を0.1〜1.0wt
%と限定したのは、0.1wt%未満ではその効果が十分
ではなく、1.0wt%を超えると巨大晶出物が発生し加
工性、切削性が低下するためである。
Fe increases the hardness of the aluminum alloy and improves the wear resistance, but its content is 0.1 to 1.0 wt.
%, The effect is not sufficient if it is less than 0.1 wt%, and if it exceeds 1.0 wt%, giant crystallized substances are generated and workability and machinability deteriorate.

【0012】Cuはアルミニウム合金の強度を高めるも
ので、その含有量を1.0〜5.0wt%と限定したの
は、1.0wt%未満ではその効果が十分ではなく、5.
0wt%を超えると加工性が著しく低下し、また耐食性も
低下して応力腐食割れが発生し易くなるためである。
Cu enhances the strength of the aluminum alloy, and the reason why the content thereof is limited to 1.0 to 5.0 wt% is that the effect is not sufficient if it is less than 1.0 wt%.
This is because if it exceeds 0 wt%, the workability is remarkably reduced, the corrosion resistance is also lowered, and stress corrosion cracking is likely to occur.

【0013】MgはMg2 Siの析出物を生成して強度
を高めるが、その含有量を0.2〜1.5wt%と限定し
たのは0.2wt%未満ではその効果が十分ではなく、
1.5wt%を超えると伸びが低下し、冷間鍛造性等の塑
性加工性を劣化させるためである。
Mg forms precipitates of Mg 2 Si to enhance the strength, but the content is limited to 0.2 to 1.5 wt% because the effect is not sufficient if it is less than 0.2 wt%,
This is because if it exceeds 1.5 wt%, the elongation decreases and the plastic workability such as cold forgeability deteriorates.

【0014】Mnは結晶粒を微細化する効果があり、靱
性を改善するが、その含有量を0.1〜0.5wt%と限
定したのは、0.1wt%未満ではその効果が十分ではな
く、0.5wt%を超えると耐磨耗性が低下し、かつ粗大
金属間化合物を生成するためである。
Mn has an effect of refining crystal grains and improves toughness, but the content is limited to 0.1 to 0.5 wt% because the effect is not sufficient if it is less than 0.1 wt%. If it exceeds 0.5 wt%, the wear resistance decreases and a coarse intermetallic compound is produced.

【0015】Crは耐磨耗性を改善するが、その含有量
を0.05〜0.5wt%と限定したのは、0.05wt%
未満ではその効果が十分ではなく、0.5wt%を超える
と焼入感受性が大きくなり強度を低下させるためであ
る。
Although Cr improves the wear resistance, the content of Cr is limited to 0.05 to 0.5 wt% because it is 0.05 wt%.
If it is less than 0.5% by weight, the effect is not sufficient, and if it exceeds 0.5% by weight, quenching sensitivity is increased and strength is lowered.

【0016】Niは耐熱性(高温強度)や耐磨耗性を向
上させるが、その含有量を0.05〜1.0wt%と限定
したのは、0.05wt%未満ではその効果が十分ではな
く、1.0wt%を超えるとその効果が飽和するのみでな
く、逆に耐熱性、耐磨耗性が低下するためである。
Ni improves heat resistance (high temperature strength) and abrasion resistance, but the content is limited to 0.05 to 1.0 wt% because the effect is not sufficient if it is less than 0.05 wt%. If the content exceeds 1.0 wt%, not only the effect is saturated, but conversely, the heat resistance and wear resistance are deteriorated.

【0017】Tiは結晶粒を微細化する効果があり、強
度および靱性を改善するが、その含有量を0.3wt%以
下と限定したのは、0.3wt%を超えるとその効果が飽
和してしまうためと、加工性が低下するためである。
Ti has the effect of refining the crystal grains and improves the strength and toughness, but the content was limited to 0.3 wt% or less because the effect saturates when it exceeds 0.3 wt%. This is because the workability deteriorates.

【0018】Pb、Sn、Biはいずれも切削性を改善
し、切削工具の寿命を長くするために含有させるもので
あるが、その含有量を上記のように限定したのは、P
b、Sn、Biのうちの1種のみ、あるいは各々の含有
量が0.1wt%未満では効果が十分でなく、各々の含有
量が2.0wt%を超えると晶出物が増加し、機械的性
質、切削加工後の表面処理性、耐食性が劣化するからで
ある。
Pb, Sn, and Bi are all contained in order to improve the machinability and prolong the life of the cutting tool, but the content is limited as described above.
Only one of b, Sn and Bi, or if the content of each is less than 0.1 wt%, the effect is not sufficient, and if the content of each exceeds 2.0 wt%, crystallized substances increase, and Properties, surface treatment property after cutting, and corrosion resistance are deteriorated.

【0019】Srは鋳造時に添加され合金の凝固時の初
晶Si、共晶Siの粒径を微細化し、耐磨耗性、強度、
靱性、塑性加工性および耐食性を改善するが、その添加
量を0.02〜0.10wt%と限定したのは、0.02
wt%未満ではその効果が十分ではなく、0.10wt%を
超えると効果が飽和してしまい、いたずらにコスト高と
なるためである。
Sr is added at the time of casting to reduce the grain sizes of primary crystal Si and eutectic Si during solidification of the alloy, to improve wear resistance, strength,
The toughness, plastic workability and corrosion resistance are improved, but the addition amount is limited to 0.02 to 0.10 wt% to 0.02.
If it is less than wt%, the effect is not sufficient, and if it exceeds 0.10 wt%, the effect is saturated, which unnecessarily increases the cost.

【0020】以上が本発明合金の合金元素であるが、不
可避的不純物としては通常のアルミニウム地金に含まれ
ている程度の量は差し支えない。
Although the alloying elements of the alloy of the present invention have been described above, they may be contained in the usual aluminum ingot as unavoidable impurities.

【0021】つぎに本発明の製造方法について述べる。
本発明製造方法は、上記アルミニウム合金溶湯を鋳造し
て鋳塊とした後、500〜560℃の温度で4時間以上
保持する均質化処理を施すことを特徴とする。Al−S
i系合金の均質化処理は通常500℃未満(450〜4
80℃程度)の温度で施されるが本発明においては上記
温度で均質化処理することにより、伸びを高くして加工
性を改善したものである。即ち均質化処理温度を500
〜560℃と高温とすることにより、鋳造時に生成する
晶出物を十分に固溶させ、Mn、Crを微細に析出させ
ることにより高い伸びが得られることを見いだしたもの
である。均質化処理温度が500℃未満では上記効果が
十分ではなく、560℃を超えると共晶溶融(バーニン
グ)等を起こして鋳塊割れを生じる。保持時間は4時間
以上であれば上記の効果が得られ、保持時間を長くして
も支障はない。
Next, the manufacturing method of the present invention will be described.
The production method of the present invention is characterized in that after the above-mentioned molten aluminum alloy is cast into an ingot, a homogenization treatment is carried out at a temperature of 500 to 560 ° C for 4 hours or more. Al-S
The homogenization treatment of i-based alloy is usually less than 500 ° C (450 to 4
It is applied at a temperature of about 80 ° C.), but in the present invention, the homogenization treatment is performed at the above temperature to increase elongation and improve workability. That is, the homogenization treatment temperature is 500
It has been found that a high elongation can be obtained by making the crystallized substances formed during casting sufficiently solid-solution by finely precipitating Mn and Cr by setting the temperature to 560 ° C. If the homogenization temperature is less than 500 ° C, the above effect is not sufficient, and if it exceeds 560 ° C, eutectic melting (burning) or the like occurs to cause ingot cracking. If the holding time is 4 hours or more, the above effect can be obtained, and there is no problem even if the holding time is lengthened.

【0022】[0022]

【実施例】以下本発明を実施例によりさらに詳細に説明
する。表1に示す合金組成の各種アルミニウム合金の溶
湯を通常の水冷鋳造により鋳造して直径219mmの鋳
塊を作製した。鋳造時にNaを添加する場合はワッフル
状のフラックスで、Srを添加する場合はAl−Sr棒
で添加した。これらの鋳塊のマクロ組織およびミクロ組
織(Si粒径)を調べ、またこれらの鋳塊を表1に示す
条件で均質化処理した後、400℃の温度で押出加工し
て直径30mmの丸棒としたものから試験片を採り、押
出組織(Si粒径)、O材およびT6材の機械的性質、
冷間鍛造性、耐磨耗性、切削性および耐食性を調べた。
EXAMPLES The present invention will now be described in more detail with reference to examples. Melts of various aluminum alloys having the alloy compositions shown in Table 1 were cast by ordinary water cooling casting to produce an ingot having a diameter of 219 mm. When Na was added during casting, a waffle-like flux was added, and when Sr was added, an Al-Sr rod was added. The macrostructure and microstructure (Si grain size) of these ingots were examined, and these ingots were homogenized under the conditions shown in Table 1 and then extruded at a temperature of 400 ° C. to obtain a round bar having a diameter of 30 mm. The test piece was taken from the above, and the extruded structure (Si grain size), the mechanical properties of O material and T6 material
Cold forgeability, wear resistance, machinability and corrosion resistance were investigated.

【0023】主な試験方法は次の通りである。 (1)Si粒径の測定 金属顕微鏡で所定の箇所を400倍の倍率で撮影したミ
クロ写真を画像解析装置により画像解析し、Si粒子面
積を面積等価の円に置き換えて、その円の径をSi粒子
の粒径とする円相当径法によりSi粒子の粒径分布を求
めた。これにより平均粒径を計測した。 (2)冷間鍛造性(据込鍛造性) 直径27mm、高さ20mmの円柱状の試験片をプレス
により圧縮し、自由変形面に微小割れが発生した時、圧
縮を停止し、次式によりその時の据込率を求め、この据
込率を限界加工度とし、限界加工度により冷間鍛造性を
評価した。 (3)耐磨耗性 大越式磨耗試験機を用いて、下記の条件により試験片の
比磨耗量を測定し、耐磨耗性を評価した。 潤滑条件;ギヤ油 (GL−5) 磨耗距離;湿式 200mm 荷重 ;19.7kg 相手材 ;SCM21 磨耗速度;1.36m/sec (4)切削性 横送り切削と突切り切削の2種類で切削し、切粉形状と
切削後の表面粗さにより切削性を評価した。 横送り切削 バイト ;HTi DNMA431 送り ;0.5mm/rev 周速 ;50、100rpm 切り込み;0.5cm 突切り切削 バイト ;UTi 20T EGT3 送り ;0.05mm/rev 周速 ;50、100 切り込み;3.0 (5)耐食性 キャス試験により100、500時間保持後の孔食深さ
と重量減少量により耐食性を評価した。これらの結果を
表2に示した。
The main test methods are as follows. (1) Measurement of Si particle size A microphotograph of a predetermined portion taken with a metallurgical microscope at a magnification of 400 times is image-analyzed by an image analyzer, and the Si particle area is replaced with an area-equivalent circle. The particle size distribution of the Si particles was determined by the circle equivalent diameter method that uses the particle size of the Si particles. This measured the average particle size. (2) Cold forgeability (upset forgeability) A cylindrical test piece having a diameter of 27 mm and a height of 20 mm is compressed by a press. When a microcrack occurs on the free deformation surface, the compression is stopped, and the following formula is used. The upsetting ratio at that time was obtained, and this upsetting ratio was used as the limit workability, and the cold forgeability was evaluated by the limit workability. (3) Abrasion resistance Using an Ogoshi abrasion tester, the specific abrasion amount of the test piece was measured under the following conditions to evaluate the abrasion resistance. Lubrication condition: Gear oil (GL-5) Wear distance: Wet 200 mm Load: 19.7 kg Counterpart material: SCM21 Wear speed: 1.36 m / sec (4) Cutting performance Cutting with two types of side feed cutting and parting cutting The machinability was evaluated by the chip shape and the surface roughness after cutting. 3. Horizontal feed cutting tool; HTi DNMA431 feed; 0.5 mm / rev peripheral speed; 50, 100 rpm cut; 0.5 cm cut-off cutting tool; UTi 20T EGT3 feed; 0.05 mm / rev peripheral speed; 50, 100 cut; 0 (5) Corrosion resistance Corrosion resistance was evaluated by a cass test based on the pitting depth after 100 and 500 hours of holding and the weight reduction amount. The results are shown in Table 2.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】表2から明らかなように本発明合金No. 1
〜5は従来合金No. 9〜11に比較して強度、耐磨耗性
は同等またはそれ以上であり、冷間鍛造性、切削性、耐
食性は格段に優れている。これに対し、合金組成および
製造条件が本発明の範囲を外れる比較合金No. 6〜8は
冷間鍛造性、切削性が劣ることが判る。
As is apparent from Table 2, alloy No. 1 of the present invention
Nos. 5 to 5 have the same or higher strength and abrasion resistance as compared with the conventional alloys Nos. 9 to 11, and are markedly excellent in cold forgeability, machinability and corrosion resistance. On the contrary, Comparative Alloys Nos. 6 to 8 whose alloy compositions and manufacturing conditions are out of the range of the present invention are inferior in cold forgeability and machinability.

【0027】[0027]

【発明の効果】以上述べたように、本発明によれば強
度、耐磨耗性に優れ、かつ冷間鍛造性、切削性にも優れ
た自動車のコンプレッサー部品用等に好適な高耐磨耗性
快削アルミニウム合金が得られるもので、工業上顕著な
効果を奏する。
As described above, according to the present invention, high wear resistance suitable for automobile compressor parts and the like which is excellent in strength, wear resistance, cold forgeability, and machinability. A high-quality free-cutting aluminum alloy is obtained, which has a remarkable industrial effect.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Si1.0〜15.0wt%、Fe0.1
〜1.0wt%、Cu1.0〜5.0wt%、Mg0.2〜
1.5wt%、Mn0.1〜0.5wt%、Cr0.05〜
0.5wt%、Ni0.05〜1.0wt%、Ti0.3wt
%以下を含有し、さらにPb0.1〜2.0wt%、Sn
0.1〜2.0wt%、Bi0.1〜2.0wt%のうちの
2種以上を含有し、残部がAlと不可避的不純物とから
なることを特徴とする高耐磨耗性快削アルミニウム合
金。
1. Si1.0 to 15.0 wt%, Fe0.1
~ 1.0 wt%, Cu 1.0 ~ 5.0 wt%, Mg 0.2 ~
1.5 wt%, Mn 0.1 to 0.5 wt%, Cr 0.05 to
0.5wt%, Ni0.05-1.0wt%, Ti0.3wt
% Or less, Pb 0.1 to 2.0 wt%, Sn
High wear-resistant free-cutting aluminum, containing two or more of 0.1 to 2.0 wt% and Bi of 0.1 to 2.0 wt% and the balance being Al and inevitable impurities. alloy.
【請求項2】 Si1.0〜15.0wt%、Fe0.1
〜1.0wt%、Cu1.0〜5.0wt%、Mg0.2〜
1.5wt%、Mn0.1〜0.5wt%、Cr0.05〜
0.5wt%、Ni0.05〜1.0wt%、Sr0.02
〜0.1wt%、Ti0.3wt%以下を含有し、さらにP
b0.1〜2.0wt%、Sn0.1〜2.0wt%、Bi
0.1〜2.0wt%のうちの2種以上を含有し、残部が
Alと不可避的不純物とからなることを特徴とする高耐
磨耗性快削アルミニウム合金。
2. Si1.0 to 15.0 wt%, Fe0.1
~ 1.0 wt%, Cu 1.0 ~ 5.0 wt%, Mg 0.2 ~
1.5 wt%, Mn 0.1 to 0.5 wt%, Cr 0.05 to
0.5wt%, Ni0.05-1.0wt%, Sr0.02
.About.0.1 wt%, Ti 0.3 wt% or less, further P
b 0.1-2.0 wt%, Sn 0.1-2.0 wt%, Bi
A high wear-resistant free-cutting aluminum alloy, characterized by containing two or more of 0.1 to 2.0 wt% and the balance being Al and inevitable impurities.
【請求項3】 Si1.0〜15.0wt%、Fe0.1
〜1.0wt%、Cu1.0〜5.0wt%、Mg0.2〜
1.5wt%、Mn0.1〜0.5wt%、Cr0.05〜
0.5wt%、Ni0.05〜1.0wt%、Ti0.3wt
%以下を含有し、さらにPb0.1〜2.0wt%、Sn
0.1〜2.0wt%、Bi0.1〜2.0wt%のうちの
2種以上を含有し、残部がAlと不可避的不純物とから
なるアルミニウム合金溶湯を鋳造して鋳塊とした後、該
鋳塊に500〜560℃の温度で4時間以上保持する均
質化処理を施すことを特徴とする高耐磨耗性快削アルミ
ニウム合金の製造方法。
3. Si1.0 to 15.0 wt%, Fe0.1
~ 1.0 wt%, Cu 1.0 ~ 5.0 wt%, Mg 0.2 ~
1.5 wt%, Mn 0.1 to 0.5 wt%, Cr 0.05 to
0.5wt%, Ni0.05-1.0wt%, Ti0.3wt
% Or less, Pb 0.1 to 2.0 wt%, Sn
0.1 to 2.0 wt%, Bi 0.1 to 2.0 wt%, containing at least two kinds, the balance is cast aluminum alloy molten metal consisting of Al and unavoidable impurities, A method for producing a high wear-resistant free-cutting aluminum alloy, which comprises subjecting the ingot to a homogenizing treatment for holding at a temperature of 500 to 560 ° C. for 4 hours or more.
【請求項4】 Si1.0〜15.0wt%、Fe0.1
〜1.0wt%、Cu1.0〜5.0wt%、Mg0.2〜
1.5wt%、Mn0.1〜0.5wt%、Cr0.05〜
0.5wt%、Ni0.05〜1.0wt%、Sr0.02
〜0.1wt%、Ti0.3wt%以下を含有し、さらにP
b0.1〜2.0wt%、Sn0.1〜2.0wt%、Bi
0.1〜2.0wt%のうちの2種以上を含有し、残部が
Alと不可避的不純物とからなるアルミニウム合金溶湯
を鋳造して鋳塊とした後、該鋳塊に500〜560℃の
温度で4時間以上保持する均質化処理を施すことを特徴
とする高耐磨耗性快削アルミニウム合金の製造方法。
4. Si1.0 to 15.0 wt%, Fe0.1
~ 1.0 wt%, Cu 1.0 ~ 5.0 wt%, Mg 0.2 ~
1.5 wt%, Mn 0.1 to 0.5 wt%, Cr 0.05 to
0.5wt%, Ni0.05-1.0wt%, Sr0.02
.About.0.1 wt%, Ti 0.3 wt% or less, further P
b 0.1-2.0 wt%, Sn 0.1-2.0 wt%, Bi
After casting an aluminum alloy melt containing two or more of 0.1 to 2.0 wt% and the balance being Al and unavoidable impurities to form an ingot, the ingot is heated to 500 to 560 ° C. A method for producing a high wear-resistant free-cutting aluminum alloy, which comprises performing a homogenizing treatment for holding at a temperature for 4 hours or more.
JP35045093A 1993-12-28 1993-12-28 High wear resistant free cutting aluminum alloy and its production Pending JPH07197165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35045093A JPH07197165A (en) 1993-12-28 1993-12-28 High wear resistant free cutting aluminum alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35045093A JPH07197165A (en) 1993-12-28 1993-12-28 High wear resistant free cutting aluminum alloy and its production

Publications (1)

Publication Number Publication Date
JPH07197165A true JPH07197165A (en) 1995-08-01

Family

ID=18410581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35045093A Pending JPH07197165A (en) 1993-12-28 1993-12-28 High wear resistant free cutting aluminum alloy and its production

Country Status (1)

Country Link
JP (1) JPH07197165A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025449A1 (en) * 1996-01-05 1997-07-17 Norsk Hydro Technology B.V. Wear-resistant aluminum alloy and compressor piston formed therefrom
EP0828008A2 (en) * 1996-09-09 1998-03-11 Alusuisse Technology &amp; Management AG Aluminium alloy with good machinability
KR100852144B1 (en) * 2008-04-14 2008-08-13 주식회사금강코엔 Die casting aluminum alloy for frame of mobile electronic equipments and painting method for frame using the same
KR101526659B1 (en) * 2013-05-07 2015-06-05 현대자동차주식회사 Wear-resistant alloys having a complex microstructure
CN105483470A (en) * 2015-12-15 2016-04-13 天津立中车轮有限公司 High-strength aluminum alloy wheel
US9493862B2 (en) 2013-05-07 2016-11-15 Hyundai Motor Company Wear-resistant alloy having complex microstructure
US9493863B2 (en) 2013-05-07 2016-11-15 Hyundai Motor Company Wear-resistant alloy having complex microstructure
US9732403B2 (en) 2013-05-07 2017-08-15 Hyundai Motor Company Wear-resistant alloy having complex microstructure
CN107587007A (en) * 2017-10-31 2018-01-16 桂林加宏汽车修理有限公司 A kind of high wear-resistant aluminium alloy
CN109852852A (en) * 2017-11-24 2019-06-07 Sj技术股份有限公司 High strength die-casting aluminium alloy and preparation method and aluminium alloy casting piece manufacturing method
CN113430423A (en) * 2021-05-20 2021-09-24 合肥墨研涡旋科技有限公司 High-strength wear-resistant aluminum alloy for liquid die forging vortex plate product

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025449A1 (en) * 1996-01-05 1997-07-17 Norsk Hydro Technology B.V. Wear-resistant aluminum alloy and compressor piston formed therefrom
US5851320A (en) * 1996-01-05 1998-12-22 Norsk Hydro, A. S. Wear-resistant aluminum alloy and compressor piston formed therefrom
EP0828008A2 (en) * 1996-09-09 1998-03-11 Alusuisse Technology &amp; Management AG Aluminium alloy with good machinability
EP0828008A3 (en) * 1996-09-09 1998-11-11 Alusuisse Technology &amp; Management AG Aluminium alloy with good machinability
EP0982410A1 (en) * 1996-09-09 2000-03-01 Alusuisse Technology &amp; Management AG Aluminium alloy with good machinability
KR100852144B1 (en) * 2008-04-14 2008-08-13 주식회사금강코엔 Die casting aluminum alloy for frame of mobile electronic equipments and painting method for frame using the same
KR101526659B1 (en) * 2013-05-07 2015-06-05 현대자동차주식회사 Wear-resistant alloys having a complex microstructure
US9493862B2 (en) 2013-05-07 2016-11-15 Hyundai Motor Company Wear-resistant alloy having complex microstructure
US9493863B2 (en) 2013-05-07 2016-11-15 Hyundai Motor Company Wear-resistant alloy having complex microstructure
US9732403B2 (en) 2013-05-07 2017-08-15 Hyundai Motor Company Wear-resistant alloy having complex microstructure
CN104141076B (en) * 2013-05-07 2018-09-21 现代自动车株式会社 Antifriction alloy with complicated microstructure
CN105483470A (en) * 2015-12-15 2016-04-13 天津立中车轮有限公司 High-strength aluminum alloy wheel
CN107587007A (en) * 2017-10-31 2018-01-16 桂林加宏汽车修理有限公司 A kind of high wear-resistant aluminium alloy
CN109852852A (en) * 2017-11-24 2019-06-07 Sj技术股份有限公司 High strength die-casting aluminium alloy and preparation method and aluminium alloy casting piece manufacturing method
CN113430423A (en) * 2021-05-20 2021-09-24 合肥墨研涡旋科技有限公司 High-strength wear-resistant aluminum alloy for liquid die forging vortex plate product

Similar Documents

Publication Publication Date Title
KR101333915B1 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
JP5048996B2 (en) Wear-resistant aluminum alloy material excellent in workability and method for producing the same
JP3684313B2 (en) High-strength, high-toughness aluminum alloy forgings for automotive suspension parts
JP5830006B2 (en) Extruded aluminum alloy with excellent strength
EP0987344A1 (en) High strength aluminium alloy forgings
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
WO2010007484A1 (en) Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
JPH0559477A (en) Aluminum alloy for forging
JP2016079419A (en) Aluminum alloy continuous cast material and manufacturing method therefor
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JP3982849B2 (en) Aluminum alloy for forging
JP3346186B2 (en) Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method
JPH07197164A (en) Aluminum alloy having high strength and high workability and its production
JPH0790459A (en) Production of wear resistant aluminum alloy for extrusion and wear resistant aluminum alloy material
JP3324093B2 (en) Aluminum alloy material for forging for automotive parts and forged automotive parts
WO2018088351A1 (en) Aluminum alloy extruded material
JPS61104043A (en) Heat resistant and high-strength aluminum alloy
JPH05287427A (en) Wear resistant aluminum alloy for cold forging and its manufacture
JP3769646B2 (en) Processing method of Al-Zn-Si alloy
JPH09209069A (en) Wear resistant al alloy for elongation, scroll made of this wear resistant al alloy for elongation, and their production
JP2848368B2 (en) Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness
JPH0457738B2 (en)
JPH06330264A (en) Production of aluminum alloy forged material excellent in strength and toughness
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JP2004277762A (en) Method for manufacturing heat treatment type aluminum alloy material for cold working