JPH07168004A - Formation of antireflection film - Google Patents
Formation of antireflection filmInfo
- Publication number
- JPH07168004A JPH07168004A JP5293501A JP29350193A JPH07168004A JP H07168004 A JPH07168004 A JP H07168004A JP 5293501 A JP5293501 A JP 5293501A JP 29350193 A JP29350193 A JP 29350193A JP H07168004 A JPH07168004 A JP H07168004A
- Authority
- JP
- Japan
- Prior art keywords
- fluorine
- thin film
- transparent substrate
- forming
- electron beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は透明電極基板、保護板、
偏光板、防眩フィルム等の透明性基材の反射防止に関
し、液晶表示装置やペン入力装置等の光学デバイスの視
認性向上に利用できる。The present invention relates to a transparent electrode substrate, a protective plate,
Regarding antireflection of a transparent substrate such as a polarizing plate and an antiglare film, it can be used for improving the visibility of optical devices such as liquid crystal display devices and pen input devices.
【0002】[0002]
【従来の技術】液晶表示装置やペン入力装置等に用いら
れる透明電極基板、保護板、偏光板、防眩フィルム等の
透明性基材は、その片面で5%程度の反射が発生し、視
認性の低下や透過率の低下を引き起こしている。減反射
コーティングとしては、フッ化マグネシウム等の低屈折
率材料を蒸着する方法や、屈折率の異なる多層膜を蒸着
で形成することが知られ、眼鏡レンズなどで実用化され
ている。しかし、蒸着法はスループットが良くない高価
な真空装置を必要とするため特に大きな面積を必要とす
る用途のためには、非常に高価なものとなってしまうと
いう問題があった。2. Description of the Related Art Transparent substrates such as transparent electrode substrates, protective plates, polarizing plates, and antiglare films used for liquid crystal display devices and pen input devices have a reflection of about 5% on one side and are visually recognized. It causes the deterioration of the transparency and the transmittance. As the antireflection coating, a method of depositing a low-refractive index material such as magnesium fluoride or a method of depositing a multilayer film having a different refractive index by vapor deposition is known, and it has been put to practical use in spectacle lenses and the like. However, since the vapor deposition method requires an expensive vacuum apparatus having a low throughput, there is a problem that the vapor deposition method becomes very expensive particularly for applications requiring a large area.
【0003】そこで低屈折材料である透明性フッ素樹脂
を溶媒に溶かして塗布し、反射防止膜を形成する方法が
提示されている(特開平3−170901、特開平4−
63283、特開平4−81756など)。大面積の基
材に対し連続的な反射防止膜の形成が可能なため、大幅
なコストダウンが期待された。Then, a method of forming an antireflection film by dissolving a transparent fluororesin, which is a low-refractive material, in a solvent and applying it, has been proposed (JP-A-3-170901, JP-A-4-170901).
63283, JP-A-4-81756, etc.). Since it is possible to continuously form an antireflection film on a large-area substrate, a significant cost reduction was expected.
【0004】[0004]
【発明が解決しようとする課題】しかし、実際に透明性
基材に透明性フッ素樹脂を塗布してみると、基材との密
着力の弱いこと、表面硬度の低いことから、剥離や傷が
発生し易く信頼性の点で課題があった。素材としての強
度が発現する1μm以上の膜厚では、光学特性に影響を
与え、反射率の増加、干渉色による色付き、膜厚の不均
一性に起因する色むらのため視認性の低下が発生した。However, when a transparent fluororesin is actually applied to a transparent substrate, peeling or scratches are caused by its weak adhesion to the substrate and low surface hardness. It is easy to occur and there was a problem in terms of reliability. At a film thickness of 1 μm or more, which exhibits strength as a material, the optical characteristics are affected, the reflectance is increased, coloring is caused by interference color, and the visibility is deteriorated due to uneven color due to unevenness of the film thickness. did.
【0005】そこで本発明はこのような課題を解決する
もので、その目的とするところは透明性基材の表面に量
産効果が高く、しかも実用に耐えるだけの信頼性を備え
た反射防止膜の形成方法を提供することにより、視認性
の高く透過率の高い光学デバイスを安価で達成するとこ
ろにある。Therefore, the present invention solves such a problem, and an object of the present invention is to provide an antireflection film on the surface of a transparent substrate, which has a high mass production effect and is reliable enough to withstand practical use. By providing a forming method, an optical device having high visibility and high transmittance can be achieved at low cost.
【0006】[0006]
【課題を解決するための手段】上記目的は、少なくとも
以下の工程を一つ以上用いることで達成される。The above object can be achieved by using at least one or more of the following steps.
【0007】(1)透明性基材の表面に表面活性化処理
を行なう工程。(1) A step of subjecting the surface of the transparent substrate to a surface activation treatment.
【0008】(2)透明性基材の表面にシリコン化合物
を反応させてカップリング化合物層を形成する工程。(2) A step of forming a coupling compound layer by reacting a silicon compound on the surface of a transparent substrate.
【0009】(3)少なくとも重合性含フッ素有機化合
物のモノマー、オリゴマー、あるいはポリマーを溶解し
た含フッ素有機溶液を、透明性基材の表面に0.05μ
mから1μmの間の規定の膜厚になるように塗布し、加
熱、紫外線照射、電子線照射いずれかの方法で重合させ
含フッ素高分子薄膜を形成する工程。(3) A fluorine-containing organic solution containing at least a monomer, oligomer or polymer of a polymerizable fluorine-containing organic compound dissolved on the surface of a transparent substrate in an amount of 0.05 μm.
A step of forming a fluorine-containing polymer thin film by coating so as to have a specified film thickness between m and 1 μm, and polymerizing by any method of heating, ultraviolet irradiation, and electron beam irradiation.
【0010】(4)透明性基材の表面に含フッ素高分子
薄膜を形成した後、電子線照射により重合の促進及び含
フッ素高分子の架橋を行ない、薄膜を硬化させる工程。(4) A step of forming a fluorine-containing polymer thin film on the surface of a transparent substrate, and then accelerating the polymerization by electron beam irradiation and crosslinking the fluorine-containing polymer to cure the thin film.
【0011】[0011]
【作用】透明性基材と含フッ素高分子薄膜との密着性を
向上させるためには、基材の表面エネルギーを高くする
ことが有効である。コロナ放電、酸素プラズマまたはオ
ゾン曝露、紫外線照射、酸またはアルカリ洗浄、研磨剤
による粗面化等の表面活性化処理により、表面に付着し
た汚れを除去し、極性の高い反応基を高密度で透明性基
材表面に付与することができる。基材の種類や表面活性
化処理方法、保存環境にも依存するが、表面エネルギー
は時間の経過と共に減少していく。通常の塗膜材料であ
れば、成膜時に基材の活性化処理がなされていれば密着
強度は初期の特性を維持するが、分子間相互作用の極端
に弱い含フッ素高分子薄膜の場合、時間の経過と共に密
着強度が減少していくことがある。In order to improve the adhesion between the transparent base material and the fluoropolymer thin film, it is effective to increase the surface energy of the base material. Surface activation treatments such as corona discharge, oxygen plasma or ozone exposure, UV irradiation, acid or alkali cleaning, and surface roughening with abrasives remove dirt adhering to the surface and make highly polar reactive groups transparent at high density. It can be applied to the surface of the flexible substrate. Although it depends on the type of substrate, surface activation treatment method, and storage environment, the surface energy decreases with time. If it is a normal coating material, the adhesion strength maintains the initial properties if the substrate is activated during film formation, but in the case of a fluorine-containing polymer thin film with extremely weak intermolecular interaction, The adhesion strength may decrease over time.
【0012】そのような場合透明性基材の表面にシリコ
ン化合物を反応させて、カップリング化合物層を形成す
ることが有効である。アミノシラン等の基材との反応性
が高く、極性基を有した化合物を反応させると、基材の
表面エネルギーを高く保つことができる。前もって透明
性基材を表面活性化処理しておくと、シリコン化合物の
結合密度が更に高くなり、より好ましい。In such a case, it is effective to react a silicon compound on the surface of the transparent substrate to form a coupling compound layer. By reacting a compound having a polar group with high reactivity with a base material such as aminosilane, the surface energy of the base material can be kept high. It is more preferable to subject the transparent base material to a surface activation treatment in advance, because the bond density of the silicon compound is further increased.
【0013】また、あらかじめ重合させた含フッ素高分
子を溶媒に溶かして塗布するより、重合性含フッ素有機
化合物のモノマーやオリゴマーを塗布し、透明性基材の
表面で加熱、紫外線照射、電子線照射等の方法で重合さ
せた方が密着強度は強くなる。含フッ素有機溶剤に溶解
する含フッ素シリコン化合物を添加して塗布液とする
と、基材との密着力は化学結合を介すため、密着力は更
に強くなり、経時劣化がなくなる。前もって透明性基材
を表面活性化処理したり、カップリング化合物層を形成
しておくと結合密度が更に高くなり、より好ましい。Further, rather than dissolving a prepolymerized fluoropolymer in a solvent and coating the solution, a polymerizable fluorine-containing organic compound monomer or oligomer is coated, and the surface of the transparent substrate is heated, irradiated with ultraviolet rays, or irradiated with an electron beam. The adhesion strength becomes stronger when polymerized by a method such as irradiation. When a coating liquid is prepared by adding a fluorine-containing silicon compound that is soluble in a fluorine-containing organic solvent, the adhesive force with the base material is further increased through a chemical bond, so that the adhesive force is further strengthened and the deterioration with time is eliminated. It is more preferable to subject the transparent substrate to surface activation treatment or to form a coupling compound layer in advance, because the bond density becomes higher.
【0014】次に含フッ素高分子薄膜の表面硬度を高め
る方法であるが、溶媒に可溶の透明性含フッ素高分子
で、鉛筆硬度H以上の材料は未だ報告されていない。そ
のため重合性含フッ素有機化合物のモノマーやオリゴマ
ーを溶媒に溶かして塗布し、透明性基材の表面で加熱、
紫外線照射、電子線照射等の方法で重合させ、不溶の透
明性含フッ素高分子薄膜を形成する。普通に反射防止効
果を得るために用いられる膜厚は、(光の波長)÷4÷
(膜の屈折率)の奇数倍で求められ、可能性としては
0.05μmから1μmの間となる。しかし、膜厚が厚
くなるほど反射率の波長依存性が高くなり、視認性を考
慮すると0.1μm程度の膜厚で表面硬度を達成する必
要がある。この膜厚では、重合が十分に進まず素材とし
ての強度が発現しない。Next, there is a method for increasing the surface hardness of the fluorine-containing polymer thin film, but a transparent fluorine-containing polymer soluble in a solvent and having a pencil hardness of H or higher has not been reported yet. Therefore, the polymerizable fluorine-containing organic compound monomer or oligomer is dissolved in a solvent and applied, and then heated on the surface of the transparent substrate.
Polymerization is performed by a method such as ultraviolet irradiation or electron beam irradiation to form an insoluble transparent fluorine-containing polymer thin film. The film thickness that is normally used to obtain the antireflection effect is (wavelength of light) ÷ 4 ÷
It is obtained by an odd multiple of (the refractive index of the film), and the possibility is between 0.05 μm and 1 μm. However, as the film thickness increases, the wavelength dependence of the reflectance increases, and in consideration of visibility, it is necessary to achieve the surface hardness with a film thickness of about 0.1 μm. With this film thickness, the polymerization does not proceed sufficiently and the strength as a raw material does not appear.
【0015】そこで、透明性基材の表面に含フッ素高分
子薄膜を形成した後、電子線照射により重合の促進及び
含フッ素高分子の架橋を行ない、薄膜を硬化させること
が有効である。溶媒可溶性の含フッ素高分子であって
も、架橋により硬化は推進される。電子線の透過能力は
材料の厚みに伴って急激に減少するため、本発明のよう
に対象物が薄膜の場合、加速電圧がさほど高くなくとも
効果が大きく量産に適している。反応開始剤や反応性官
能基は不用であるが、高分子の種類により、電子線照射
で架橋するものと崩壊するものがあるため、置換基のα
位がプロトンとなることなど材料の選定が必要となる。Therefore, it is effective to form a fluorine-containing polymer thin film on the surface of a transparent substrate and then accelerate the polymerization and crosslink the fluorine-containing polymer by electron beam irradiation to cure the thin film. Even with a solvent-soluble fluorine-containing polymer, curing is promoted by crosslinking. Since the electron beam transmissivity sharply decreases with the thickness of the material, when the object is a thin film as in the present invention, the effect is large even if the accelerating voltage is not so high, and it is suitable for mass production. Although a reaction initiator and a reactive functional group are not required, depending on the type of polymer, there are some that crosslink and those that disintegrate by electron beam irradiation.
It is necessary to select the material such that the position becomes a proton.
【0016】[0016]
(実施例1〜7)表面をハードコート処理した、透明な
アクリル製の基板を用意した。まず、低圧水銀ランプの
光を照射して、表面活性化処理を行なった。水との接触
角は、70度から20度に低下し、効果を確認した。更
に、次にシリコン化合物であるアミノシラン(SH60
20、トーレシリコーン社製)の0.5重量%水溶液に
2分間浸漬し、水洗した後60℃で乾燥しカップリング
化合物層を形成した。重合性のモノマーであるパーフル
オロアルキルアクリラートと反応開始剤を、トリフルオ
ロメチルベンゼンに溶解し、前処理を施した透明なアク
リル製の基板両面に、ディップ法を用いて塗布した。高
圧水銀ランプの光を照射してモノマーを重合し膜厚0.
1μm、屈折率1.39の含フッ素高分子薄膜を形成し
た。全線透過率は90%から96%になり、減反射効果
を確認できた。更に窒素雰囲気中、アクリル製の基板表
面に電子線を30キロボルトの加速電圧で照射し、反射
防止膜を硬化させた。赤外吸収スペクトル分析で、残存
二重結合は極微量であり、重合が進んでいることが確認
できた。また鉛筆硬度で2H有り、フッ素系の溶媒にも
溶解せず、三次元架橋が進んでいることが示唆された。(Examples 1 to 7) A transparent acrylic substrate whose surface was hard-coated was prepared. First, the surface activation treatment was performed by irradiating light from a low-pressure mercury lamp. The contact angle with water decreased from 70 degrees to 20 degrees, confirming the effect. Furthermore, next, aminosilane (SH60
20, manufactured by Torre Silicone Co., Ltd.) for 2 minutes, washed with water and dried at 60 ° C. to form a coupling compound layer. A polymerizable monomer, perfluoroalkyl acrylate, and a reaction initiator were dissolved in trifluoromethylbenzene and applied to both surfaces of a pretreated transparent acrylic substrate by a dipping method. The monomer is polymerized by irradiating it with light from a high-pressure mercury lamp to obtain a film thickness of 0.
A fluoropolymer thin film having a thickness of 1 μm and a refractive index of 1.39 was formed. The total line transmittance was changed from 90% to 96%, and the antireflection effect was confirmed. Further, the surface of the acrylic substrate was irradiated with an electron beam at an acceleration voltage of 30 kilovolts in a nitrogen atmosphere to cure the antireflection film. Infrared absorption spectrum analysis confirmed that the amount of residual double bonds was extremely small and that polymerization was proceeding. Further, it had a pencil hardness of 2H, was not dissolved in a fluorine-based solvent, and it was suggested that three-dimensional crosslinking was advanced.
【0017】このようにして反射防止膜を形成した、透
明なアクリル製基板の模式的な断面の拡大図を図1に示
す。図1において、1はアクリル製基板、2がカップリ
ング化合物層、3が含フッ素高分子薄膜である。このア
クリル製基板を切断し、ポケット液晶テレビの前面保護
板として用いたところ、表面反射の少ない明るく見やす
いディスプレイを実現できた。FIG. 1 is an enlarged view of a schematic cross section of a transparent acrylic substrate having the antireflection film thus formed. In FIG. 1, 1 is an acrylic substrate, 2 is a coupling compound layer, and 3 is a fluorine-containing polymer thin film. When this acrylic substrate was cut and used as a front protection plate for a pocket LCD TV, a bright and easy-to-see display with little surface reflection was realized.
【0018】反射防止膜の密着性は、碁盤目試験100
/100と良好で、耐擦傷性は#0000のスチールウ
ールを1kg/cm2 の荷重をかけて10往復させても
傷が認められなかった。また、アルコール、酸、アルカ
リ、洗剤の滴下実験において異常は認められなかった。
信頼性を確認するため50℃、90%RHで1000時
間の高温高湿試験において、剥がれ、クラック等は発生
せず、ヤケも発生しなかった。また−20℃、25℃、
60℃の熱衝撃試験においても、異常は認められなかっ
た。20000ラングレイの日光暴露試験においても、
異常は認められなかった。液晶テレビの前面保護板を試
みに指で触れてみたが、指紋は付きにくく、付いた指紋
も容易に拭き取ることができた。また、汚れが激しい場
合でも、中性洗剤や市販の眼鏡クリナー等でクリーニン
グすることにより、初期の特性に回復させることができ
た。屋外使用も含めた、ポータブルユースに適した液晶
表示装置を提供できた。The adhesion of the antireflection film is determined by cross-cutting test 100.
The scratch resistance was as good as / 100, and scratches were not recognized even when the steel wool of # 0000 was reciprocated 10 times with a load of 1 kg / cm 2 . No abnormalities were found in the dropping experiments of alcohol, acid, alkali and detergent.
In order to confirm the reliability, in a high temperature and high humidity test at 50 ° C. and 90% RH for 1000 hours, peeling, cracking, etc. did not occur, and burning did not occur. Also, -20 ℃, 25 ℃,
No abnormality was found in the 60 ° C. thermal shock test. Even in the sunlight exposure test of 20,000 Langley,
No abnormality was found. I tried touching the front protective plate of the LCD TV with my finger, but it was difficult to attach fingerprints, and I was able to easily wipe off the attached fingerprints. Further, even when it was heavily soiled, the initial characteristics could be restored by cleaning with a neutral detergent or a commercially available eyeglass cleaner. We were able to provide a liquid crystal display device suitable for portable use, including outdoor use.
【0019】実施例として、以上述べてきた工程を一部
割愛した場合の信頼性特性の概要を表1に示す。工程を
1つでも用いることで、信頼性の向上が計られた。表1
において○は実用可能レベル、△は条件付実用レベル、
×は実用不能レベルをそれぞれ示す。As an example, Table 1 shows an outline of reliability characteristics when some of the steps described above are omitted. The reliability was improved by using even one process. Table 1
In, ○ is a practical level, △ is a conditional practical level,
X indicates the level of impracticality.
【0020】[0020]
【表1】 [Table 1]
【0021】(実施例8〜13)片面にITO透明電極
をスパッタしたガラス基板を用意した。このガラス基板
をオゾンガスに曝し、表面活性化処理を行なった。IT
O面の水との接触角は、60度から10度に低下し、効
果を確認した。次にシリコン化合物であるγ−グリシド
キシプロピルトリメトキシシランの1重量%エタノール
溶液に2分間浸漬し、80℃で乾燥しカップリング化合
物層を形成した。重合性のオリゴマーであるフルオロア
ルキルシロキサンの一部の分子末端をエポキシ基で置換
し、ビス(トリフルオロメチル)ベンゼンに溶解し、前
処理を施した透明電極付ガラス基板両面に、ディップ法
を用いて塗布した。150℃で2時間加熱し、オリゴマ
ーを重合し膜厚0.3μm、屈折率1.38の含フッ素
高分子薄膜を形成した。全線透過率は85%から96%
になり、減反射効果を確認できた。更に窒素雰囲気中、
ガラス基板表面に電子線を30キロボルトの加速電圧で
照射し、反射防止膜を硬化させた。赤外吸収スペクトル
分析で、残存エポキシ基は極微量であり、重合が進んで
いることが確認できた。また鉛筆硬度で3H有り、フッ
素系の溶媒にも溶解せず、三次元架橋が進んでいること
が示唆された。(Examples 8 to 13) A glass substrate having ITO transparent electrodes sputtered on one surface was prepared. This glass substrate was exposed to ozone gas to perform surface activation treatment. IT
The contact angle of the O surface with water decreased from 60 degrees to 10 degrees, confirming the effect. Next, it was immersed in a 1% by weight ethanol solution of γ-glycidoxypropyltrimethoxysilane, which is a silicon compound, for 2 minutes and dried at 80 ° C. to form a coupling compound layer. A dip method is used on both sides of a glass substrate with a transparent electrode, in which fluoroalkylsiloxane, which is a polymerizable oligomer, is partially substituted with epoxy groups, dissolved in bis (trifluoromethyl) benzene, and pretreated. Applied. The mixture was heated at 150 ° C. for 2 hours to polymerize the oligomer to form a fluoropolymer thin film having a film thickness of 0.3 μm and a refractive index of 1.38. Full line transmittance of 85% to 96%
And the antireflection effect was confirmed. In a nitrogen atmosphere,
The surface of the glass substrate was irradiated with an electron beam at an acceleration voltage of 30 kilovolts to cure the antireflection film. Infrared absorption spectrum analysis confirmed that the amount of residual epoxy groups was extremely small and polymerization was proceeding. Further, it had a pencil hardness of 3H, did not dissolve in a fluorine-based solvent, and it was suggested that three-dimensional crosslinking proceeded.
【0022】このようにして反射防止膜を形成した透明
電極付ガラス基板を切断し、静電容量方式のタッチパネ
ルに用いたところ、透明度が高く、外光の反射が少なく
認識しやすいタッチパネルが達成できた。含フッ素高分
子層が形成されていても、静電容量方式のタッチパネル
として、全く問題なく位置検出することができた。また
2Hの鉛筆では、表面に傷をつけることができなかっ
た。液晶表示装置とタッチパネルを組み合せたところ、
表示表面における輝度は、従来の50カンデラから55
カンデラ以上に向上した。面内の輝度分布もほとんど観
察されず、明るく見栄えの良い情報入出力装置を達成で
きた。When the glass substrate with a transparent electrode on which the antireflection film is formed in this manner is cut and used for a capacitance type touch panel, a touch panel having high transparency and little reflection of external light and easy to recognize can be achieved. It was Even if the fluorine-containing polymer layer was formed, the position could be detected without any problem as a capacitance type touch panel. Moreover, the 2H pencil could not scratch the surface. When combining the liquid crystal display and touch panel,
The brightness on the display surface is 55 from the conventional 50 candela.
Improved over the candela. Almost no in-plane brightness distribution was observed, and a bright and good-looking information input / output device was achieved.
【0023】反射防止膜の密着性は、碁盤目試験100
/100と良好で、耐擦傷性は#0000のスチールウ
ールを1kg/cm2 の荷重をかけて10往復させても
傷が認められなかった。また、アルコール、酸、アルカ
リ、洗剤の滴下実験において異常は認められなかった。
信頼性を確認するため50℃、90%RHで1000時
間の高温高湿試験において、剥がれ、クラック等は発生
せず、ヤケも発生しなかった。また−20℃、25℃、
60℃の熱衝撃試験においても、異常は認められなかっ
た。20000ラングレイの日光暴露試験においても、
異常は認められなかった。タッチパネル表面を試みに指
で触れてみたが、指紋は付きにくく、付いた指紋も容易
に拭き取ることができた。また、汚れが激しい場合で
も、中性洗剤や市販の眼鏡クリナー等でクリーニングす
ることにより、初期の特性に回復させることができた。The adhesion of the antireflection film is determined by cross-cutting test 100.
The scratch resistance was as good as / 100, and scratches were not recognized even when the steel wool of # 0000 was reciprocated 10 times with a load of 1 kg / cm 2 . No abnormalities were found in the dropping experiments of alcohol, acid, alkali and detergent.
In order to confirm the reliability, in a high temperature and high humidity test at 50 ° C. and 90% RH for 1000 hours, peeling, cracking, etc. did not occur, and burning did not occur. Also, -20 ℃, 25 ℃,
No abnormality was found in the 60 ° C. thermal shock test. Even in the sunlight exposure test of 20,000 Langley,
No abnormality was found. I tried touching the surface of the touch panel with my finger, but it was difficult for fingerprints to attach, and I was able to easily wipe off the attached fingerprints. Further, even when it was heavily soiled, the initial characteristics could be restored by cleaning with a neutral detergent or a commercially available eyeglass cleaner.
【0024】実施例として、以上述べてきた工程を一部
割愛した場合の信頼性特性の概要を表2に示す。工程を
1つでも用いることで、信頼性の向上が計られた。As an example, Table 2 shows an outline of the reliability characteristics when some of the steps described above are omitted. The reliability was improved by using even one process.
【0025】[0025]
【表2】 [Table 2]
【0026】(実施例14〜16)アクリル樹脂中にシ
リカ粒子が分散したHaze15%のアンチグレア層を持つ
偏光板を用意した。まず、20キロボルトの電圧をかけ
てコロナ放電させている電極間に偏光板を通過させ、表
面活性化処理を行なった。水との接触角は、80度から
15度に低下し、効果を確認した。含フッ素有機溶剤で
あるフロリナートFC−40(住友スリーエム社製)に
可溶性含フッ素高分子である「テフロンAF1600」
(デュポン社製)を濃度1.5重量%、含フッ素シリコ
ン化合物であるビス−(2−(パーフルオロヘプチル)
エチル)−ブチル−アミノシランを0.05重量%溶か
した溶液を、前処理を施した偏光板表面に、ロールコー
ト法を用いて塗布した。60℃で2時間加熱し、膜厚
0.7μm、屈折率1.31の含フッ素高分子薄膜を形
成した。表面の平均反射率は4.5%から1.3%にな
り、減反射効果を確認できた。また曇度はHaze15%の
ままで、アンチグレア効果は維持されていた。更に窒素
雰囲気中、偏光板表面に電子線を20キロボルトの加速
電圧で照射し、反射防止膜を硬化させた。鉛筆硬度でH
有り、フッ素系の溶媒にも溶解せず、三次元架橋が進ん
でいることが示唆された。(Examples 14 to 16) Polarizing plates having an antiglare layer of 15% Haze in which silica particles were dispersed in an acrylic resin were prepared. First, a polarizing plate was passed between electrodes that were being corona-discharged by applying a voltage of 20 kilovolts to perform surface activation treatment. The contact angle with water decreased from 80 degrees to 15 degrees, confirming the effect. "Teflon AF1600", a fluorinated polymer soluble in Fluorinert FC-40 (Sumitomo 3M Limited), which is a fluorinated organic solvent
(DuPont) with a concentration of 1.5% by weight, bis- (2- (perfluoroheptyl)) which is a fluorine-containing silicon compound.
A solution prepared by dissolving 0.05% by weight of ethyl) -butyl-aminosilane was applied to the pretreated polarizing plate surface by a roll coating method. By heating at 60 ° C. for 2 hours, a fluoropolymer thin film having a film thickness of 0.7 μm and a refractive index of 1.31 was formed. The average reflectance of the surface was changed from 4.5% to 1.3%, and the antireflection effect was confirmed. Further, the haze was 15% of Haze and the antiglare effect was maintained. Further, the surface of the polarizing plate was irradiated with an electron beam at an accelerating voltage of 20 kilovolts in a nitrogen atmosphere to cure the antireflection film. H in pencil hardness
Yes, it was not dissolved in a fluorine-based solvent, suggesting that three-dimensional crosslinking is progressing.
【0027】このようにして反射防止膜を形成した偏光
板を切断し、パーソナルコンピューター端末の液晶ディ
スプレイに用いたところ、外光の映り込みのない、明る
く見やすいディスプレイを実現できた。When the polarizing plate having the antireflection film thus formed was cut and used for a liquid crystal display of a personal computer terminal, a bright and easy-to-see display free of external light was realized.
【0028】反射防止膜の密着性は、碁盤目試験100
/100と良好で、耐擦傷性は#0000のスチールウ
ールを200g/cm2 の荷重をかけて10往復させて
も傷が認められなかった。また、アルコール、酸、アル
カリ、洗剤の滴下実験において異常は認められなかっ
た。信頼性を確認するため50℃、90%RHで100
0時間の高温高湿試験において、剥がれ、クラック等は
発生せず、ヤケも発生しなかった。また−20℃、25
℃、60℃の熱衝撃試験においても、異常は認められな
かった。20000ラングレイの日光暴露試験において
も、異常は認められなかった。表示面の偏光板を試みに
指で触れてみたが、指紋は付きにくく、付いた指紋も容
易に拭き取ることができた。また、汚れが激しい場合で
も、中性洗剤や市販の眼鏡クリナー等でクリーニングす
ることにより、初期の特性に回復させることができた。The adhesion of the antireflection film is determined by cross-cutting test 100.
The scratch resistance was as good as / 100, and scratches were not recognized even when the steel wool of # 0000 was reciprocated 10 times with a load of 200 g / cm 2 . No abnormalities were found in the dropping experiments of alcohol, acid, alkali and detergent. 100 at 50 ° C, 90% RH to confirm reliability
In the 0-hour high-temperature high-humidity test, peeling, cracking, and the like did not occur, and burning did not occur. Also, -20 ℃, 25
No abnormality was found in the thermal shock tests at 60 ° C and 60 ° C. No abnormality was observed in the 20,000 Langley sun exposure test. I tried touching the polarizing plate on the display surface with my finger, but it was difficult for fingerprints to attach, and the attached fingerprints could be easily wiped off. Further, even when it was heavily soiled, the initial characteristics could be restored by cleaning with a neutral detergent or a commercially available eyeglass cleaner.
【0029】実施例として、以上述べてきた工程を一部
割愛した場合の信頼性特性の概要を表3に示す。工程を
1つでも用いることで、信頼性の向上が計られた。As an example, Table 3 shows an outline of reliability characteristics when some of the steps described above are omitted. The reliability was improved by using even one process.
【0030】[0030]
【表3】 [Table 3]
【0031】(実施例17〜19)アクリル樹脂中にシ
リカ粒子が分散したHaze5%のアンチグレア層を持つ防
眩フィルムを用意した。まず、アルミナの研磨用粉末を
表面に吹き付け、5重量%の水酸化カリウム水溶液で洗
浄し、表面活性化処理を行なった。水との接触角は、8
0度から25度に低下し、効果を確認した。更に、次に
シリコン化合物であるアミノシラン(サイラエースS3
30、チッソ社製)の1重量%エタノール溶液に2分間
浸漬し、水洗した後60℃で乾燥しカップリング化合物
層を形成した。重合性のモノマーであるフルオロアルキ
ルアクリラートを、トリフルオロメチルベンゼンに溶解
し、前処理を施した防眩フィルム表面に、ロールコート
法を用いて塗布した。窒素雰囲気中、偏光板表面に電子
線を30キロボルトの加速電圧で照射し、膜厚0.1μ
m、屈折率1.38の含フッ素高分子薄膜を形成した。
表面の平均反射率は4.5%から1.5%になり、減反
射効果を確認できた。また曇度はHaze5%のままで、ア
ンチグレア効果は維持されていた。反射防止膜は鉛筆硬
度で2H有り、フッ素系の溶媒にも溶解せず、三次元架
橋が進んでいることが示唆された。Examples 17 to 19 Antiglare films having an antiglare layer of 5% Haze in which silica particles were dispersed in an acrylic resin were prepared. First, alumina polishing powder was sprayed on the surface, washed with a 5 wt% potassium hydroxide aqueous solution, and surface activated. The contact angle with water is 8
The effect was confirmed by decreasing from 0 degree to 25 degrees. Furthermore, next, aminosilane which is a silicon compound (Sila Ace S3
30% (manufactured by Chisso Corporation) was immersed in a 1% by weight ethanol solution for 2 minutes, washed with water and dried at 60 ° C. to form a coupling compound layer. Fluoroalkyl acrylate, which is a polymerizable monomer, was dissolved in trifluoromethylbenzene and applied to the pretreated antiglare film surface by a roll coating method. In a nitrogen atmosphere, the surface of the polarizing plate is irradiated with an electron beam at an acceleration voltage of 30 kilovolts to give a film thickness of 0.1 μm.
A fluorine-containing polymer thin film having m and a refractive index of 1.38 was formed.
The average reflectance of the surface was changed from 4.5% to 1.5%, and the antireflection effect was confirmed. The haze was 5% Haze and the antiglare effect was maintained. The antireflection film had a pencil hardness of 2H, was not dissolved in a fluorine-based solvent, and it was suggested that three-dimensional cross-linking proceeded.
【0032】このようにして反射防止膜を形成した防眩
フィルムを切断し、ポケット液晶テレビの表面に接着剤
を介して貼り付けたところ、外光の映り込みのない、明
るく見やすいディスプレイを実現できた。When the antiglare film having the antireflection film thus formed is cut and attached to the surface of the pocket liquid crystal television with an adhesive, a bright and easy-to-see display free of external light reflection can be realized. It was
【0033】反射防止膜の密着性は、碁盤目試験100
/100と良好で、耐擦傷性は#0000のスチールウ
ールを1kg/cm2 の荷重をかけて10往復させても
傷が認められなかった。また、アルコール、酸、アルカ
リ、洗剤の滴下実験において異常は認められなかった。
信頼性を確認するため50℃、90%RHで1000時
間の高温高湿試験において、剥がれ、クラック等は発生
せず、ヤケも発生しなかった。また−20℃、25℃、
60℃の熱衝撃試験においても、異常は認められなかっ
た。20000ラングレイの日光暴露試験においても、
異常は認められなかった。表示面の偏光板を試みに指で
触れてみたが、指紋は付きにくく、付いた指紋も容易に
拭き取ることができた。また、汚れが激しい場合でも、
中性洗剤や市販の眼鏡クリナー等でクリーニングするこ
とにより、初期の特性に回復させることができた。屋外
使用も含めた、ポータブルユースに適した液晶表示装置
を提供できた。The adhesion of the antireflection film is determined by cross-cutting test 100.
The scratch resistance was as good as / 100, and scratches were not recognized even when the steel wool of # 0000 was reciprocated 10 times with a load of 1 kg / cm 2 . No abnormalities were found in the dropping experiments of alcohol, acid, alkali and detergent.
In order to confirm the reliability, in a high temperature and high humidity test at 50 ° C. and 90% RH for 1000 hours, peeling, cracking, etc. did not occur, and burning did not occur. Also, -20 ℃, 25 ℃,
No abnormality was found in the 60 ° C. thermal shock test. Even in the sunlight exposure test of 20,000 Langley,
No abnormality was found. I tried touching the polarizing plate on the display surface with my finger, but it was difficult for fingerprints to attach, and the attached fingerprints could be easily wiped off. Also, even if it is heavily soiled,
By cleaning with a neutral detergent or a commercially available eyeglass cleaner, the initial characteristics could be restored. We were able to provide a liquid crystal display device suitable for portable use, including outdoor use.
【0034】実施例として、以上述べてきた工程を一部
割愛した場合の信頼性特性の概要を表4に示す。工程を
1つでも用いることで、信頼性の向上が計られた。As an example, Table 4 shows an outline of reliability characteristics when some of the steps described above are omitted. The reliability was improved by using even one process.
【0035】[0035]
【表4】 [Table 4]
【0036】以上実施例を挙げて述べてきたが、重合性
含フッ素有機化合物やシリコン化合物などは既知物質が
各種存在し、本発明の反射防止膜の形成方法において
は、使用材料はなんら限定されるものではない。As described above with reference to the examples, there are various known substances such as polymerizable fluorine-containing organic compounds and silicon compounds, and the materials used in the method for forming an antireflection film of the present invention are not limited. Not something.
【0037】[0037]
【発明の効果】以上述べたように、本発明によれば透明
性基材の表面に量産効果が高く、しかも実用に耐えるだ
けの信頼性を備えた反射防止膜の形成方法を提供するこ
とにより、視認性の高く透過率の高い光学デバイスを安
価で達成することができた。As described above, according to the present invention, it is possible to provide a method for forming an antireflection film on the surface of a transparent substrate, which has a high mass production effect and is reliable enough to withstand practical use. The optical device with high visibility and high transmittance could be achieved at low cost.
【0038】本発明の方法で反射防止を施した透明電極
基板、保護板、偏光板、防眩フィルム等の透明性基材を
用いた液晶表示装置やペン入力装置は、部品構成上は全
く従来と変わらないため、本発明の導入により即座に大
きな視認性の向上を得ることができる。A liquid crystal display device and a pen input device using a transparent base material such as a transparent electrode substrate, a protective plate, a polarizing plate and an antiglare film which are antireflection by the method of the present invention are completely conventional in terms of component structure. Therefore, a large improvement in visibility can be immediately obtained by the introduction of the present invention.
【図1】 本発明の実施例1におけるアクリル製基板の
模式的な断面の拡大図である。FIG. 1 is an enlarged view of a schematic cross section of an acrylic substrate in Example 1 of the present invention.
1‥‥‥‥‥アクリル製基板 2‥‥‥‥‥カップリング化合物層 3‥‥‥‥‥含フッ素高分子薄膜 1 Acrylic substrate 2 Coupling compound layer 3 Fluorine-containing polymer thin film
Claims (17)
なった後、含フッ素高分子薄膜を形成することを特徴と
する反射防止膜の形成方法。1. A method for forming an antireflection film, which comprises subjecting a surface of a transparent substrate to a surface activation treatment and then forming a fluorine-containing polymer thin film.
ロナ放電、酸素プラズマまたはオゾン曝露、紫外線照
射、酸またはアルカリ洗浄、研磨剤による粗面化いずれ
かまたは複数の処理であることを特徴とする請求項1記
載の反射防止膜の形成方法。2. The surface activation treatment of the surface of the transparent substrate is any one or a plurality of treatments such as corona discharge, oxygen plasma or ozone exposure, ultraviolet irradiation, acid or alkali cleaning, and surface roughening with an abrasive. The method for forming an antireflection film according to claim 1, wherein the antireflection film is formed.
応させてカップリング化合物層を形成した後、含フッ素
高分子薄膜を形成することを特徴とする反射防止膜の形
成方法。3. A method of forming an antireflection film, which comprises reacting a silicon compound on the surface of a transparent substrate to form a coupling compound layer and then forming a fluorine-containing polymer thin film.
モノマー、オリゴマー、あるいはポリマーを溶解した含
フッ素有機溶液を、透明性基材の表面に0.05μmか
ら1μmの間の規定の膜厚になるように塗布し、加熱、
紫外線照射、電子線照射いずれかの方法で重合させ含フ
ッ素高分子薄膜を形成することを特徴とする反射防止膜
の形成方法。4. A fluorine-containing organic solution in which at least a monomer, oligomer or polymer of a polymerizable fluorine-containing organic compound is dissolved so that the surface of a transparent substrate has a specified film thickness of 0.05 μm to 1 μm. Apply to, heat,
A method for forming an antireflection film, comprising forming a fluorine-containing polymer thin film by polymerizing by either ultraviolet irradiation or electron beam irradiation.
オリゴマー、あるいはポリマーを含フッ素有機溶剤に溶
解し、更に反応開始剤または含フッ素シリコン化合物を
添加して塗布液とすることを特徴とする請求項4記載の
反射防止膜の形成方法。5. A monomer of a polymerizable fluorine-containing organic compound,
The method for forming an antireflection film according to claim 4, wherein the oligomer or the polymer is dissolved in a fluorine-containing organic solvent, and a reaction initiator or a fluorine-containing silicon compound is further added to prepare a coating solution.
を形成した後、電子線照射により重合の促進及び含フッ
素高分子の架橋を行ない、薄膜を硬化させることを特徴
とする反射防止膜の形成方法。6. An antireflection coating characterized in that after a fluoropolymer thin film is formed on the surface of a transparent substrate, electron beam irradiation accelerates polymerization and crosslinks the fluoropolymer to cure the thin film. Method of forming a film.
ない、更に該透明性基材の表面にシリコン化合物を反応
させ、カップリング化合物層を形成した後、含フッ素高
分子薄膜を形成することを特徴とする反射防止膜の形成
方法。7. A surface activation treatment is performed on the surface of a transparent substrate, and a silicon compound is further reacted on the surface of the transparent substrate to form a coupling compound layer, and then a fluorine-containing polymer thin film is formed. A method for forming an antireflection film, comprising:
ない、少なくとも重合性含フッ素有機化合物のモノマ
ー、オリゴマー、あるいはポリマーを溶解した含フッ素
有機溶液を、該透明性基材の表面に0.05μmから1
μmの間の規定の膜厚になるように塗布し、加熱、紫外
線照射、電子線照射いずれかの方法で重合させ含フッ素
高分子薄膜を形成することを特徴とする反射防止膜の形
成方法。8. A surface-activating treatment is applied to the surface of a transparent substrate, and a fluorine-containing organic solution in which at least a monomer, oligomer or polymer of a polymerizable fluorine-containing organic compound is dissolved is applied to the surface of the transparent substrate. 0.05 μm to 1
A method for forming an antireflection film, which comprises applying a film having a specified thickness of between μm and polymerizing it by any one of heating, ultraviolet irradiation, and electron beam irradiation to form a fluorine-containing polymer thin film.
なった後、該透明性基材の表面に含フッ素高分子薄膜を
形成し、更に電子線照射により重合の促進及び含フッ素
高分子の架橋を行ない、薄膜を硬化させることを特徴と
する反射防止膜の形成方法。9. A surface activation treatment is applied to the surface of a transparent substrate, and then a fluorine-containing polymer thin film is formed on the surface of the transparent substrate, and further electron beam irradiation accelerates the polymerization and increases the fluorine content. A method for forming an antireflection film, which comprises cross-linking molecules to cure a thin film.
反応させてカップリング化合物層を形成し、少なくとも
重合性含フッ素有機化合物のモノマー、オリゴマー、あ
るいはポリマーを溶解した含フッ素有機溶液を、該透明
性基材の表面に0.05μmから1μmの間の規定の膜
厚になるように塗布し、加熱、紫外線照射、電子線照射
いずれかの方法で重合させ含フッ素高分子薄膜を形成す
ることを特徴とする反射防止膜の形成方法。10. A fluorine-containing organic solution in which a monomer, oligomer or polymer of at least a polymerizable fluorine-containing organic compound is dissolved to form a coupling compound layer by reacting a silicon compound on the surface of a transparent substrate, To form a fluorine-containing polymer thin film by coating on the surface of a transparent substrate to a specified film thickness between 0.05 μm and 1 μm, and polymerizing it by any method of heating, ultraviolet irradiation, or electron beam irradiation. A method for forming an antireflection film, comprising:
反応させてカップリング化合物層を形成した後、該透明
性基材の表面に含フッ素高分子薄膜を形成し、更に電子
線照射により重合の促進及び含フッ素高分子の架橋を行
ない、薄膜を硬化させることを特徴とする反射防止膜の
形成方法。11. A transparent compound is reacted with a silicon compound to form a coupling compound layer, and then a fluorine-containing polymer thin film is formed on the surface of the transparent substrate, and further polymerized by electron beam irradiation. A method for forming an antireflection film, which comprises curing the thin film by accelerating the heat treatment and crosslinking the fluorine-containing polymer.
のモノマー、オリゴマー、あるいはポリマーを溶解した
含フッ素有機溶液を、透明性基材の表面に0.05μm
から1μmの間の規定の膜厚になるように塗布し、加
熱、紫外線照射、電子線照射いずれかの方法で重合させ
含フッ素高分子薄膜を形成し、更に電子線照射により重
合の促進及び含フッ素高分子の架橋を行ない、薄膜を硬
化させることを特徴とする反射防止膜の形成方法。12. A fluorine-containing organic solution in which at least a monomer, oligomer or polymer of a polymerizable fluorine-containing organic compound is dissolved is 0.05 μm on the surface of a transparent substrate.
To 1 μm to a specified thickness, and polymerized by heating, ultraviolet irradiation, or electron beam irradiation to form a fluorine-containing polymer thin film. A method for forming an antireflection film, which comprises crosslinking a fluoropolymer to cure a thin film.
行ない、更に該透明性基材の表面にシリコン化合物を反
応させてカップリング化合物層を形成した後、少なくと
も重合性含フッ素有機化合物のモノマー、オリゴマー、
あるいはポリマーを溶解した含フッ素有機溶液を、該透
明性基材の表面に0.05μmから1μmの間の規定の
膜厚になるように塗布し、加熱、紫外線照射、電子線照
射いずれかの方法で重合させ含フッ素高分子薄膜を形成
することを特徴とする反射防止膜の形成方法。13. A surface activation treatment is performed on the surface of a transparent substrate, and a silicon compound is further reacted on the surface of the transparent substrate to form a coupling compound layer, and then at least a polymerizable fluorine-containing organic compound is formed. Monomer, oligomer,
Alternatively, a fluorine-containing organic solution in which a polymer is dissolved is applied on the surface of the transparent substrate so as to have a specified film thickness of 0.05 μm to 1 μm, and heating, ultraviolet irradiation, or electron beam irradiation is performed. A method for forming an antireflection film, comprising forming a fluorine-containing polymer thin film by polymerizing with.
行ない、更に該透明性基材の表面にシリコン化合物を反
応させてカップリング化合物層を形成した後、該透明性
基材の表面に含フッ素高分子薄膜を形成し、更に電子線
照射により重合の促進及び含フッ素高分子の架橋を行な
い、薄膜を硬化させることを特徴とする反射防止膜の形
成方法。14. The surface of the transparent base material is subjected to a surface activation treatment, and a silicon compound is further reacted with the surface of the transparent base material to form a coupling compound layer, and then the surface of the transparent base material. A method for forming an antireflection film, comprising: forming a fluorine-containing polymer thin film on the substrate, further accelerating the polymerization and crosslinking the fluorine-containing polymer by electron beam irradiation, and curing the thin film.
反応させてカップリング化合物層を形成し、少なくとも
重合性含フッ素有機化合物のモノマー、オリゴマー、あ
るいはポリマーを溶解した含フッ素有機溶液を、該透明
性基材の表面に0.05μmから1μmの間の規定の膜
厚になるように塗布し、加熱、紫外線照射、電子線照射
いずれかの方法で重合させ含フッ素高分子薄膜を形成
し、更に電子線照射により重合の促進及び含フッ素高分
子の架橋を行ない、薄膜を硬化させることを特徴とする
反射防止膜の形成方法。15. A fluorine-containing organic solution in which a monomer, an oligomer, or a polymer of at least a polymerizable fluorine-containing organic compound is dissolved to form a coupling compound layer by reacting a silicon compound on the surface of a transparent substrate, A fluorine-containing polymer thin film is formed by coating on the surface of a transparent substrate so as to have a specified film thickness between 0.05 μm and 1 μm, and polymerizing by any method of heating, ultraviolet irradiation, and electron beam irradiation. Furthermore, a method for forming an antireflection film, which comprises accelerating the polymerization and crosslinking the fluorinated polymer by electron beam irradiation to cure the thin film.
反応させてカップリング化合物層を形成し、少なくとも
重合性含フッ素有機化合物のモノマー、オリゴマー、あ
るいはポリマーを溶解した含フッ素有機溶液を、透明性
基材の表面に0.05μmから1μmの間の規定の膜厚
になるように塗布し、加熱、紫外線照射、電子線照射い
ずれかの方法で重合させ含フッ素高分子薄膜を形成し、
更に電子線照射により重合の促進及び含フッ素高分子の
架橋を行ない、薄膜を硬化させることを特徴とする反射
防止膜の形成方法。16. A fluorine-containing organic solution in which at least a monomer, an oligomer, or a polymer of a polymerizable fluorine-containing organic compound is dissolved to form a coupling compound layer by reacting a silicon compound on the surface of a transparent substrate is transparent. To a prescribed thickness between 0.05 μm and 1 μm on the surface of a flexible substrate, and polymerized by any method of heating, ultraviolet irradiation, or electron beam irradiation to form a fluorine-containing polymer thin film,
Furthermore, a method for forming an antireflection film, which comprises accelerating the polymerization and crosslinking the fluorinated polymer by electron beam irradiation to cure the thin film.
行ない、更に該透明性基材の表面にシリコン化合物を反
応させてカップリング化合物層を形成した後、少なくと
も重合性含フッ素有機化合物のモノマー、オリゴマー、
あるいはポリマーを溶解した含フッ素有機溶液を、透明
性基材の表面に0.05μmから1μmの間の規定の膜
厚になるように塗布し、加熱、紫外線照射、電子線照射
いずれかの方法で重合させ含フッ素高分子薄膜を形成
し、更に電子線照射により重合の促進及び含フッ素高分
子の架橋を行ない、薄膜を硬化させることを特徴とする
反射防止膜の形成方法。17. A surface activation treatment is performed on the surface of a transparent substrate, and a silicon compound is further reacted on the surface of the transparent substrate to form a coupling compound layer, and then at least a polymerizable fluorine-containing organic compound is obtained. Monomer, oligomer,
Alternatively, a fluorine-containing organic solution in which a polymer is dissolved is applied on the surface of a transparent substrate so as to have a specified film thickness between 0.05 μm and 1 μm, and then heated, irradiated with ultraviolet rays, or irradiated with an electron beam. A method for forming an antireflection film, comprising polymerizing to form a fluorine-containing polymer thin film, and further accelerating polymerization and crosslinking of the fluorine-containing polymer by electron beam irradiation to cure the thin film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5293501A JPH07168004A (en) | 1993-11-24 | 1993-11-24 | Formation of antireflection film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5293501A JPH07168004A (en) | 1993-11-24 | 1993-11-24 | Formation of antireflection film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07168004A true JPH07168004A (en) | 1995-07-04 |
Family
ID=17795562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5293501A Pending JPH07168004A (en) | 1993-11-24 | 1993-11-24 | Formation of antireflection film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07168004A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5928791A (en) * | 1997-04-03 | 1999-07-27 | W. L. Gore & Associates, Inc. | Low dielectric constant material with improved dielectric strength |
WO2001079894A1 (en) * | 2000-04-17 | 2001-10-25 | Dainippon Printing Co., Ltd. | Antireflection film and method for manufacturing the same |
US6384318B1 (en) | 1999-05-31 | 2002-05-07 | Kaneka Corporation | Solar battery module |
JP2004074487A (en) * | 2002-08-13 | 2004-03-11 | Oike Kaihatsu Kenkyusho:Kk | Method for forming fingerprint-proofing, stain-proofing surface and laminate having the surface formed by the method |
WO2005088363A1 (en) * | 2004-03-11 | 2005-09-22 | Teijin Dupont Films Japan Limited | Antireflection multilayer laminate film |
WO2006109618A1 (en) | 2005-04-05 | 2006-10-19 | Adeka Corporation | Cyanine compounds, optical filters and optical recording materials |
JP2007034140A (en) * | 2005-07-29 | 2007-02-08 | Yasui Seiki:Kk | Thin film producing apparatus |
WO2007129503A1 (en) | 2006-05-08 | 2007-11-15 | Adeka Corporation | Novel compound, optical filter using the compound, and optical recording material |
WO2008072537A1 (en) | 2006-12-15 | 2008-06-19 | Adeka Corporation | Optical filter |
WO2008123404A1 (en) | 2007-03-30 | 2008-10-16 | Adeka Corporation | Cyanine compound, optical filter using the compound and optical recording material |
WO2009145057A1 (en) | 2008-05-27 | 2009-12-03 | 株式会社Adeka | Color correction material, film-forming composition, and optical filter |
WO2010073857A1 (en) | 2008-12-25 | 2010-07-01 | 株式会社Adeka | Near-infrared-ray absorbing material containing cyanine compound, and cyanine compound |
WO2011086785A1 (en) | 2010-01-15 | 2011-07-21 | 株式会社Adeka | Color tone correcting agent, squarylium compound and optical filter |
-
1993
- 1993-11-24 JP JP5293501A patent/JPH07168004A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5928791A (en) * | 1997-04-03 | 1999-07-27 | W. L. Gore & Associates, Inc. | Low dielectric constant material with improved dielectric strength |
US6384318B1 (en) | 1999-05-31 | 2002-05-07 | Kaneka Corporation | Solar battery module |
US6607936B2 (en) | 1999-05-31 | 2003-08-19 | Kaneka Corporation | Solar battery module |
US7128966B2 (en) | 2000-04-17 | 2006-10-31 | Dai Nippon Printing Co., Ltd. | Antireflection film and method for manufacturing the same |
JP4562894B2 (en) * | 2000-04-17 | 2010-10-13 | 大日本印刷株式会社 | Antireflection film and manufacturing method thereof |
WO2001079894A1 (en) * | 2000-04-17 | 2001-10-25 | Dainippon Printing Co., Ltd. | Antireflection film and method for manufacturing the same |
JP2002006108A (en) * | 2000-04-17 | 2002-01-09 | Dainippon Printing Co Ltd | Antireflecting film and its manufacturing method |
JP2004074487A (en) * | 2002-08-13 | 2004-03-11 | Oike Kaihatsu Kenkyusho:Kk | Method for forming fingerprint-proofing, stain-proofing surface and laminate having the surface formed by the method |
WO2005088363A1 (en) * | 2004-03-11 | 2005-09-22 | Teijin Dupont Films Japan Limited | Antireflection multilayer laminate film |
JPWO2005088363A1 (en) * | 2004-03-11 | 2008-01-31 | 帝人デュポンフィルム株式会社 | Anti-reflection multilayer laminated film |
US8339707B2 (en) | 2004-03-11 | 2012-12-25 | Teijin Dupont Films Japan Limited | Anti-reflection multi-layer laminated film |
WO2006109618A1 (en) | 2005-04-05 | 2006-10-19 | Adeka Corporation | Cyanine compounds, optical filters and optical recording materials |
JP2007034140A (en) * | 2005-07-29 | 2007-02-08 | Yasui Seiki:Kk | Thin film producing apparatus |
WO2007129503A1 (en) | 2006-05-08 | 2007-11-15 | Adeka Corporation | Novel compound, optical filter using the compound, and optical recording material |
WO2008072537A1 (en) | 2006-12-15 | 2008-06-19 | Adeka Corporation | Optical filter |
WO2008123404A1 (en) | 2007-03-30 | 2008-10-16 | Adeka Corporation | Cyanine compound, optical filter using the compound and optical recording material |
WO2009145057A1 (en) | 2008-05-27 | 2009-12-03 | 株式会社Adeka | Color correction material, film-forming composition, and optical filter |
WO2010073857A1 (en) | 2008-12-25 | 2010-07-01 | 株式会社Adeka | Near-infrared-ray absorbing material containing cyanine compound, and cyanine compound |
WO2011086785A1 (en) | 2010-01-15 | 2011-07-21 | 株式会社Adeka | Color tone correcting agent, squarylium compound and optical filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3998697B2 (en) | Antiglare coating composition, antiglare film and method for producing the same | |
JP5157162B2 (en) | Antireflection laminate and method for producing the same | |
JP2006058574A (en) | Hard coat film | |
JP4414188B2 (en) | Laminate with improved hard coat layer slipperiness | |
JPH11305010A (en) | Antiglare film, polarizing element and display device | |
JPH07168004A (en) | Formation of antireflection film | |
KR101720333B1 (en) | Anti-glare coating composition, anti-glare film and method of producing the same | |
TWI689572B (en) | Optical laminate and liquid crystal display | |
US7247358B2 (en) | Laminate controlling curl of hardcoat layer | |
JP4266623B2 (en) | Hard coat film | |
JP2002214413A (en) | Non-glare film, polarizing element and display device | |
TW201026764A (en) | Composition for forming hard-coat layer, hard-coat film, optical element, and image display | |
JP2015227934A (en) | Antireflection film, polarizing plate, and image display device | |
JP4961853B2 (en) | Anti-reflection laminate | |
JP2010162746A (en) | Transparent conductive laminate film and touch panel using the same | |
JP2011174976A (en) | Antiglare film | |
JP4369092B2 (en) | Transparent film substrate for display | |
KR101031817B1 (en) | Antiglare Film | |
JP2016172321A (en) | Laminate, polarizing plate and image display device | |
CN101226245A (en) | Antireflective film and manufacturing method thereof | |
TW202216430A (en) | Optical film with antifouling layer | |
KR20060051875A (en) | Optical laminate and optical element | |
JP2001232729A (en) | Plastic base material sheet for conductive laminate | |
JPH0618704A (en) | Production of scratching resistant base material having antireflection property, scratching resistant base material and polarizing plate | |
JP2003320617A (en) | Triacetyl cellulose film having hard coat layer and antireflection film |