JPH07186785A - Controller for internal combustion engine with automatic transmission - Google Patents

Controller for internal combustion engine with automatic transmission

Info

Publication number
JPH07186785A
JPH07186785A JP5336027A JP33602793A JPH07186785A JP H07186785 A JPH07186785 A JP H07186785A JP 5336027 A JP5336027 A JP 5336027A JP 33602793 A JP33602793 A JP 33602793A JP H07186785 A JPH07186785 A JP H07186785A
Authority
JP
Japan
Prior art keywords
fuel ratio
absorbent
air
engine
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5336027A
Other languages
Japanese (ja)
Other versions
JP3404846B2 (en
Inventor
Masahito Goto
雅人 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP33602793A priority Critical patent/JP3404846B2/en
Publication of JPH07186785A publication Critical patent/JPH07186785A/en
Application granted granted Critical
Publication of JP3404846B2 publication Critical patent/JP3404846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D2041/026Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus using an external load, e.g. by increasing generator load or by changing the gear ratio

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

PURPOSE:To eliminate SOX poisoning of an NOX absorbent without using any auxiliary heating means such as a heater. CONSTITUTION:An NOX absorbent 18 is arranged in the exhaust passage 17 of an internal combustion engine 1, and NOX in exhausting is absorbed by the NOX absorbent by normally driving the engine with the lean air-fuel ratio. An electronic control circuit 30 estimates the amount of sulfur oxides(SOX) absorbed by the NOX absorbent on the basis of the engine driving state and drives the engine with the rich air-fuel ratio when the SOX absorbed amount becomes the specific value or more and also changes the speed change controlling characteristic of an automatic transmission 40, so as to enlarge the driving range at the low speed stage. Thereby, the exhaust temperature is raised, and the temperature of the NOX absorbent is increased to higher temperatures, and the NOX absorbent becomes the rich air-fuel ratio atmosphere, thereby the SOX absorbed by the NOX absorbent is discharged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動変速機付内燃機関
の制御装置に関し、詳細には流入する排気の空燃比がリ
ーンのときに排気中のNOX を吸収し、排気酸素濃度が
低下したときに吸収したNOX を放出するNOX 吸収剤
を用いた排気浄化装置を有する自動変速機付内燃機関の
制御装置に関する。
BACKGROUND OF THE INVENTION This invention relates to a control apparatus for an internal combustion engine with an automatic transmission, air-fuel ratio of the exhaust gas flowing in detail absorbs NO X in the exhaust gas when the lean, reduced exhaust oxygen concentration a control device for an internal combustion engine with an automatic transmission having an exhaust gas purification apparatus using the the NO X absorbent to release the absorbed NO X when.

【0002】[0002]

【従来の技術】流入排気の空燃比がリーンのときにNO
X を吸収し、流入排気中の酸素濃度が低下したときに吸
収したNOX を放出するNOX 吸収剤を備えた排気浄化
装置が本願出願人により既に提案されている。(国際公
開公報WO93−7363号公報参照)。
2. Description of the Related Art NO when the air-fuel ratio of the exhaust gas is lean
The applicant of the present application has already proposed an exhaust gas purification device equipped with a NO x absorbent that absorbs X and releases the absorbed NO X when the oxygen concentration in the inflowing exhaust gas decreases. (See International Publication WO 93-7363).

【0003】上記装置では、大部分の運転領域でリーン
空燃比運転を行う内燃機関の排気通路にNOX 吸収剤を
配置し、リーン空燃比運転時に排気中のNOX をNOX
吸収剤に吸収させ、NOX 吸収後に機関の空燃比を理論
空燃比またはリッチ空燃比に切り換えて運転を行うこと
により、前記NOX 吸収剤から吸収したNOX を放出さ
せるとともに放出されたNOX を排気中の未燃HC、C
O等の還元成分により還元浄化するようにしている。
[0003] In the apparatus, the majority of the place the NO X absorbent in the exhaust passage of the internal combustion engine performing lean air-fuel ratio operation in the operating region, the NO X in the exhaust gas during the lean air-fuel ratio operation NO X
Absorbed onto the absorbent, NO after X absorbed in the air-fuel ratio of the engine by performing the operation is switched to the stoichiometric air-fuel ratio or rich air-fuel ratio, the NO X to NO X absorbed from the absorbent are released together to release the NO X Unburned HC and C in the exhaust
A reducing component such as O is used for reduction purification.

【0004】[0004]

【発明が解決しようとする課題】NOX 吸収剤は、上述
のようにリーン空燃比の排気中のNOX を吸収し、排気
中の酸素濃度が低下すると吸収したNOX を放出するN
X の吸放出作用を行う。この吸放出作用のメカニズム
については後に詳述するが、排気中に硫黄酸化物(SO
X )が存在するとNOX 吸収剤はNOX の吸収作用を行
うのと全く同じメカニズムで排気中のSOX の吸収を行
う。一般に機関の燃料、潤滑油には硫黄分が含まれてい
るため機関排気中にはNOX とともにSOX が存在し、
上記のように機関排気通路にNOX 吸収剤を配置した場
合にはNOX 吸収剤にはNOX のみならずSOX も吸収
される。
SUMMARY OF THE INVENTION An object of the NO X absorbent absorbs NO X in the exhaust gas of a lean air-fuel ratio as described above, the oxygen concentration in the exhaust gas to release NO X absorbed and reduced N
It acts to absorb and release O X. The mechanism of this absorbing and releasing action will be described in detail later, but sulfur oxide (SO
X ) exists, the NO X absorbent absorbs SO X in the exhaust gas by the same mechanism as that of absorbing NO X. In general, fuel and lubricating oil of an engine contain sulfur, so SO x exists together with NO x in engine exhaust,
SO X not NO X only in the NO X absorbent when placing the NO X absorbent in the engine exhaust passage as described above is absorbed.

【0005】ところが、NOX 吸収剤に吸収されたSO
X は安定な硫酸塩を形成するため、通常のNOX 吸収剤
からのNOX の放出、還元浄化(以下「NOX 吸収剤の
再生」という)を行う条件では分解、放出されにくくN
X 吸収剤内に蓄積されやすい傾向がある。ところが、
NOX 吸収剤内のSOX 蓄積量が増大すると、NOX
収剤のNO X 吸収容量が減少してしまい、排気中のNO
X の除去を十分に吸収できなくなるため、排気中のNO
X の浄化効率が低下する、いわゆるSOX 被毒が生じる
問題がある。
However, NOXSO absorbed by absorbent
XForms stable sulphate, so normal NOXAbsorbent
NO fromXRelease, reduction purification (hereinafter "NOXAbsorbent
It is difficult to decompose and release under the condition of "regeneration")
OXIt tends to accumulate in the absorbent. However,
NOXSO in absorbentXWhen the accumulated amount increases, NOXSucking
NO of collecting agent XThe absorption capacity decreases, and NO in exhaust gas
XSince the removal of NO can not be absorbed sufficiently, NO in exhaust gas
XOf so-called SOXPoisoning occurs
There's a problem.

【0006】一方、NOX 吸収剤のSOX 被毒が生じた
場合には、通常のNOX 吸収剤の再生時よりNOX 吸収
剤を高温に保ちながら排気空燃比をリッチにすることに
より、NOX 吸収剤に吸収されたSOX を放出させてS
X 被毒を解消することが可能であることが知られてい
る。しかし、NOX 吸収剤を高温に保つためには、機関
排気温度を上昇させる必要がある。例えば、機関をリッ
チ空燃比で運転したり、点火時期を遅角することによっ
てある程度排気温度を上昇させることは可能であるが、
排気温度は運転状態に応じて変化するため、機関が低速
で運転されていると上記の手段のみでは排気温度が十分
に上昇せず、SOX 被毒を解消することが困難である。
一方、SOX被毒発生時に運転者に機関回転数を高く維
持した運転を行うことを強制したのでは運転者の負担が
大きくなる問題がある。
On the other hand, when the SO X poisoning of the NO X absorbent occurs by the exhaust air-fuel ratio to the rich while maintaining the NO X absorbent than during reproduction of the normal of the NO X absorbent to a high temperature, The SO X absorbed by the NO X absorbent is released and S
It is known that O X it is possible to eliminate the poisoning. However, in order to keep the the NO X absorbent to a high temperature, it is necessary to increase the engine exhaust temperature. For example, it is possible to raise the exhaust gas temperature to some extent by operating the engine at a rich air-fuel ratio or by retarding the ignition timing.
Since the exhaust gas temperature changes according to the operating conditions, the engine does not rise only enough exhaust temperature at the above-mentioned means are operated at a low speed, it is difficult to eliminate SO X poisoning.
On the other hand, if the driver is forced to perform the operation while keeping the engine speed high when SO X poisoning occurs, there is a problem that the driver's burden is increased.

【0007】このため、従来、SOX 被毒を解消するた
めには、NOX 吸収剤にヒータ、バーナ等の補助加熱手
段を設け、SOX 被毒解消操作時にNOX 吸収剤の温度
を運転条件にかかわらず高く維持することが必要とされ
ていた。ところが、排気浄化装置に別途ヒータ、バーナ
等の補助加熱手段を設けることは、装置コストが上昇す
る問題があり好ましくない。また、装置が複雑化すると
ともに装置の搭載性が悪化する問題が生じる。
[0007] Therefore, conventionally, in order to solve the SO X poisoning, heater, an auxiliary heating means such as a burner, arranged in the NO X absorbent, the operating temperature of the NO X absorbent when SO X poisoning recovery operation It was required to keep high regardless of the conditions. However, it is not preferable to separately provide an auxiliary heating means such as a heater and a burner in the exhaust gas purification device because the device cost will increase. Further, there is a problem that the device becomes complicated and the mountability of the device deteriorates.

【0008】本発明は、自動変速機付内燃機関に上記N
X 吸収剤を用いた排気浄化装置を搭載する場合に、ヒ
ータ、バーナ等の補助加熱手段を使用せずにNOX 吸収
剤のSOX 被毒を解消することを可能とする手段を提供
することを目的としている。
The present invention relates to an internal combustion engine with an automatic transmission, the above N
When mounting the exhaust gas purifying apparatus using the O X absorbent, to provide a means making it possible to eliminate the heater, the SO X poisoning of the NO X absorbent without the use of auxiliary heating means such as a burner, Is intended.

【0009】[0009]

【課題を解決するための手段】本発明によれば、車両用
内燃機関の排気通路に配置された、排気の空燃比がリー
ンのときに排気中のNOX を吸収し排気中の酸素濃度が
低下したときに吸収したNOX を放出するNOX 吸収剤
と、前記内燃機関に接続された自動変速機と、走行状態
に応じて前記自動変速機の変速段を設定する変速制御手
段と、前記内燃機関の空燃比を制御する空燃比制御手段
とを備えた自動変速機付内燃機関の制御装置において、
前記NOX 吸収剤中に吸収された硫黄酸化物の量を推定
する推定手段を備え、前記変速制御手段は、前記NOX
吸収剤の吸収した硫黄酸化物の量が所定値以下の場合に
は所定の第1の変速制御特性に基づいて走行状態に応じ
て変速段を設定し、前記NOX 吸収剤の吸収した硫黄酸
化物の量が所定値より大きい場合には、前記第1の変速
制御特性より低速段側での運転領域が広い第2の変速制
御特性に基づいて走行状態に応じて変速段を設定し、前
記空燃比制御手段は、前記NOX 吸収剤の吸収した硫黄
酸化物の量が前記所定値より大きい場合には、前記機関
の空燃比を理論空燃比よりリッチ側に制御することを特
徴とする自動変速機付内燃機関の制御装置が提供され
る。
According to the present invention, when the air-fuel ratio of the exhaust gas, which is arranged in the exhaust passage of the internal combustion engine for a vehicle, is lean, the NO x in the exhaust gas is absorbed and the oxygen concentration in the exhaust gas is reduced. A NO x absorbent that releases the absorbed NO x when it has dropped, an automatic transmission connected to the internal combustion engine, a shift control means that sets a shift speed of the automatic transmission according to a running state, In a control device for an internal combustion engine with an automatic transmission, comprising an air-fuel ratio control means for controlling the air-fuel ratio of the internal combustion engine,
Estimating means for estimating the amount of sulfur oxides absorbed in the NO x absorbent is provided, and the shift control means comprises the NO x
The amount of the absorbed sulfur oxide absorbent to set the gear stage depending on the running state based on a predetermined first shift control characteristics in the case of less than the predetermined value, the absorbed sulfur oxides of the the NO X absorbent When the amount of the object is larger than a predetermined value, the shift speed is set according to the traveling state based on the second shift control characteristic in which the operating range on the low speed side is wider than the first shift control characteristic, air-fuel ratio control means when the amount of the absorbed sulfur oxide of the NO X absorbent is larger than the predetermined value, and controlling the rich side than the stoichiometric air-fuel ratio of the engine automatic A control device for an internal combustion engine with a transmission is provided.

【0010】[0010]

【作用】通常運転時は、変速制御手段は第1の変速制御
特性に基づいて走行状態に応じた自動変速機の変速段を
設定する。一方、NOX 吸収剤の吸収した硫黄酸化物の
量が増大して所定値を越えると、変速制御手段は第2の
変速制御特性に基づいて自動変速機の変速段を設定する
ようになり、低速段側での運転領域が拡大される。ま
た、このとき空燃比制御手段は同時に機関空燃比をリッ
チ空燃比に設定するため、機関はリッチ空燃比で運転さ
れるようになり、かつ機関が高速回転で運転される機会
が増えるので全体的に排気温度が上昇する。このため、
NOX 吸収剤は高温かつリッチ空燃比の雰囲気に維持さ
れ、吸収された硫黄酸化物が放出されるため、SOX
毒が解消される。
In normal operation, the shift control means sets the shift stage of the automatic transmission according to the traveling state based on the first shift control characteristic. On the other hand, when the amount of sulfur oxide absorbed by the NO X absorbent increases and exceeds the predetermined value, the shift control means sets the shift stage of the automatic transmission based on the second shift control characteristic. The operating range on the low speed stage side is expanded. Further, at this time, the air-fuel ratio control means sets the engine air-fuel ratio to the rich air-fuel ratio at the same time, so that the engine can be operated at the rich air-fuel ratio and the opportunity to operate the engine at high speed increases, so that the overall Exhaust temperature rises. For this reason,
The NO X absorbent is maintained in an atmosphere of high temperature and rich air-fuel ratio, and the absorbed sulfur oxide is released, so SO X poisoning is eliminated.

【0011】また、NOX 吸収剤中の硫黄酸化物の量が
減少してSOX 被毒が解消されると、変速制御手段は再
び第1の変速制御特性に基づいて変速段を設定し、空燃
比制御手段は機関空燃比を通常の空燃比に設定するよう
になり、機関運転状態は通常に復帰する。
When the amount of sulfur oxides in the NO x absorbent decreases and SO x poisoning is eliminated, the shift control means sets the shift speed again based on the first shift control characteristic. The air-fuel ratio control means sets the engine air-fuel ratio to the normal air-fuel ratio, and the engine operating state returns to normal.

【0012】[0012]

【実施例】以下添付図面を用いて本発明の実施例につい
て説明する。図1は本発明を適用した自動変速機付内燃
機関の全体図である。図1において1はリーン空燃比の
燃焼を行うガソリンエンジン等の内燃機関、3は機関1
の燃焼室、6は機関の吸気ポート、8は排気ポートを示
す。各吸気ポート6は吸気枝管9を介してサージタンク
10に接続されるとともに、各枝管9にはそれぞれの吸
気ポート6に燃料を噴射する燃料噴射弁11が配置され
ている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is an overall view of an internal combustion engine with an automatic transmission to which the present invention is applied. In FIG. 1, reference numeral 1 is an internal combustion engine such as a gasoline engine that performs lean air-fuel combustion, and 3 is an engine 1.
Of the engine, 6 is an intake port of the engine, and 8 is an exhaust port. Each intake port 6 is connected to a surge tank 10 via an intake branch pipe 9, and a fuel injection valve 11 for injecting fuel into each intake port 6 is arranged in each branch pipe 9.

【0013】また、サージタンク10は吸気通路12を
介してエアクリーナ13に接続され、吸気通路12内に
は運転者のアクセルペダル(図示せず)の操作に応じた
開度をとるスロットル弁14が配置されている。また、
サージタンク10にはサージタンク10内の絶対圧力に
比例した出力電圧を発生する吸気圧センサ15が設けら
れている。
Further, the surge tank 10 is connected to an air cleaner 13 via an intake passage 12, and a throttle valve 14 having an opening degree corresponding to an operation of an accelerator pedal (not shown) by a driver is provided in the intake passage 12. It is arranged. Also,
The surge tank 10 is provided with an intake pressure sensor 15 that generates an output voltage proportional to the absolute pressure in the surge tank 10.

【0014】一方、機関1の排気ポート8は排気マニホ
ルド16を介して排気通路17に接続されており、排気
通路17には後述するNOX 吸収剤18を内蔵したケー
シング19が接続されている。また、図1に40で示し
たのは機関1の出力軸(図示せず)に接続された自動変
速機である。自動変速機40は、トルクコンバータ41
と変速機42とを備え、変速機42の出力軸は図示しな
いディフアレンシャルギヤを介して車両の駆動輪に接続
されている。
On the other hand, the exhaust port 8 of the engine 1 is connected to an exhaust passage 17 via an exhaust manifold 16, and the exhaust passage 17 is connected to a casing 19 containing a NO x absorbent 18 described later. Further, reference numeral 40 in FIG. 1 denotes an automatic transmission connected to an output shaft (not shown) of the engine 1. The automatic transmission 40 includes a torque converter 41.
And a transmission 42, and the output shaft of the transmission 42 is connected to the drive wheels of the vehicle via a differential gear (not shown).

【0015】変速機42は遊星歯車列と摩擦要素とを備
えた公知の形式のものであり、制御油圧を切換えて摩擦
要素(ブレーキ、クラッチ等)の係合状態を切り換えて
遊星歯車列の各要素の固定、接続を行うことにより変速
操作を行う。トルクコンバータ41は、機関出力軸に直
結されたポンプと、このポンプ吐出流体により駆動され
るタービンとを備えた公知の形式のものであり、タービ
ン出力軸(以下コンバータ出力軸)は変速機42の入力
軸に直結されている。トルクコンバータ41は、機関出
力軸から入力するトルクを増幅してコンバータ出力軸に
出力する公知のトルク増幅作用を有する。また、自動変
速機40には、コンバータ出力軸の回転数に応じた周波
数のパルス信号を出力するコンバータ出力軸回転数セン
サ22、変速機42の出力軸の回転数に応じた周波数の
パルス信号を出力する変速機出力軸回転数センサ23が
それぞれ設けられている。
The transmission 42 is of a known type having a planetary gear train and a friction element, and the control hydraulic pressure is switched to switch the engagement state of the friction elements (brake, clutch, etc.) to change each planetary gear train. Shifting operation is performed by fixing and connecting the elements. The torque converter 41 is of a known type including a pump directly connected to the engine output shaft and a turbine driven by the pump discharge fluid, and the turbine output shaft (hereinafter referred to as the converter output shaft) of the transmission 42. It is directly connected to the input shaft. The torque converter 41 has a known torque amplification action of amplifying the torque input from the engine output shaft and outputting it to the converter output shaft. Further, to the automatic transmission 40, a converter output shaft rotation speed sensor 22 that outputs a pulse signal having a frequency corresponding to the rotation speed of the converter output shaft, and a pulse signal having a frequency corresponding to the rotation speed of the output shaft of the transmission 42 are transmitted. Transmission output shaft rotation speed sensors 23 for outputting are respectively provided.

【0016】図1に30で示すのは、機関1の電子制御
回路である。電子制御回路30はROM(リードオンリ
メモリ)32、RAM(ランダムアクセスメモリ)3
3、CPU(マイクロプロセッサ)34、入力ポート3
5、出力ポート36をそれぞれ双方向性バス31で接続
した、公知の構成のディジタルコンピュータからなり、
機関1の燃料噴射量制御、点火時期制御等の機関の基本
制御を行う他、走行状態に応じて変速機42の変速操作
を行う変速制御手段、機関空燃比を制御する空燃比制御
手段、NOX 吸収剤の吸収したSOX 量を推定する推定
手段等の請求項1に記載した各手段としての機能を果し
ている。
Reference numeral 30 in FIG. 1 is an electronic control circuit of the engine 1. The electronic control circuit 30 includes a ROM (read only memory) 32, a RAM (random access memory) 3
3, CPU (microprocessor) 34, input port 3
5. A digital computer having a known structure in which the output ports 36 are connected to each other by the bidirectional bus 31.
In addition to performing basic control of the engine such as fuel injection amount control of the engine 1 and ignition timing control, shift control means for performing a shift operation of the transmission 42 according to the running state, air-fuel ratio control means for controlling the engine air-fuel ratio, NO The function as each means described in claim 1 such as an estimation means for estimating the amount of SO X absorbed by the X absorbent is fulfilled.

【0017】上記目的のため、制御回路30の入力ポー
ト35には、吸気圧センサ15からの吸気圧力に応じた
電圧信号と、スロットル開度センサ20からスロットル
弁14の開度を表す電圧信号、また、車速センサ24か
ら車両走行速度を表す電圧信号がそれぞれAD変換器3
7を介して入力されている他、機関のディストリビュー
タ(図示せず)に設けられた機関回転数センサ21から
機関回転数を表すパルス信号が、また上述のコンバータ
出力軸回転数センサ22と変速機出力軸回転数センサ2
3とからのパルス信号がそれぞれ入力されている。
For the above purpose, a voltage signal corresponding to the intake pressure from the intake pressure sensor 15 and a voltage signal representing the opening of the throttle valve 14 from the throttle opening sensor 20 are connected to the input port 35 of the control circuit 30. Further, the voltage signals representing the vehicle traveling speed from the vehicle speed sensor 24 are respectively supplied to the AD converters 3.
7, a pulse signal representing the engine speed from an engine speed sensor 21 provided in a distributor (not shown) of the engine, the converter output shaft speed sensor 22 and the transmission described above. Output shaft speed sensor 2
The pulse signals from 3 and 3 are input respectively.

【0018】また、制御回路30の出力ポート36は、
それぞれ対応する駆動回路38を介して燃料噴射弁11
と点火プラグ4とに接続され、燃料噴射弁11からの燃
料噴射と機関の点火時期とを制御している。ケーシング
19に内蔵されたNOX 吸収剤18は、例えばアルミナ
等の担体を使用し、この担体上に例えばカリウムK、ナ
トリウムNa 、リチウムLi 、セシウムCs のようなア
ルカリ金属、バリウムBa , カルシウムCa のようなア
ルカリ土類、ランタンLa 、イットリウムYのような希
土類から選ばれた少なくとも一つと、白金Pt のような
貴金属とが担持された構成とされる。このNOX 吸収剤
18は流入する排気の空燃比がリーンの場合にはNOX
を吸収し、酸素濃度が低下するとNOX を放出するNO
X の吸放出作用を行う。
The output port 36 of the control circuit 30 is
The fuel injection valve 11 is driven through the corresponding drive circuit 38.
Is connected to the ignition plug 4 to control the fuel injection from the fuel injection valve 11 and the ignition timing of the engine. The NO x absorbent 18 contained in the casing 19 uses, for example, a carrier such as alumina, on which potassium K, sodium Na, lithium Li, an alkali metal such as cesium Cs, barium Ba or calcium Ca. At least one selected from such alkaline earths, lanthanum La, and rare earths such as yttrium Y and a noble metal such as platinum Pt are supported. This NO X absorbent 18 is NO X when the air-fuel ratio of the inflowing exhaust gas is lean.
That absorbs NO and releases NO X when the oxygen concentration decreases
It absorbs and releases X.

【0019】なお、上述の排気空燃比とは、ここではN
X 吸収剤18の上流側の排気通路や機関燃焼室、吸気
通路等にそれぞれ供給された空気量の合計と燃料の合計
との比を意味するものとする。従って、NOX 吸収剤1
8の上流側排気通路に燃料または空気が供給されない場
合には、排気空燃比は機関の空燃比(機関燃焼室内の燃
焼における空燃比)と等しくなる。
Incidentally, the above-mentioned exhaust air-fuel ratio means here N
It means the ratio of the total amount of air and the total amount of fuel supplied to the exhaust passage on the upstream side of the O X absorbent 18, the engine combustion chamber, the intake passage, and the like. Therefore, NO X absorbent 1
When fuel or air is not supplied to the upstream exhaust passage 8 of No. 8, the exhaust air-fuel ratio becomes equal to the air-fuel ratio of the engine (air-fuel ratio in combustion in the engine combustion chamber).

【0020】本実施例ではリーン空燃比の燃焼を行う機
関が使用されているため、通常運転時の排気空燃比はリ
ーンであり、NOX 吸収剤18は排気中のNOX の吸収
を行う。また、機関の空燃比がリーン空燃比からリッチ
又は理論空燃比に切り換えられて排気中の酸素濃度が低
下すると、NOX 吸収剤18は吸収したNOX の放出を
行う。
In this embodiment, an engine that burns with a lean air-fuel ratio is used, so the exhaust air-fuel ratio during normal operation is lean, and the NO X absorbent 18 absorbs NO X in the exhaust. Further, when the air-fuel ratio of the engine is switched from the lean air-fuel ratio to the rich or stoichiometric air-fuel ratio and the oxygen concentration in the exhaust gas decreases, the NO X absorbent 18 releases the absorbed NO X.

【0021】この吸放出作用の詳細なメカニズムについ
ては明らかでない部分もある。しかし、この吸放出作用
は図2に示すようなメカニズムで行われているものと考
えられる。次にこのメカニズムについて担体上に白金P
t およびバリウムBa を担持させた場合を例にとって説
明するが、他の貴金属、アルカリ金属、アルカリ土類、
希土類を用いても同様なメカニズムとなる。
[0021] There are some points where the detailed mechanism of this absorption / release action is not clear. However, it is considered that this absorbing / releasing action is performed by the mechanism shown in FIG. Next, regarding this mechanism, platinum P on the carrier
A case of supporting t and barium Ba will be described as an example, but other precious metals, alkali metals, alkaline earth metals,
The same mechanism can be achieved by using rare earths.

【0022】すなわち、流入排気がかなりリーンになる
と流入排気中の酸素濃度が大巾に増大し、図2(A) に示
されるようにこれら酸素O2 がO2 - またはO2-の形で
白金Pt の表面に付着する。一方、流入排気中のNOは
白金Pt の表面上でこのO2 - またはO2-と反応し、N
2 となる(2NO+O2 →2NO2 ) 。次いで生成さ
れたNO2 の一部は白金Pt上で酸化されつつ吸収剤内
に吸収されて酸化バリウムBaOと結合しながら、図2
(A) に示されるように硝酸イオンNO3 - の形で吸収剤
内に拡散する。このようにしてNOX がNOX 吸収剤1
8内に吸収される。
That is, the inflow exhaust becomes considerably lean.
And the oxygen concentration in the exhaust gas increased significantly, as shown in Fig. 2 (A).
As these oxygen O2Is O2 -Or O2-In the form of
It adheres to the surface of platinum Pt. On the other hand, the NO in the exhaust gas is
This O on the surface of platinum Pt2 -Or O2-Reacts with N
O2Becomes (2NO + O2→ 2 NO2 ). Then generated
NO2Part of the inside of the absorbent while being oxidized on platinum Pt
While being absorbed by and bound to barium oxide BaO,
As shown in (A), nitrate ion NO3 -Absorbent in the form of
Diffuse in. NO in this wayXIs NOXAbsorbent 1
Absorbed in 8.

【0023】従って、流入排気中の酸素濃度が高い限り
白金Pt の表面でNO2 が生成され、吸収剤のNOX
収能力が飽和しない限りNO2 が吸収剤内に吸収されて
硝酸イオンNO3 - が生成される。これに対して機関1
の空燃比がリッチ又は理論空燃比に切り換えられると、
流入排気中の酸素濃度が低下してNO2 の生成量が減少
する。これにより反応は逆方向(NO3 - →NO2 )に
進み、吸収剤内の硝酸イオンNO3 - がNO2 の形で吸
収剤から放出される。 一方、流入排気中に未燃HC、
CO等の成分が存在すると、これらの成分は白金Pt 上
の酸素O2 - またはO2-と反応して酸化され、白金Pt
上の酸素を消費する。また、NOX 吸収剤18から放出
されたNO2 は図2(B) に示すようにHC、COと反応
して還元される。このようにして白金Pt の表面上にN
2 が存在しなくなると吸収剤から次から次へとNO2
が放出される。
Therefore, NO 2 is produced on the surface of platinum Pt as long as the oxygen concentration in the inflowing exhaust gas is high, and NO 2 is absorbed in the absorbent and nitrate ion NO 3 unless the NO X absorbing capacity of the absorbent is saturated. - is generated. Organization 1
When the air-fuel ratio of is switched to rich or stoichiometric air-fuel ratio,
The oxygen concentration in the inflowing exhaust gas decreases and the amount of NO 2 produced decreases. Thus the reaction is reverse (NO 3 - → NO 2) proceeds, the nitrate ions NO in absorbent 3 - are released from the absorbent in the form of NO 2. On the other hand, unburned HC,
When components such as CO are present, these components are oxidized by reacting with oxygen O 2 or O 2 on platinum Pt, and platinum Pt
It consumes oxygen above. Further, NO 2 released from the NO x absorbent 18 is reduced by reacting with HC and CO as shown in FIG. 2 (B). In this way, N on the surface of platinum Pt
When O 2 is no longer present, NO 2
Is released.

【0024】すなわち、流入排気中のHC、COは、ま
ず白金Pt 上のO2 - またはO2-とただちに反応して酸
化され、次いで白金Pt 上のO2 - またはO2-が消費さ
れてもまだHC、COが残っていればこのHC、COに
よって吸収剤から放出されたNOX 、および排気ととも
に流入するNOX が還元される。本実施例では、上記を
利用して通常のリーン空燃比運転時にはNOX 吸収剤に
排気中のNOX を吸収させるとともに、NOX 吸収剤の
吸収したNOX 量が増大した時には短時間機関空燃比を
リッチまたは理論空燃比に切り換えてNOX 吸収剤から
のNOX の放出と還元浄化とを行っている。すなわち、
機関空燃比がリッチまたは理論空燃比に切り換えられる
と、排気中の酸素濃度が急激に低下するとともに、機関
から排出される未燃HC、COの量が大幅に増大する。
従って、機関空燃比をリッチまたは理論空燃比に切り換
えることにより排気中の酸素濃度を低下させるとともに
未燃HC、COの量を増大させることにより短時間でN
X吸収剤18の再生が行われることになる。
That is, HC and CO in the inflowing exhaust gas are first reacted with O 2 or O 2− on platinum Pt immediately to be oxidized, and then O 2 or O 2− on platinum Pt are consumed. If HC and CO still remain, the NO X released from the absorbent by the HC and CO and the NO X that flows in with the exhaust gas are reduced. In this embodiment, during normal lean-burn operation using the above together to absorb NO X in the exhaust gas in the NO X absorbent, short engine air when the absorbed amount of NO X in the NO X absorbent is increased by switching the ratio to the rich or the stoichiometric air-fuel ratio is performed and reduction purification and release of the NO X from the NO X absorbent. That is,
When the engine air-fuel ratio is switched to the rich or stoichiometric air-fuel ratio, the oxygen concentration in the exhaust gas sharply decreases, and the amounts of unburned HC and CO discharged from the engine greatly increase.
Therefore, by switching the engine air-fuel ratio to the rich or stoichiometric air-fuel ratio, the oxygen concentration in the exhaust gas is reduced and the amount of unburned HC and CO is increased, so that N
The regeneration of the Ox absorbent 18 will be performed.

【0025】次にNOX 吸収剤のSOX 被毒のメカニズ
ムについて説明する。排気中にSOX 成分が含まれてい
ると、NOX 吸収剤は上述のNOX の吸収と同じメカニ
ズムで排気中のSOX を吸収する。すなわち、排気空燃
比がリーンのとき、排気中のSOX (例えばSO2 )は
白金Pt上で酸化されてSO3 - 、SO4 - となり、酸
化バリウムBaOと結合してBaSO4 を形成する。B
aSO 4 は比較的安定であり、また、結晶が粗大化しや
すいため一旦生成されると分解放出されにくい。このた
め、NOX 吸収剤中のBaSO4 の生成量が増大すると
NOX の吸収に関与できるBaOの量が減少してNOX
の吸収能力が低下してしまう。このSOX 被毒を防止す
るためには、NOX 吸収剤中に生成されたBaSO4
高温で分解するとともに、これにより生成されるSO3
- 、SO4 - の硫酸イオンを還元し、NOX 吸収剤から
放出させる必要がある。本発明では、後述のように、機
関空燃比をリッチにするとともに、自動変速機40の変
速制御特性を変更して機関排気温度を上昇させることに
より、SOX 被毒を解消している。
Next, NOXAbsorbent SOXPoisoned mechanics
I will explain about. SO during exhaustXContains ingredients
Then NOXAbsorbent is NO aboveXSame mechanism as absorption of
SO in the exhaustXAbsorbs. That is, exhaust air-fuel
SO in the exhaust when the ratio is leanX(Eg SO2) Is
SO oxidized by platinum Pt3 -, SOFour -And then acid
BaSO combined with BaOFourTo form. B
aSO FourIs relatively stable, and the crystals become coarse.
Once produced, it is difficult to decompose and release due to rinsing. others
NoXBaSO in the absorbentFourWhen the production of
NOXThe amount of BaO that can be involved in the absorption of NO decreasesX
Absorbs less. This SOXPrevent poisoning
NO in order toXBaSO formed in the absorbentFourTo
SO which is decomposed at high temperature and is generated by this3
-, SOFour -Reduce the sulfate ion of NO, NOXFrom absorbent
Need to be released. In the present invention, as described below,
Make the air-fuel ratio rich and change the automatic transmission 40
By changing the speed control characteristic to raise the engine exhaust temperature
Than SOXThe poisoning has been eliminated.

【0026】次に、本実施例の機関の空燃比制御につい
て説明する。本実施例では、前述の国際公開公報第WO
93−7363号に記載されたものと同様な空燃比制御
を行う。以下、この空燃比制御について簡単に説明す
る。本実施例では、燃料噴射弁11からの燃料噴射量、
すなわち燃料噴射時の燃料噴射弁11の開弁時間(燃料
噴射時間)TAUは、制御回路30により、例えばTA
U=TP×Kとして算出される。
Next, the air-fuel ratio control of the engine of this embodiment will be described. In this embodiment, the above-mentioned International Publication WO No. WO is used.
Air-fuel ratio control similar to that described in No. 93-7363 is performed. The air-fuel ratio control will be briefly described below. In the present embodiment, the fuel injection amount from the fuel injection valve 11,
That is, the valve opening time (fuel injection time) TAU of the fuel injection valve 11 at the time of fuel injection is set by the control circuit 30 to, for example, TA.
It is calculated as U = TP × K.

【0027】ここで、TPは機関燃焼室内に供給される
混合気の空燃比を理論空燃比にするために必要とされる
燃料噴射時間、すなわち基本燃料噴射時間を示し、吸気
圧センサ15により検出されたサージタンク10内絶対
圧PMと機関回転数Nとの関数として、予め実験等によ
り求められ、図3に示すような数値テーブルの形で制御
回路30のROM32に格納されている。
Here, TP represents the fuel injection time required to bring the air-fuel ratio of the air-fuel mixture supplied into the engine combustion chamber to the stoichiometric air-fuel ratio, that is, the basic fuel injection time, which is detected by the intake pressure sensor 15. As a function of the absolute pressure PM in the surge tank 10 and the engine speed N obtained, it is obtained in advance by experiments or the like and stored in the ROM 32 of the control circuit 30 in the form of a numerical table as shown in FIG.

【0028】また、Kは機関空燃比を制御するための補
正係数であり、K=1.0に設定すると機関空燃比は理
論空燃比になる。また、K>1.0に設定すれば機関空
燃比は理論空燃比より小さく(すなわちリッチ空燃比
に)なり、K<1.0に設定すると機関空燃比は理論空
燃比より大きく(すなわちリーン空燃比に)なる。補正
係数Kの値は、サージタンク10内の絶対圧PMと機関
回転数Nとの関数として、例えば図4に示すような形で
与えられている。すなわち、図4に示すように、本実施
例ではPMが比較的低い領域(機関低中負荷運転領域)
では補正係数Kは1.0より小さく設定され、機関はリ
ーン空燃比で運転される。また、PMが比較的高い領域
(機関高負荷運転領域)では補正係数Kの値は1.0と
され、機関は理論空燃比で運転される。また、更にPM
が高い領域(機関全負荷運転領域)では、補正係数Kの
値は1.0より大きく設定され機関はリッチ空燃比で運
転されることになる。車両用機関等では、通常低中負荷
運転が行われる頻度が最も高いため、これらの機関は運
転中の大部分の期間リーン空燃比で運転されることにな
る。
Further, K is a correction coefficient for controlling the engine air-fuel ratio, and when K = 1.0 is set, the engine air-fuel ratio becomes the theoretical air-fuel ratio. Further, if K> 1.0, the engine air-fuel ratio becomes smaller than the theoretical air-fuel ratio (that is, rich air-fuel ratio), and if K <1.0, the engine air-fuel ratio becomes larger than the theoretical air-fuel ratio (that is, lean air-fuel ratio). Becomes the fuel ratio). The value of the correction coefficient K is given as a function of the absolute pressure PM in the surge tank 10 and the engine speed N, for example, in the form shown in FIG. That is, as shown in FIG. 4, in the present embodiment, a region where the PM is relatively low (engine low / medium load operation region)
Then, the correction coefficient K is set to be smaller than 1.0, and the engine is operated at a lean air-fuel ratio. Further, in a region where PM is relatively high (engine high load operating region), the value of the correction coefficient K is 1.0, and the engine is operated at the stoichiometric air-fuel ratio. In addition, PM
In a high range (engine full load operation range), the value of the correction coefficient K is set to be larger than 1.0, and the engine is operated at the rich air-fuel ratio. In a vehicle engine or the like, a low-to-medium-load operation is usually most frequently performed, so these engines are operated at a lean air-fuel ratio for most of the period during operation.

【0029】前述のように、NOX 吸収剤は機関がリー
ン空燃比で運転されている時には排気中のNOX を吸収
し、機関がリッチまたは理論空燃比で運転されている時
には吸収したNOX を放出する。従って、リッチまたは
理論空燃比の運転が適度に行われれば、NOX 吸収剤の
NOX 吸収量はある程度のレベル以上には増大せず、特
別な再生操作を行う必要はない。しかし、機関運転状況
によってリーン空燃比での運転が長時間継続するような
場合があると、NOX 吸収剤のNOX 吸収量が増大し、
NOX 吸収能力が飽和してしまう恐れがある。
[0029] As described above, NO NO X absorbent engine absorbs NO X in the exhaust gas when being operated at a lean air-fuel ratio, the engine is absorbed when being operated at a rich or stoichiometric air-fuel ratio X To release. Therefore, if the operation of the rich or the stoichiometric air-fuel ratio is appropriately performed, NO X absorption of the NO X absorbent is not increased beyond a certain level, it is not necessary to perform special reproduction operation. However, when the engine operating conditions which may operated at a lean air-fuel ratio such that long-lasting, NO X absorption of the NO X absorbent increases,
There is a risk that the NO x absorption capacity will be saturated.

【0030】そこで、本実施例では電子制御回路30は
NOX 吸収剤18が吸収したNOX量を推定し、推定し
たNOX 吸収量が所定量以上になった時には、図4の領
域にかかわらず、短時間(例えば0.5秒から1秒程度
の時間)補正係数Kの値を1.0以上に強制的に設定し
て機関をリッチまたは理論空燃比で運転し、NOX 吸収
剤の再生操作を行うことによりNOX 吸収剤のNOX
収能力が飽和することを防止している。
[0030] Therefore, the electronic control circuit 30 in the present embodiment estimates the amount of NO X the NO X absorbent 18 is absorbed, when the estimated NO X absorption amount becomes a predetermined amount or more, though the area of FIG. 4 not, short (e.g., time of about 0.5 to 1 second) driving the forcibly set to the engine a value of the correction coefficient K to 1.0 or rich or stoichiometric air-fuel ratio, of the NO X absorbent NO X absorbing capacity of the NO X absorbent by performing reproduction operation is prevented from saturating.

【0031】本実施例では電子制御回路30は、一定時
間毎に機関の運転状態に応じて、NOX 吸収剤18のN
X 吸収量を表す吸収量カウンタの加算、減算を行うこ
とにより、この吸収量カウンタの値からNOX 吸収剤1
8のNOX 吸収量を推定している。すなわち、機関がリ
ーン空燃比で運転されているときにはNOX 吸収剤18
は排気中のNOX の吸収を行い、NOX 吸収剤18のN
X 吸収量は増大する。このとき単位時間当たりにNO
X 吸収剤18が吸収するNOX 量は機関から単位時間に
排出されるNOX の量に比例すると考えられる。一方、
機関から単位時間に排出されるNOX の量は機関負荷条
件により決定され、例えば機関負荷(機関吸気圧力)が
高いほど、また機関回転数が高い程大きくなる。そこ
で、本実施例では予め実測などにより機関のNOX 排出
量を機関負荷と回転数との関数として求め、このNOX
排出量に一定の係数を乗じた値を単位時間当たりのNO
X 吸収剤のNOX 吸収量として、図3と同様の形式の数
値テーブルの形で電子制御回路30のROM32に格納
してある。機関がリーン空燃比で運転されている時に
は、電子制御回路30は一定時間毎に、機関負荷(吸気
圧力)と機関回転数とから上記数値テーブルを用いて単
位時間当たりのNOX 吸収量を算出して前述のNOX
収量カウンタの値に加算する。
In this embodiment, the electronic control circuit 30 controls the N x of the NO x absorbent 18 according to the operating condition of the engine at regular intervals.
By adding and subtracting the absorption amount counter representing the O X absorption amount, the NO X absorbent 1 is calculated from the value of this absorption amount counter.
The NO x absorption amount of No. 8 is estimated. That is, when the engine is operated at a lean air-fuel ratio, the NO X absorbent 18
Absorbs NO X in the exhaust gas, and N of the NO X absorbent 18 is absorbed.
O X absorption amount is increased. NO at this time per unit time
It is considered that the amount of NO X absorbed by the X absorbent 18 is proportional to the amount of NO X emitted from the engine per unit time. on the other hand,
The amount of NO X discharged from the engine in a unit time is determined by the engine load condition, and increases as the engine load (engine intake pressure) increases and the engine speed increases, for example. Therefore, in this embodiment, the NO X emission amount of the engine is obtained in advance as a function of the engine load and the rotational speed by actual measurement, and this NO X is calculated.
The value obtained by multiplying the emission amount by a certain coefficient is NO per unit time
As NO X absorption amount of X absorbent, are stored in the form of a numerical table of the same format as FIG. 3 in ROM32 of the electronic control circuit 30. When the engine is operated with a lean air-fuel ratio, the electronic control circuit 30 calculates the NO X absorption amount per unit time from the engine load (intake pressure) and the engine speed at regular time intervals using the above numerical table. Then, the value is added to the value of the NO x absorption amount counter described above.

【0032】また、機関がリッチまたは理論空燃比で運
転されているときには、NOX 吸収剤18は吸収したN
X を放出するため、NOX 吸収剤18のNOX 吸収量
は減少する。そこで、本実施例では、電子制御回路30
は機関がリッチまたは理論空燃比で運転されている時に
は、一定時間毎に上記NOX 吸収量カウンタの値から単
位時間当たりのNOX 放出量に相当する一定値を減算す
る操作を行う。
Further, when the engine is operating at a rich or stoichiometric air-fuel ratio, the NO x absorbent 18 has absorbed the N
To release O X, NO X absorption of the NO X absorbent 18 is reduced. Therefore, in the present embodiment, the electronic control circuit 30
When the engine is operated in a rich or stoichiometric air-fuel ratio, performs an operation of subtracting the constant value corresponding to the NO X release amount per unit from the value of the NO X absorption counter time at predetermined time intervals.

【0033】これにより、上述のNOX 吸収量カウンタ
の値は常にNOX 吸収剤18のNO X 吸収量に対応した
値になるため、NOX 吸収量カウンタの値からNOX
収剤18のNOX 吸収量を推定することが可能となる。
また、電子制御回路30は、上述のNOX 吸収量カウン
タの値が所定値(例えばNOX 吸収剤18の吸収可能な
最大NOX 量の70パーセント程度に相当する値)を越
えた場合には、一定の時間(例えば、0.5秒から1秒
程度の時間)機関空燃比をリッチまたは理論空燃比に切
り換えてNOX 吸収剤18の再生を行うが、再生終了後
には上記NOX 吸収量カウンタの値はゼロにもどされ
る。
As a result, the above NOXAbsorption amount counter
Is always NOXAbsorbent 18 NO XCorresponding to the amount absorbed
Since it becomes a value, NOXNo from the value of the absorption counterXSucking
NO of collecting agent 18XIt is possible to estimate the absorption amount.
In addition, the electronic control circuit 30 uses the above-mentioned NO.XAbsorption amount
Is a predetermined value (for example, NOXCan absorb the absorbent 18
Maximum NOX70% of the amount)
If you get a certain time (for example, 0.5 seconds to 1 second
The engine air-fuel ratio is set to rich or stoichiometric.
Replace with NOXRegenerate the absorbent 18, but after regeneration
The above NOXThe value of the absorption counter is returned to zero.
It

【0034】次に、本実施例の自動変速機の変速操作に
ついて説明する。本実施例では、自動変速機40の変速
操作は、車両走行速度とスロットル弁開度とに基づいて
行われる。すなわち、電子制御回路30はそれぞれ車速
センサ24とスロットル開度センサ20とから車両走行
速度とスロットル弁開度とを入力し、これらの値に基づ
いて自動変速機40の変速段を選定して変速操作を行
う。
Next, the shift operation of the automatic transmission of this embodiment will be described. In this embodiment, the shift operation of the automatic transmission 40 is performed based on the vehicle traveling speed and the throttle valve opening. That is, the electronic control circuit 30 inputs the vehicle traveling speed and the throttle valve opening from the vehicle speed sensor 24 and the throttle opening sensor 20, respectively, and selects the shift speed of the automatic transmission 40 based on these values to shift gears. Do the operation.

【0035】また、本実施例では、上記変速操作を行う
ための車両走行速度、スロットル弁開度、と選択される
変速段との関係(変速制御特性)は2種類用意されてお
り、電子制御回路30は、後述するように、NOX 吸収
剤18が吸収した硫黄酸化物(SOX )の量に応じてど
ちらか一方の変速制御特性を選択するようにされてい
る。
Further, in this embodiment, there are prepared two types of relationships (shift control characteristics) between the vehicle running speed for performing the above-described shift operation, the throttle valve opening, and the selected shift speed. As will be described later, the circuit 30 is configured to select either one of the shift control characteristics according to the amount of sulfur oxide (SO X ) absorbed by the NO X absorbent 18.

【0036】図5、図6は、本実施例で用いられる変速
制御特性の例を示す。図5、図6はオーバードライブ
(OD)機構と3段の変速ギヤを有する自動変速機のシ
フト特性を示し、図5、図6の縦軸はスロットル弁開度
TA、横軸は車両走行速度SPをそれぞれ示す。また、
図6において、実線は低速段から高速段への変速(シフ
トアップ)、点線は高速段から低速段への変速(シフト
ダウン)の変速線をそれぞれ示している。(なお、煩雑
になることを避けるために、図6にはシフトアップの際
の変速線のみを示した。)ここで、図5はNOX 吸収剤
のSOX 吸収量が少ない場合に選択される変速制御特性
(第1の変速制御特性)を示し、図6はNOX 吸収剤の
SOX 吸収量が多い場合にSOX 被毒解消のために選択
される変速制御特性(第2の変速制御特性)を示してい
る。図5、図6を比較すると判るように、第2の変速制
御特性(図6)では第1の変速制御特性(図5)に較べ
て各変速段のシフトアップ変速線は全体的に図の右方向
(車両走行速度が高い方向)にシフトしており、低速段
での運転領域が高速走行側に拡がっている。また、図6
には図示していないが、第2の変速制御特性では、シフ
トダウン変速線も同様に高速走行側にシフトしており、
早めに(高速走行側で)シフトダウンが実施され、シフ
トアップの場合と同様に低速段での運転領域が拡がるよ
うになっている。
5 and 6 show examples of shift control characteristics used in this embodiment. FIGS. 5 and 6 show shift characteristics of an automatic transmission having an overdrive (OD) mechanism and three-speed transmission gears. In FIGS. 5 and 6, the vertical axis represents the throttle valve opening TA and the horizontal axis represents the vehicle traveling speed. Each SP is shown. Also,
In FIG. 6, a solid line shows a shift line from a low speed stage to a high speed stage (shift up), and a dotted line shows a shift line from a high speed stage to a low speed stage (shift down). (Note that in order to avoid complication, only the shift line at the time of upshift is shown in FIG. 6.) Here, FIG. 5 is selected when the SO X absorption amount of the NO X absorbent is small. 6 shows a shift control characteristic (first shift control characteristic). FIG. 6 shows a shift control characteristic (second shift control characteristic) selected for eliminating SO X poisoning when the SO X absorption amount of the NO X absorbent is large. Control characteristics). As can be seen by comparing FIG. 5 and FIG. 6, in the second shift control characteristic (FIG. 6), the shift-up shift line of each shift speed is generally larger than that in the first shift control characteristic (FIG. 5). The vehicle is shifting to the right (the direction in which the vehicle travels at a higher speed), and the operating range at low speeds is expanding to the high-speed travel side. In addition, FIG.
Although not shown in the figure, in the second shift control characteristic, the shift-down shift line is similarly shifted to the high-speed running side,
The shift down is carried out earlier (on the high speed side), and the operating range at the low speed stage is expanded as in the case of the shift up.

【0037】従ってち、第2の変速制御特性が選択され
ると低速段のギヤでの運転領域が拡がるため、同一の走
行速度条件でも機関回転数は全体的に高くなり、第1の
変速制御特性の場合に比べで排気温度が上昇することに
なる。次に、本実施例のNOX 吸収剤のSOX 被毒解消
操作について説明する。本実施例では、電子制御回路3
0は、前述のNOX 吸収量推定と同様な手法を用いて、
NOX 吸収剤18に吸収されたSOX 吸収量を表すSO
X 吸収量カウンタの計算を行う。また、上記SOX 吸収
量カウンタの値が所定値を越えた場合にNOX 吸収剤1
8のSOX 被毒が生じたと判断して、以下のSOX 被毒
解消操作を行う。
Therefore, when the second speed change control characteristic is selected, the operating range in the low speed gear is expanded, so that the engine speed is generally high even under the same traveling speed condition, and the first speed change control is performed. Exhaust temperature will rise compared to the case of characteristics. Next, the SO X poisoning elimination operation of the NO X absorbent of the present embodiment will be described. In this embodiment, the electronic control circuit 3
0 is the same as the above-mentioned NO x absorption estimation,
SO representing the amount of SO X absorbed by the NO X absorbent 18
Calculate the X absorption counter. Further, when the value of the SO X absorption amount counter exceeds a predetermined value, the NO X absorbent 1
It is determined that SO X poisoning of No. 8 has occurred, and the following SO X poisoning elimination operation is performed.

【0038】すなわち、被毒解消時には、電子制御回路
30は、図4の運転領域にかかわらず機関空燃比がリッ
チ空燃比になるように空燃比補正係数Kの値を所定値K
0 に固定する(K0 >1.0)。また、電子制御回路3
0は同時に上記第2の変速制御特性(図6)に基づいて
自動変速機40の変速制御を行う。これにより、全体と
して機関は高速回転側で運転され、しかも空燃比がリッ
チになるため排気温度が上昇する。従って、NOX 吸収
剤18には、高温かつリッチ空燃比の排気が流入するこ
とになりNOX 吸収剤18からSOX が放出され、NO
X 吸収剤18中のSOX 量が低減される。
That is, at the time of eliminating the poisoning, the electronic control circuit 30 sets the value of the air-fuel ratio correction coefficient K to a predetermined value K so that the engine air-fuel ratio becomes the rich air-fuel ratio regardless of the operating region of FIG.
It is fixed at 0 (K 0 > 1.0). In addition, the electronic control circuit 3
At the same time, 0 controls the shift of the automatic transmission 40 based on the second shift control characteristic (FIG. 6). As a result, the engine as a whole operates on the high-speed rotation side, and the air-fuel ratio becomes rich, so the exhaust temperature rises. Therefore, the the NO X absorbent 18, SO X is released from the NO X absorbent 18 will be evacuated of high temperature and rich air-fuel ratio flows, NO
The amount of SO X in the X absorbent 18 is reduced.

【0039】また、電子制御回路30は上記によりNO
X 吸収剤18中のSOX 量が減少し、SOX 被毒が解消
されたと判断すると、空燃比補正係数Kの値を図4の運
転領域に基づいて設定する空燃比の通常の制御に復帰
し、同時に自動変速機40の変速操作を前記第1の変速
制御特性(図5)に基づいて制御する。図7は、上記S
X 被毒解消操作を示すフローチャートである。本ルー
チンは、電子制御回路30により一定時間毎に実行され
る。
Further, the electronic control circuit 30 is NO by the above.
When it is determined that the SO X amount in the X absorbent 18 has decreased and SO X poisoning has been eliminated, the normal control of the air-fuel ratio, which sets the value of the air-fuel ratio correction coefficient K based on the operating region of FIG. 4, is restored. At the same time, the shift operation of the automatic transmission 40 is controlled based on the first shift control characteristic (FIG. 5). FIG. 7 shows the above S
O X is a flowchart showing a contamination-removing operation. This routine is executed by the electronic control circuit 30 at regular intervals.

【0040】図7において、ステップ701から707
はNOX 吸収剤18中に吸収されたSOX 量の推定を示
し、ステップ713から721は上記SOX 量に基づく
SO X 被毒解消操作を示している。図7においてルーチ
ンがスタートすると、ステップ701では、前述の吸気
圧センサ15からサージタンク10の絶対圧力PMが、
また回転数センサ21から機関回転数Nがそれぞれ読み
込まれる。
In FIG. 7, steps 701 to 707 are performed.
Is NOXSO absorbed in absorbent 18XShows an estimate of quantity
Then, steps 713 to 721 are the above SO.XBased on quantity
SO XThe poisoning elimination operation is shown. In Figure 7
When the engine starts, in step 701, the above-mentioned intake
From the pressure sensor 15 to the absolute pressure PM of the surge tank 10,
Also, the engine speed N is read from the speed sensor 21 respectively.
Get caught.

【0041】次いで、ステップ703では、現在機関が
リーン空燃比で運転されているか否かが、空燃比補正係
数Kの値を用いて判断され、リーン空燃比運転が行われ
ている場合には(K<1.0)ステップ705に進み機
関吸入空気量Qを算出し、更にステップ707ではNO
X 吸収剤18のSOX 吸収量を表すカウンタSの値に、
上記吸入空気量Qに定数αを乗じた値を加算する。
Next, at step 703, it is judged using the value of the air-fuel ratio correction coefficient K whether or not the engine is currently operating at the lean air-fuel ratio, and if the lean air-fuel ratio operation is being performed ( K <1.0) The routine proceeds to step 705, where the engine intake air amount Q is calculated, and at step 707 NO
To the value of the counter S that represents the SO X absorption amount of the X absorbent 18,
A value obtained by multiplying the intake air amount Q by a constant α is added.

【0042】前述のように、NOX 吸収剤18は、排気
空燃比がリーンの時に排気中に含まれるSOX を吸収
し、排気温度が高温で、かつ排気空燃比がリッチの時に
吸収したSOX を放出する。また、リーン空燃比運転時
のNOX 吸収剤18の単位時間当たりのSOX 吸収量
は、機関のSOX 発生量に比例する。また、機関のSO
X発生量は比較的微量であり燃料量に比例する。従っ
て、略機関の吸入空気量に比例すると考えてよい。
As described above, the NO X absorbent 18 absorbs SO X contained in the exhaust when the exhaust air-fuel ratio is lean, and absorbs SO X when the exhaust temperature is high and the exhaust air-fuel ratio is rich. Emit X. Further, the SO X absorption amount of the NO X absorbent 18 per unit time during lean air-fuel ratio operation is proportional to the SO X generation amount of the engine. In addition, the SO
The amount of X generation is relatively small and proportional to the amount of fuel. Therefore, it may be considered that it is approximately proportional to the intake air amount of the engine.

【0043】そこで、本実施例では、機関の吸入空気量
Qを、機関負荷(吸気圧力PM)と回転数Nとの関数と
して予め実測などにより求め、電子制御回路30のRO
M32に図3と同様な数値テーブルの形で格納してお
き、機関がリーン空燃比で運転されている場合には、ス
テップ705でこの関係を用いてPM、Nの値から吸入
空気量Qを読みだす。また、上記のようにNOX 吸収剤
18の単位時間当たりのSOX 吸収量は機関吸入空気量
Qに比例すると考えられるため、ステップ707でSO
X 吸収量カウンタSを、Qに所定の定数αを乗じた値だ
け増加させる。これにより、SOX 吸収量カウンタの値
はNOX 吸収剤18の単位時間当たりのSOX 吸収量に
応じて増大する。
Therefore, in the present embodiment, the intake air amount Q of the engine is previously obtained by actual measurement as a function of the engine load (intake pressure PM) and the rotational speed N, and RO of the electronic control circuit 30 is obtained.
When the engine is operated at a lean air-fuel ratio, it is stored in M32 in the form of a numerical table similar to that of FIG. 3, and in step 705, this relationship is used to calculate the intake air amount Q from the values of PM and N. Read out. Further, as described above, the SO X absorption amount of the NO X absorbent 18 per unit time is considered to be proportional to the engine intake air amount Q.
The X absorption amount counter S is incremented by a value obtained by multiplying Q by a predetermined constant α. As a result, the value of the SO X absorption amount counter increases according to the SO X absorption amount of the NO X absorbent 18 per unit time.

【0044】また、ステップ705で機関が理論空燃比
またはリッチ空燃比で運転されている場合(K≧1.
0)には、ルーチンはステップ709に進み、排気温度
EXが所定値T0 以上か否かが判断され、TEX≧T0
場合にはステップ711に進みSOX 吸収量カウンタS
の値を一定値βだけ減少させる。ここで排気温度の所定
値T0 は、NOX 吸収剤18の温度がSOX 放出温度
(例えば600℃程度)に到達するのに必要な排気温度
である。
When the engine is operating at the stoichiometric air-fuel ratio or the rich air-fuel ratio at step 705 (K ≧ 1.
0), the routine proceeds to step 709, where it is determined whether the exhaust temperature T EX is equal to or higher than the predetermined value T 0. If T EX ≧ T 0 , the routine proceeds to step 711, where the SO X absorption counter S
The value of is decreased by a constant value β. Here, the predetermined value T 0 of the exhaust gas temperature is the exhaust gas temperature required for the temperature of the NO X absorbent 18 to reach the SO X release temperature (for example, about 600 ° C.).

【0045】前述のように、排気が高温かつリッチ空燃
比の場合には、NOX 吸収剤18は吸収したSOX を放
出するが、この放出速度は略一定値と考えてよい。そこ
で、本実施例では、排気空燃比がリッチ(ステップ70
3)かつ排気温度が高温(ステップ709)の場合には
SOX 吸収量カウンタの値を一定値減少させている。こ
れにより、SOX 吸収量カウンタの値はNOX 吸収剤1
8の単位時間当たりのSOX 放出量に応じて減少する。
As described above, when the exhaust gas has a high temperature and a rich air-fuel ratio, the NO X absorbent 18 releases the absorbed SO X , but this release rate may be considered to be a substantially constant value. Therefore, in the present embodiment, the exhaust air-fuel ratio is rich (step 70
3) When the exhaust temperature is high (step 709), the value of the SO X absorption amount counter is decreased by a constant value. As a result, the value of the SO X absorption amount counter is the NO X absorbent 1
It decreases according to the amount of SO X released per unit time of 8.

【0046】なお、本実施例では、ステップ709で使
用する排気温度TEXは、排気温度センサ等を使用せず、
機関の運転状態に基づいて求めている。すなわち、機関
排気温度は、機関の負荷状態(吸気圧力PM、回転数
N)と機関運転空燃比(空燃比補正係数K)とにより決
定される。また、本実施例では空燃比(K)の値は図4
の関係を用いて吸気圧力PMと回転数Nとにより決定さ
れる。本実施例では、排気温度TEXの値は予め実測等に
より吸気圧力PMと回転数Nとの関数として求められ、
ROM32に図3と同様な数値テーブルの形で格納され
ており、ステップ709では、ステップ701で入力し
たPM、Nの値を用いてこの数値テーブルから排気温度
EXが決定される。
In this embodiment, the exhaust temperature T EX used in step 709 does not use an exhaust temperature sensor or the like,
It is calculated based on the operating condition of the engine. That is, the engine exhaust temperature is determined by the engine load state (intake pressure PM, rotational speed N) and the engine operating air-fuel ratio (air-fuel ratio correction coefficient K). Further, in this embodiment, the value of the air-fuel ratio (K) is as shown in FIG.
It is determined by the intake pressure PM and the rotation speed N using the relationship of In the present embodiment, the value of the exhaust temperature T EX is obtained in advance as a function of the intake pressure PM and the rotation speed N by actual measurement or the like,
It is stored in the ROM 32 in the form of a numerical table similar to that of FIG. 3, and in step 709, the exhaust temperature T EX is determined from this numerical table using the values of PM and N input in step 701.

【0047】なお、実際にNOX 吸収剤の入口に排気温
度センサを設けて、排気温度TEXを実測するようにする
ことも可能である。また、NOX 吸収剤の担体温度を検
出する温度センサを設けて、実際のNOX 吸収剤温度に
よりSOX 吸収量カウンタの値を演算するようにするこ
ともできる。一方、ステップ709でTEX<T0 であっ
た場合、すなわち排気空燃比はリッチであるものの排気
温度がSOX 放出温度より低い場合には、SOX 吸収量
カウンタSの値は増減されない。これは、排気がリッチ
空燃比であるためNOX 吸収剤にはSOX は吸収され
ず、また排気温度が低いためNOX 吸収剤からのSOX
放出も生じないためである。
It is also possible to actually provide an exhaust gas temperature sensor at the inlet of the NO x absorbent to measure the exhaust gas temperature T EX . Further, NO carriers temperature X absorbent is provided a temperature sensor for detecting may be adapted to calculate the actual value of SO X absorbed amount counter by the NO X absorbent temperature. On the other hand, if T EX <T 0 in step 709, that is, if the exhaust air-fuel ratio is rich but the exhaust temperature is lower than the SO X release temperature, the value of the SO X absorption counter S is not increased or decreased. This is because SO x is not absorbed by the NO x absorbent because the exhaust gas has a rich air-fuel ratio, and the SO x from the NO x absorbent is low because the exhaust temperature is low.
This is because no release occurs.

【0048】上記によりSOX 吸収量カウンタの演算終
了後、ステップ713から721では後述のようにフラ
グFの値が設定される。本実施例では、フラグFの値が
1にセットされると、電子制御回路30は、空燃比補正
係数Kを所定値K0 に固定して機関の運転空燃比をリッ
チ空燃比に保つとともに、第2の変速制御特性に基づい
て自動変速機の変速操作を制御し、NOX 吸収剤のSO
X 被毒解消操作を行う。また、フラグFの値が0にセッ
トされると、電子制御回路30は空燃比補正係数Kを図
4の運転領域に基づいて設定し、自動変速機の変速操作
を第1の変速制御特性に基づいて行う。
After the calculation of the SO X absorption amount counter is completed as described above, the value of the flag F is set in steps 713 to 721 as described later. In the present embodiment, when the value of the flag F is set to 1, the electronic control circuit 30 fixes the air-fuel ratio correction coefficient K to a predetermined value K 0 to keep the operating air-fuel ratio of the engine at the rich air-fuel ratio, and The shift operation of the automatic transmission is controlled based on the second shift control characteristic, and the SOx of the NO x absorbent is
X Perform poisoning elimination operation. Further, when the value of the flag F is set to 0, the electronic control circuit 30 sets the air-fuel ratio correction coefficient K based on the operating region of FIG. 4, and makes the shift operation of the automatic transmission the first shift control characteristic. Based on.

【0049】本実施例では、フラグFの値は、NOX
収剤のSOX 吸収量Sが所定値S1以上になった時に1
にセットされ(ステップ715、717)、SOX 吸収
量Sが減少して所定値S2 以下になったときに0にセッ
トされる(ステップ719、721)。ここで、S2
1 より大きな値に設定されており、フラグFの値の設
定にヒステリシスを持たせてある。これによりNOX
収剤中のSOX 量はある程度の幅を持って制御され、頻
繁なSOX 被毒解消操作の実行が防止される。
[0049] In the present embodiment, the value of the flag F is 1 when the SO X absorbed amount S of the NO X absorbent becomes 1 or greater than a predetermined value S
Is set to 0 (steps 715 and 717), and is set to 0 when the SO X absorption amount S decreases to a predetermined value S 2 or less (steps 719 and 721). Here, S 2 is set to a value larger than S 1 , and the value of the flag F is set to have hysteresis. As a result, the amount of SO X in the NO X absorbent is controlled within a certain range, and frequent SO X poisoning elimination operation is prevented.

【0050】本実施例によれば、上述のようにNOX
収剤の吸収したSOX 量を推定して、SOX 量が増大し
たときには機関空燃比をリッチにするとともに、自動変
速機の低速段側での運転領域を拡大することにより、N
X 吸収剤は高温かつリッチ雰囲気に維持され、SOX
被毒が解消される。なお、上述の実施例では、SOX
毒解消操作時に、自動変速機の変速制御特性を全体的に
変速線が高速走行側に移動するように設定していたが
(図6)、例えば、高速段(例えば、図5のOD段)で
の運転を禁止して、低速段のみの運転を行うようにして
も同様に低速段での運転領域が拡がるため、全体として
排気温度を上昇させることができる。
According to this embodiment, the SO X amount absorbed by the NO X absorbent is estimated as described above, and when the SO X amount increases, the engine air-fuel ratio is made rich and the low speed of the automatic transmission is reduced. By expanding the operating area on the stage side, N
O X absorbent is maintained at a high temperature and rich atmosphere, SO X
Poisoning is eliminated. In the embodiment described above, the shift control characteristic of the automatic transmission is set so that the shift line generally moves to the high speed running side during the SO X poisoning elimination operation (FIG. 6). Even if the operation at the high speed stage (for example, the OD stage in FIG. 5) is prohibited and only the low speed stage is operated, the operating range at the low speed stage is also expanded. Therefore, the exhaust temperature should be raised as a whole. You can

【0051】また、上述の実施例では、機関空燃比をリ
ッチ空燃比に設定するのみで機関点火時期は変更してい
ないが、上記SOX 被毒解消操作時にリッチ空燃比運転
に加えて点火時期を遅角させるようにすれば、更に排気
温度を上昇させて速やかにSOX 被毒を解消することが
可能である。また、上述のように機関空燃比をリッチに
保ち、低速段での運転領域が拡がるように変速制御特性
を切り換えた場合には、当然機関燃料消費量は増大する
ことになるが、機関が発生するSOX の量は微量であ
り、上記SOX 被毒解消操作が行われる頻度は極めて少
ないため、実際上、上記SOX 被毒解消操作による運転
コストの上昇が問題になることはない。
In the above embodiment, the engine air-fuel ratio is set to the rich air-fuel ratio but the engine ignition timing is not changed. However, during the SO X poisoning elimination operation, the ignition timing is added to the rich air-fuel ratio operation. By retarding the exhaust gas, it is possible to further raise the exhaust gas temperature and quickly eliminate SO X poisoning. Further, as described above, when the shift control characteristics are switched so that the engine air-fuel ratio is kept rich and the operating range at the low speed stage is widened, the engine fuel consumption naturally increases, but the amount of SO X to is very small, since the frequency of the SO X poisoning recovery operation is performed is very small, in practice, an increase in operating costs due to the SO X poisoning recovery operation is not a problem.

【0052】[0052]

【発明の効果】本発明によれば、NOX 吸収剤の吸収し
たSOX 量を推定し、このSOX 推定量が増大した場合
には、機関空燃比をリッチ空燃比に設定するとともに、
自動変速機の変速制御特性を低速段側での運転領域が拡
がるように切り換えるようにしたため、NOX 吸収剤を
高温かつリッチ雰囲気に保つことができ、ヒータ、バー
ナ等の補助加熱手段を用いることなくNOX 吸収剤のS
X 被毒を解消することが可能となる効果が得られる。
According to the present invention, the amount of SO X absorbed by the NO X absorbent is estimated, and when the estimated amount of SO X increases, the engine air-fuel ratio is set to the rich air-fuel ratio and
Since the shift control characteristics of the automatic transmission are switched so that the operating range on the low speed stage side is expanded, the NO x absorbent can be kept in a high temperature and rich atmosphere, and auxiliary heating means such as a heater or burner must be used. Without NO X absorbent S
The effect that O X poisoning can be eliminated can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す自動変速機付内燃機関の
全体図である。
FIG. 1 is an overall view of an internal combustion engine with an automatic transmission showing an embodiment of the present invention.

【図2】図1の実施例の排気浄化装置に使用するNOX
吸収剤の、NOX の吸放出作用を説明する図である。
[FIG. 2] NO X used in the exhaust purification system of the embodiment of FIG. 1.
Absorbent is a diagram for explaining the absorbing and releasing action of NO X.

【図3】基本燃料噴射量決定に使用する数値テーブルの
形式を示す図である。
FIG. 3 is a diagram showing a format of a numerical table used for determining a basic fuel injection amount.

【図4】燃料噴射量補正係数の設定例を示す図である。FIG. 4 is a diagram showing a setting example of a fuel injection amount correction coefficient.

【図5】図1の実施例の自動変速機の第1の変速制御特
性を示す図である。
5 is a diagram showing a first shift control characteristic of the automatic transmission according to the embodiment of FIG.

【図6】図1の実施例の自動変速機の第2の変速制御特
性を示す図である。
6 is a diagram showing a second shift control characteristic of the automatic transmission according to the embodiment of FIG.

【図7】NOX 吸収剤のSOX 被毒解消制御を説明する
フローチャートである。
FIG. 7 is a flowchart illustrating SO X poisoning elimination control of a NO X absorbent.

【符号の説明】[Explanation of symbols]

1…内燃機関 17…排気通路 18…NOX 吸収剤 30…電子制御回路 40…自動変速機1 ... Internal combustion engine 17 ... Exhaust passage 18 ... NO X absorbent 30 ... Electronic control circuit 40 ... Automatic transmission

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 車両用内燃機関の排気通路に配置され
た、排気の空燃比がリーンのときに排気中のNOX を吸
収し排気中の酸素濃度が低下したときに吸収したNOX
を放出するNOX 吸収剤と、 前記内燃機関に接続された自動変速機と、 走行状態に応じて前記自動変速機の変速段を設定する変
速制御手段と、 前記内燃機関の空燃比を制御する空燃比制御手段とを備
えた自動変速機付内燃機関の制御装置において、 前記NOX 吸収剤中に吸収された硫黄酸化物の量を推定
する推定手段を備え、 前記変速制御手段は、前記NOX 吸収剤の吸収した硫黄
酸化物の量が所定値以下の場合には所定の第1の変速制
御特性に基づいて走行状態に応じて変速段を設定し、前
記NOX 吸収剤の吸収した硫黄酸化物の量が所定値より
大きい場合には、前記第1の変速制御特性より低速段側
での運転領域が広い第2の変速制御特性に基づいて走行
状態に応じて変速段を設定し、 前記空燃比制御手段は、前記NOX 吸収剤の吸収した硫
黄酸化物の量が前記所定値より大きい場合には、前記機
関の空燃比を理論空燃比よりリッチ側に制御することを
特徴とする自動変速機付内燃機関の制御装置。
1. A disposed in an exhaust passage of an internal combustion engine for a vehicle, NO air-fuel ratio of the exhaust gas is the oxygen concentration in the absorbing evacuating the NO X in the exhaust gas when the lean absorbed when reduced X
A NO x absorbent that releases NOx, an automatic transmission connected to the internal combustion engine, a shift control unit that sets a shift speed of the automatic transmission according to a running state, and an air-fuel ratio of the internal combustion engine is controlled. the control apparatus for an internal combustion engine with an automatic transmission having a air-fuel ratio control means comprises an estimation means for estimating the amount of the the NO X absorbent absorbs sulfur oxide in the shift control means, the NO When the amount of sulfur oxide absorbed by the X absorbent is less than or equal to a predetermined value, the gear stage is set according to the running state based on the predetermined first shift control characteristic, and the sulfur absorbed by the NO X absorbent is set. When the amount of the oxide is larger than a predetermined value, the shift speed is set according to the traveling state based on the second shift control characteristic in which the operating range on the lower speed side is wider than the first shift control characteristic, The air-fuel ratio control means absorbs the NO x absorbent. When the amount of sulfur oxide is larger than the predetermined value, the air-fuel ratio of the engine is controlled to be richer than the stoichiometric air-fuel ratio.
JP33602793A 1993-12-28 1993-12-28 Control device for internal combustion engine with automatic transmission Expired - Lifetime JP3404846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33602793A JP3404846B2 (en) 1993-12-28 1993-12-28 Control device for internal combustion engine with automatic transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33602793A JP3404846B2 (en) 1993-12-28 1993-12-28 Control device for internal combustion engine with automatic transmission

Publications (2)

Publication Number Publication Date
JPH07186785A true JPH07186785A (en) 1995-07-25
JP3404846B2 JP3404846B2 (en) 2003-05-12

Family

ID=18294947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33602793A Expired - Lifetime JP3404846B2 (en) 1993-12-28 1993-12-28 Control device for internal combustion engine with automatic transmission

Country Status (1)

Country Link
JP (1) JP3404846B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998027322A1 (en) * 1996-12-18 1998-06-25 Ford Motor Company Limited METHOD OF DE-SULPHURATING ENGINE EXHAUST NOx TRAPS
EP0860595A1 (en) * 1997-02-20 1998-08-26 Ford Global Technologies, Inc. Process for desulfurizing a nitrogen oxide trap in the exhaust system of a combustion engine
EP0869263A1 (en) * 1997-03-31 1998-10-07 Ford Global Technologies, Inc. Method and apparatus for maintaining catalyst efficiency of a NOx trap
EP0971101A2 (en) * 1998-07-07 2000-01-12 Toyota Jidosha Kabushiki Kaisha An exhaust gas purification device for an internal combustion engine
US6173571B1 (en) 1997-03-31 2001-01-16 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust purifying apparatus for an in-cylinder injection type internal combustion engine
DE19913949C2 (en) * 1998-03-26 2001-05-31 Hitachi Ltd Control device for exhaust gas purification for internal combustion engines
EP0896136A3 (en) * 1997-08-05 2002-04-03 Toyota Jidosha Kabushiki Kaisha Device for reactivating catalyst of engine
DE10027347B4 (en) * 1999-06-03 2007-11-29 Honda Giken Kogyo K.K. Exhaust emission control device for an internal combustion engine
WO2008100284A2 (en) * 2006-09-29 2008-08-21 Caterpillar Inc. Power system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998027322A1 (en) * 1996-12-18 1998-06-25 Ford Motor Company Limited METHOD OF DE-SULPHURATING ENGINE EXHAUST NOx TRAPS
EP0860595A1 (en) * 1997-02-20 1998-08-26 Ford Global Technologies, Inc. Process for desulfurizing a nitrogen oxide trap in the exhaust system of a combustion engine
EP0869263A1 (en) * 1997-03-31 1998-10-07 Ford Global Technologies, Inc. Method and apparatus for maintaining catalyst efficiency of a NOx trap
US6173571B1 (en) 1997-03-31 2001-01-16 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust purifying apparatus for an in-cylinder injection type internal combustion engine
EP0896136A3 (en) * 1997-08-05 2002-04-03 Toyota Jidosha Kabushiki Kaisha Device for reactivating catalyst of engine
DE19913949C2 (en) * 1998-03-26 2001-05-31 Hitachi Ltd Control device for exhaust gas purification for internal combustion engines
US6772587B2 (en) 1998-03-26 2004-08-10 Hitachi, Ltd. Exhaust gas purification control apparatus of engine
US6301882B1 (en) 1998-03-26 2001-10-16 Hitachi, Ltd. Exhaust gas purification control apparatus of engine
EP0971101A2 (en) * 1998-07-07 2000-01-12 Toyota Jidosha Kabushiki Kaisha An exhaust gas purification device for an internal combustion engine
EP0971101A3 (en) * 1998-07-07 2001-07-25 Toyota Jidosha Kabushiki Kaisha An exhaust gas purification device for an internal combustion engine
DE10027347B4 (en) * 1999-06-03 2007-11-29 Honda Giken Kogyo K.K. Exhaust emission control device for an internal combustion engine
WO2008100284A2 (en) * 2006-09-29 2008-08-21 Caterpillar Inc. Power system
WO2008100284A3 (en) * 2006-09-29 2009-02-19 Caterpillar Inc Power system

Also Published As

Publication number Publication date
JP3404846B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
US5437153A (en) Exhaust purification device of internal combustion engine
EP0585900B1 (en) An exhaust gas purification device of an engine
JP4983491B2 (en) Exhaust gas purification device for internal combustion engine
JP2003176715A (en) Exhaust emission control device
JP2888124B2 (en) Exhaust gas purification device for internal combustion engine
JPH07186785A (en) Controller for internal combustion engine with automatic transmission
JP2845056B2 (en) Exhaust gas purification device for internal combustion engine
JP3085065B2 (en) Control device for internal combustion engine with automatic transmission
JP3106836B2 (en) Control device for internal combustion engine with automatic transmission
JPH07139340A (en) Exhaust emission control device for internal combustion engine
JP3166595B2 (en) Control device for internal combustion engine with automatic transmission
JPH07166850A (en) Control device for internal combustion engine with automatic transmission
JPH09317447A (en) Exhaust emission control device for internal combustion engine
JP3487269B2 (en) Exhaust gas purification device for internal combustion engine
JP3487056B2 (en) Control device for automatic transmission
JP3203945B2 (en) Control device for internal combustion engine with automatic transmission
JP3637642B2 (en) Air-fuel ratio control device for internal combustion engine
JP3620131B2 (en) Engine and automatic transmission control device
JP2785612B2 (en) Exhaust gas purification device for internal combustion engine
JP3156469B2 (en) Exhaust gas purification device for internal combustion engine
JP2002332823A (en) Exhaust emission control device of internal combustion engine
JP2658757B2 (en) Exhaust gas purification device for internal combustion engine
JP3228117B2 (en) Control device for internal combustion engine with automatic transmission
JP3508192B2 (en) Exhaust gas purification device for internal combustion engine
JP3528401B2 (en) Control device for internal combustion engine with automatic transmission

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 11

EXPY Cancellation because of completion of term