JPH0714805A - Method and device of forming electrode - Google Patents
Method and device of forming electrodeInfo
- Publication number
- JPH0714805A JPH0714805A JP15168793A JP15168793A JPH0714805A JP H0714805 A JPH0714805 A JP H0714805A JP 15168793 A JP15168793 A JP 15168793A JP 15168793 A JP15168793 A JP 15168793A JP H0714805 A JPH0714805 A JP H0714805A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- electrode
- semiconductor
- mask
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体の電流注入型電
極の形成方法及びその形成装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for forming a semiconductor current injection type electrode.
【0002】[0002]
【従来の技術】従来、この分野の電極としては、金属電
極材料を蒸着した後に加熱処理を施すことにより、電極
と半導体との間の接触抵抗を下げるようにしたものが多
く用いられている。2. Description of the Related Art Conventionally, as an electrode in this field, a metal electrode material which is vapor-deposited and then heat-treated to reduce the contact resistance between the electrode and a semiconductor is often used.
【0003】[0003]
【発明が解決しようとする課題】ところで、低い成長温
度で半導体結晶を形成する場合には、蒸着後における加
熱処理の温度が成長温度よりも高いことがある。例え
ば、n型ZnSeにIn電極を付ける場合には、300
℃のアニール温度が必要である。By the way, when a semiconductor crystal is formed at a low growth temperature, the temperature of heat treatment after vapor deposition may be higher than the growth temperature. For example, when an In electrode is attached to n-type ZnSe, 300
An anneal temperature of ° C is required.
【0004】しかし、このn型ZnSeが250℃で結
晶成長させたものであった場合、成長温度よりも高いプ
ロセス温度が存在するために、半導体結晶内における不
純物の拡散や複合準位の形成など、特性の劣化を引き起
こす虞れがある。However, when the n-type ZnSe is crystal grown at 250 ° C., since there is a process temperature higher than the growth temperature, diffusion of impurities in the semiconductor crystal and formation of complex levels are caused. However, there is a possibility that characteristics may be deteriorated.
【0005】本発明は、前記従来技術の課題を解決する
ため、従来よりも低い加熱温度で、電極と半導体との間
の接触抵抗を下げることのできる電極の形成方法及びそ
の形成装置を提供することを目的とする。In order to solve the above-mentioned problems of the prior art, the present invention provides a method for forming an electrode and a device for forming the electrode, which can lower the contact resistance between the electrode and the semiconductor at a heating temperature lower than the conventional temperature. The purpose is to
【0006】[0006]
【課題を解決するための手段】前記目的を達成するた
め、本発明に係る電極の形成方法は、半導体を、その成
長温度よりも低い温度に加熱し、前記半導体の表面に、
その禁制帯幅よりも高いエネルギーの光を照射しなが
ら、金属電極材料を蒸着することを特徴とする。In order to achieve the above object, an electrode forming method according to the present invention comprises heating a semiconductor to a temperature lower than its growth temperature,
It is characterized in that the metal electrode material is vapor-deposited while irradiating with light having an energy higher than the band gap.
【0007】また、本発明に係る電極の形成装置は、真
空容器内に、半導体の表面に光を照射する手段と、前記
半導体の表面に金属電極を蒸着する電極材料蒸発源と、
ガス出しが可能で、かつ、移動可能なマスクとを少なく
とも備えてなるものである。The electrode forming apparatus according to the present invention comprises means for irradiating the surface of a semiconductor with light in a vacuum container, and an electrode material evaporation source for depositing a metal electrode on the surface of the semiconductor.
It is provided with at least a movable mask that can release gas.
【0008】[0008]
【作用】本発明は上記の手段によって得られる以下の作
用に基づくものと考えられる。すなわち、半導体表面に
禁制帯幅以上のエネルギーの光を照射すると、半導体が
光を吸収して電子正孔対を発生させる。そして、この電
子正孔対が半導体と金属との間の結合に際してのエネル
ギーバリアを減少させ、半導体表面における金属のマイ
グレーションを促進させる。これにより、金属電極材料
を蒸着した後に加熱処理を施さなくても、電極と半導体
との間の接触抵抗を低く抑えることができる。従って、
成長温度の低温化でオーミック性電極の形成が困難にな
った材料系であっても、低温での後プロセスによって、
オーミック性電極の形成が可能となる。The present invention is considered to be based on the following actions obtained by the above means. That is, when the surface of the semiconductor is irradiated with light having energy higher than the forbidden band width, the semiconductor absorbs the light and generates electron-hole pairs. The electron-hole pairs reduce the energy barrier at the time of the bond between the semiconductor and the metal, and promote the migration of the metal on the semiconductor surface. This makes it possible to suppress the contact resistance between the electrode and the semiconductor to be low without performing a heat treatment after depositing the metal electrode material. Therefore,
Even in a material system where it was difficult to form an ohmic electrode due to a lower growth temperature, a post process at a low temperature
It becomes possible to form an ohmic electrode.
【0009】[0009]
【実施例】以下、実施例を用いて本発明をさらに具体的
に説明する。 (実施例1)図1は本発明に係る電極の形成装置の一実
施例を示す概略図である。図1に示すように、真空ポン
プ1aを備えた真空容器1bには光導入窓4aが設けら
れており、外部から基板2aの表面に光を導入すること
ができるようにされている。また、電極材料の蒸発源と
してIn(インジウム)用のるつぼ5aが装備されてお
り、シャッタ5bによってInの分子線5cの供給をコ
ントロールすることができるようにされている。基板ホ
ルダ2bはヒータ2cによって加熱することができ、移
動可能でかつ交換式のタンタル製マスク3aを備えてい
る。そして、このマスク3aは、蒸着直前において同じ
チャンバ内の基板加熱用ヒータ2cとは別のヒータ3c
によって十分な高温(1000℃程度)にまで加熱さ
れ、これによりガス出しが行われる(図1中、3bは待
機時及びガス出し時におけるマスク位置を示す)。尚、
このガス出しに際しては、蒸着物質や被蒸着物質に影響
を与えないように、真空容器1bの真空度を十分高くす
ることによって、マスク3bから蒸発した物質が膜に吸
着しないようにし、分子線となって真空容器1bの内壁
などに直接衝突して吸着されるようにするのが好まし
い。このようにマスクを十分高温にしてガス出しをする
ことができるので、そのままの真空を破らずにマスクと
して使用することができる。ガス出しができない場合、
蒸着時のサンプル加熱時に、サンプルに隣接しているマ
スクも加熱されるために、マスクからの不純物がサンプ
ル表面に付着する。このために、マスクのガス出し機構
は本発明に不可欠となる。ここで、マスク3a(3b)
はタンタル製としたが、必ずしもこれに限定されるもの
ではなく、蒸着に用いる温度範囲で構成元素のガス出し
の無い材料であれば、例えばステンレスやパイロリティ
ックボロンナイトライド(PBN)であってもよい。
尚、図1において、4bはハロゲンランプ(ヨウ素タン
グステンランプ60W)、4cはその光、4dはフィル
タを示す。EXAMPLES The present invention will be described in more detail below with reference to examples. (Embodiment 1) FIG. 1 is a schematic view showing an embodiment of an electrode forming apparatus according to the present invention. As shown in FIG. 1, a vacuum container 1b equipped with a vacuum pump 1a is provided with a light introducing window 4a so that light can be introduced from the outside to the surface of the substrate 2a. A crucible 5a for In (indium) is provided as an evaporation source of the electrode material, and the supply of the In molecular beam 5c can be controlled by the shutter 5b. The substrate holder 2b can be heated by the heater 2c, and is provided with a movable and replaceable tantalum mask 3a. Immediately before vapor deposition, the mask 3a is provided with a heater 3c different from the substrate heating heater 2c in the same chamber.
Is heated to a sufficiently high temperature (about 1000 ° C.), and thereby gas is discharged (in FIG. 1, 3b indicates a mask position during standby and during gas discharge). still,
When the gas is discharged, the vacuum degree of the vacuum container 1b is set sufficiently high so as not to affect the vapor deposition substance and the vapor deposition substance, so that the substance evaporated from the mask 3b is not adsorbed on the film, and the molecular beam Therefore, it is preferable to directly collide with the inner wall of the vacuum container 1b or the like to be adsorbed. In this way, the mask can be heated to a sufficiently high temperature to release gas, so that the mask can be used as it is without breaking the vacuum. If you cannot outgas,
Since the mask adjacent to the sample is also heated when the sample is heated during vapor deposition, impurities from the mask adhere to the sample surface. For this reason, a mask gas discharge mechanism is essential to the present invention. Here, the mask 3a (3b)
Is made of tantalum, but the material is not limited to this, and any material such as stainless steel or pyrolytic boron nitride (PBN) can be used as long as it does not outgas the constituent elements in the temperature range used for vapor deposition. Good.
In FIG. 1, 4b is a halogen lamp (iodine tungsten lamp 60W), 4c is the light thereof, and 4d is a filter.
【0010】(実施例2)次に、実施例1の装置を用い
た電極の形成方法について説明する。本実施例2では、
半導体として、成長温度300℃で分子線エピタキシャ
ル(MBE)成長させた、キャリア密度が1×1018c
m-3で膜厚が2.3μmのn型ZnSeを用い、金属電
極材料としてInを用いた場合を例に挙げて説明する。(Embodiment 2) Next, an electrode forming method using the apparatus of Embodiment 1 will be described. In the second embodiment,
As a semiconductor, molecular beam epitaxial (MBE) growth was performed at a growth temperature of 300 ° C., and the carrier density was 1 × 10 18 c.
An example will be described in which n-type ZnSe having a thickness of m −3 and a thickness of 2.3 μm is used and In is used as a metal electrode material.
【0011】電極の形成手順は以下のとおりである。す
なわち、まず、電極を付けようとする基板2aとしての
n型ZnSeを有機洗浄などによって清浄な状態とし、
真空容器1b内の基板ホルダ2bに装着する。この時の
真空度は、不純物の付着の虞れがない点で、1×10-5
Torr以下にするのが好ましい。本実施例2では、M
BE(分子線エピタキシャル)成長装置を使用してお
り、真空度は1×10-8Torr程度となっている。次
いで、ヒータ2cによって基板ホルダ2bごと予備加熱
処理を施し、n型ZnSeの表面に付着している水分や
有機物を除去する。ここで、予備加熱処理は200℃で
15分間にわたって行う。The procedure for forming the electrodes is as follows. That is, first, the n-type ZnSe as the substrate 2a to which the electrode is to be attached is cleaned by organic cleaning or the like,
It is mounted on the substrate holder 2b in the vacuum container 1b. At this time, the degree of vacuum is 1 × 10 −5 because there is no risk of impurities adhering.
It is preferably set to Torr or less. In the second embodiment, M
A BE (Molecular Beam Epitaxial) growth apparatus is used, and the degree of vacuum is about 1 × 10 −8 Torr. Next, the substrate holder 2b is preheated by the heater 2c to remove water and organic substances adhering to the surface of the n-type ZnSe. Here, the preheating treatment is performed at 200 ° C. for 15 minutes.
【0012】これと同時に、ヒータ3cによってマスク
3bを1000℃で1時間にわたって焼き出しし、これ
によりマスク3bのガス出しを行う。尚、焼き出し時間
は長ければ長いほどよく、焼き出し温度は高ければ高い
ほどよい。At the same time, the mask 3b is burnt out at 1000 ° C. for 1 hour by the heater 3c, so that the mask 3b is degassed. The longer the baking-out time, the better, and the higher the baking-out temperature, the better.
【0013】次いで、基板温度を200℃に保ったま
ま、焼き出ししたマスク3bを基板(n型ZnSe)2
aの表面に移動させる(3a)。そして、基板(n型Z
nSe)2aの表面にハロゲンランプ(ヨウ素タングス
テンランプ60W)4bの光4cを集光して照射しなが
ら、Inの分子線5cを1×10-6Torrの圧力で1
時間にわたって照射する。これにより、基板(n型Zn
Se)2aの表面に厚さ約0.5μmのIn電極が形成
される。ここでは、基板温度を200℃としたが、半導
体素子の形成温度以下であれば、結晶成長時の膜の特性
を劣化させることなく金属電極材料を蒸着することがで
きる。また、蒸着時の基板温度は高い方が電流電圧特性
(I−V特性)の立ち上がり電圧は低かった。Next, with the substrate temperature kept at 200 ° C., the baked-out mask 3b is applied to the substrate (n-type ZnSe) 2
It is moved to the surface of a (3a). Then, the substrate (n-type Z
nSe) 2a surface is focused and irradiated with light 4c of halogen lamp (iodine tungsten lamp 60W) 4b, while molecular beam 5c of In is applied at a pressure of 1 × 10 −6 Torr.
Irradiate over time. This allows the substrate (n-type Zn
An In electrode having a thickness of about 0.5 μm is formed on the surface of Se) 2a. Although the substrate temperature is set to 200 ° C. here, the metal electrode material can be vapor-deposited without deteriorating the characteristics of the film during crystal growth as long as it is equal to or lower than the formation temperature of the semiconductor element. Further, the higher the substrate temperature during vapor deposition, the lower the rising voltage of the current-voltage characteristic (IV characteristic).
【0014】尚、マスク3bのガス出しを行わない場合
には、前回使用した電極材料が試料に付着し、電極の特
性劣化(例えば、接触抵抗の増加)が見られた。図2
に、従来の形成方法によって電極を形成し、蒸着後に加
熱処理を施さなかったもの(サンプルA)と、本発明の
形成方法で形成した電極(サンプルB)と、従来の形成
方法によって電極を形成し、蒸着後に還元雰囲気
(H2 ;10容量%、Ar;90容量%)中で、300
℃で10分間にわたって加熱処理を施したもの(サンプ
ルC)のI−V特性を示す。尚、測定は、電極間の距離
が5mmで電極の直径が1mmの2つのIn電極を用
い、光照射以外は同じ蒸着条件で形成した。When the mask 3b was not degassed, the electrode material used previously adhered to the sample, and the electrode characteristics were deteriorated (for example, the contact resistance increased). Figure 2
An electrode formed by a conventional forming method and not subjected to heat treatment after vapor deposition (Sample A), an electrode formed by the forming method of the present invention (Sample B), and an electrode formed by a conventional forming method. Then, after vapor deposition, in a reducing atmosphere (H 2 ; 10% by volume, Ar; 90% by volume), 300
The IV characteristic of what heat-processed at 10 degreeC for 10 minutes (sample C) is shown. The measurement was performed using two In electrodes having a distance between the electrodes of 5 mm and an electrode diameter of 1 mm under the same vapor deposition conditions except for light irradiation.
【0015】サンプルAは、立ち上がり電圧が約6Vと
高く、ショットキー接触であることを示している。一
方、サンプルB(本発明)は、蒸着後に加熱処理を施さ
なくても立ち上がり電圧が改善されている。すなわち、
オーミック接触特性を示し、蒸着後に加熱処理を施した
従来の電極(サンプルC)とほぼ同じ特性であることが
分かる。Sample A has a high rising voltage of about 6 V, showing that it is a Schottky contact. On the other hand, in Sample B (invention), the rising voltage is improved without heat treatment after vapor deposition. That is,
It exhibits ohmic contact characteristics, and it can be seen that the characteristics are almost the same as those of the conventional electrode (Sample C) which is heat-treated after vapor deposition.
【0016】尚、光照射は、蒸着された金属の膜厚が3
0nm以上になるとほとんど効果がなくなる。これは、
金属が光を吸収してしまい、半導体まで到達しなくなる
からである。従って、光の照射は蒸着初期だけでも構わ
ない。また、基板の加熱も蒸着初期だけで構わない。こ
こでいう蒸着初期とは、蒸着膜の厚さが30nm以下の
段階である。In the light irradiation, the film thickness of the deposited metal is 3
At 0 nm or more, almost no effect is obtained. this is,
This is because the metal absorbs light and does not reach the semiconductor. Therefore, the light irradiation may be performed only at the initial stage of vapor deposition. Further, the substrate may be heated only at the initial stage of vapor deposition. The initial stage of vapor deposition referred to here is a stage where the thickness of the vapor deposited film is 30 nm or less.
【0017】上記サンプルCの場合には、加熱処理の温
度が300℃であり、半導体結晶の成長温度(300
℃)よりも高温ではないので、加熱処理による膜の電気
的特性の劣化はほとんど見られない。しかし、成長温度
が50℃だけ低い250℃である場合、その抵抗率は、
本発明の形成方法によって形成した電極で測定した半導
体薄膜の抵抗率に比べて10%程度低くなった。In the case of the sample C, the heat treatment temperature is 300 ° C., and the semiconductor crystal growth temperature (300
Since the temperature is not higher than (.degree. C.), there is almost no deterioration in the electrical characteristics of the film due to the heat treatment. However, if the growth temperature is 250 ° C, which is lower by 50 ° C, the resistivity is
It was about 10% lower than the resistivity of the semiconductor thin film measured by the electrode formed by the forming method of the present invention.
【0018】ここで、ハロゲンランプ4bの光4cのど
の成分が電極形成に効果的であるかを調べるため、フィ
ルタ4dを介在させた状態で光4cを照射した。その結
果、480nmよりも長い波長の光を透過するフィルタ
(HOYAのY−48フィルタ使用)を介在させた場合
には、立ち上がり電圧の改善は見られなかった。これに
対し、460nmよりも長い波長の光を透過するフィル
タ(HOYAのY−46フィルタ使用)を介在させた場
合には、立ち上がり電圧の改善が見られた。そして、透
過上限の波長を短くするに伴い、立ち上がり電圧の改善
度が向上した。Here, in order to investigate which component of the light 4c of the halogen lamp 4b is effective for forming the electrode, the light 4c was irradiated with the filter 4d interposed. As a result, when a filter (using a HOYA Y-48 filter) that transmits light having a wavelength longer than 480 nm was interposed, the rise voltage was not improved. On the other hand, when a filter (using a HOYA Y-46 filter) that transmits light having a wavelength longer than 460 nm is interposed, the rise voltage is improved. Then, as the wavelength of the upper limit of transmission was shortened, the degree of improvement of the rising voltage was improved.
【0019】尚、本実施例2においては、蒸着速度は
0.2nm/sであったが、蒸着速度を1nm/s以上
に上げると、立ち上がり電圧の改善度が低下した。これ
は、蒸着速度が速すぎると、半導体と金属との間の接合
が十分に行われない状態のままで次の金属原子が半導体
基板上に飛来し、十分な接合ができないためと考えられ
る。従って、蒸着速度は十分にゆっくりである必要があ
る。In Example 2, the vapor deposition rate was 0.2 nm / s, but when the vapor deposition rate was increased to 1 nm / s or more, the degree of improvement in the rising voltage was lowered. This is presumably because if the deposition rate is too fast, the next metal atom will fly onto the semiconductor substrate in a state in which the semiconductor and the metal are not sufficiently bonded, and sufficient bonding cannot be achieved. Therefore, the deposition rate needs to be sufficiently slow.
【0020】また、本実施例2においては、基板2aと
してn型ZnSeを用いているが、n型CdSを用いた
場合には500nmよりも短い波長の光が有効であっ
た。また、ZnSを用いた場合には、360nmよりも
短い波長の光が有効であった。これにより、非熱処理電
極として用いるには蒸着時の禁制帯幅以上の光が有効で
あると考えられる。尚、ここには示していないが、他の
あらゆる半導体においても、禁制帯幅以上のエネルギー
の光を照射しながらゆっくりとした速度で蒸着を行った
結果、同様に立ち上がり電圧の改善が見られた。In the second embodiment, n-type ZnSe is used as the substrate 2a, but when n-type CdS is used, light having a wavelength shorter than 500 nm is effective. Further, when ZnS was used, light having a wavelength shorter than 360 nm was effective. Therefore, it is considered that light having a forbidden band width or more during vapor deposition is effective for use as a non-heat-treated electrode. Although not shown here, in all other semiconductors as well, as a result of performing vapor deposition at a slow speed while irradiating with light having an energy equal to or more than the forbidden band width, similar improvement in rising voltage was observed. .
【0021】[0021]
【発明の効果】以上説明したように、本発明に係る電極
の形成方法によれば、従来よりも低い加熱処理温度で、
電極と半導体との間の接触抵抗を下げることができる。
このため、成長温度の低温化でオーミック性電極の形成
が困難になった材料系であっても、低温での後プロセス
によってオーミック性電極の形成が可能となる。従っ
て、電流注入素子への応用として、その実用的価値は大
きい。As described above, according to the electrode forming method of the present invention, the heat treatment temperature lower than that of the conventional method
The contact resistance between the electrode and the semiconductor can be reduced.
Therefore, even in a material system in which it is difficult to form an ohmic electrode due to a lower growth temperature, it is possible to form an ohmic electrode by a post process at low temperature. Therefore, it has great practical value as an application to a current injection element.
【0022】また、本発明に係る電極の形成装置によれ
ば、低温熱処理電極を効率良く合理的に形成することが
できる。Further, according to the electrode forming apparatus of the present invention, the low temperature heat treatment electrode can be formed efficiently and rationally.
【図1】本発明に係る電極の製造装置の一実施例を示す
概略図である。FIG. 1 is a schematic view showing an embodiment of an electrode manufacturing apparatus according to the present invention.
【図2】電極のI−V特性を示す図である。FIG. 2 is a diagram showing an IV characteristic of an electrode.
1a 真空ポンプ 1b 真空容器 2a 基板 2b 基板ホルダ 2c 基板加熱用ヒータ 3a マスク(蒸着時) 3b マスク(待機時・ガス出し時) 3c マスク加熱用ヒータ 4a 光導入窓 4b ハロゲンランプ(ヨウ素タングステンランプ) 4c 光 4d フィルタ 5a In用のるつぼ 5b 分子線用シャッタ 5c In分子線 1a Vacuum pump 1b Vacuum container 2a Substrate 2b Substrate holder 2c Substrate heating heater 3a Mask (during vapor deposition) 3b Mask (standby / outgassing) 3c Mask heating heater 4a Light introduction window 4b Halogen lamp (iodine tungsten lamp) 4c Optical 4d Filter 5a Cr crucible for In 5b Shutter for molecular beam 5c In Molecular beam
Claims (2)
に加熱し、前記半導体の表面に、その禁制帯幅よりも高
いエネルギーの光を照射しながら、金属電極材料を蒸着
する電極の形成方法。1. A method for forming an electrode, wherein a semiconductor is heated to a temperature lower than its growth temperature, and a metal electrode material is vapor-deposited while irradiating the surface of said semiconductor with light having an energy higher than its forbidden band width. .
する手段と、前記半導体の表面に金属電極を蒸着する電
極材料蒸発源と、ガス出しが可能で、かつ、移動可能な
マスクとを少なくとも備えてなる電極の形成装置。2. A means for irradiating the surface of a semiconductor with light, an electrode material evaporation source for evaporating a metal electrode on the surface of the semiconductor, and a mask capable of degassing and moving in a vacuum container. An electrode forming apparatus comprising at least the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15168793A JPH0714805A (en) | 1993-06-23 | 1993-06-23 | Method and device of forming electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15168793A JPH0714805A (en) | 1993-06-23 | 1993-06-23 | Method and device of forming electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0714805A true JPH0714805A (en) | 1995-01-17 |
Family
ID=15524070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15168793A Pending JPH0714805A (en) | 1993-06-23 | 1993-06-23 | Method and device of forming electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0714805A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7491982B2 (en) | 2005-01-28 | 2009-02-17 | Mitsubishi Denki Kabushiki Kaisha | Diode having low forward voltage drop |
JP2010238788A (en) * | 2009-03-30 | 2010-10-21 | Dainippon Screen Mfg Co Ltd | Heat treatment apparatus |
KR101009558B1 (en) * | 2003-12-02 | 2011-01-18 | 삼성모바일디스플레이주식회사 | Equipments for forming layers in vacuum condition |
CN106256925A (en) * | 2015-06-18 | 2016-12-28 | 佳能特机株式会社 | Vacuum deposition apparatus, the manufacture method of evaporation film and the manufacture method of organic electronic device |
CN108504995A (en) * | 2017-02-24 | 2018-09-07 | 萨特隆股份公司 | The box coating apparatus and its heating device of vacuum coated for base material, particularly eyeglass |
-
1993
- 1993-06-23 JP JP15168793A patent/JPH0714805A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101009558B1 (en) * | 2003-12-02 | 2011-01-18 | 삼성모바일디스플레이주식회사 | Equipments for forming layers in vacuum condition |
US7491982B2 (en) | 2005-01-28 | 2009-02-17 | Mitsubishi Denki Kabushiki Kaisha | Diode having low forward voltage drop |
JP2010238788A (en) * | 2009-03-30 | 2010-10-21 | Dainippon Screen Mfg Co Ltd | Heat treatment apparatus |
CN106256925A (en) * | 2015-06-18 | 2016-12-28 | 佳能特机株式会社 | Vacuum deposition apparatus, the manufacture method of evaporation film and the manufacture method of organic electronic device |
CN106256925B (en) * | 2015-06-18 | 2020-10-02 | 佳能特机株式会社 | Vacuum evaporation apparatus, method for manufacturing evaporated film, and method for manufacturing organic electronic device |
CN108504995A (en) * | 2017-02-24 | 2018-09-07 | 萨特隆股份公司 | The box coating apparatus and its heating device of vacuum coated for base material, particularly eyeglass |
CN108504995B (en) * | 2017-02-24 | 2021-08-27 | 萨特隆股份公司 | Box type coating equipment for vacuum coating of substrate, especially spectacle lens and electric heating device thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4166918A (en) | Method of removing the effects of electrical shorts and shunts created during the fabrication process of a solar cell | |
US5312771A (en) | Optical annealing method for semiconductor layer and method for producing semiconductor device employing the same semiconductor layer | |
US5098737A (en) | Amorphic diamond material produced by laser plasma deposition | |
FR2698210A1 (en) | TFT fabrication process for transistor used in active matrix LCD - involves attaching conducting layer selectively to drain and source as basis for growth of further semiconductor layers | |
FR2542500A1 (en) | METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE OF THE TYPE COMPRISING AT LEAST ONE SILICON LAYER DEPOSITED ON AN INSULATING SUBSTRATE | |
JPH0714805A (en) | Method and device of forming electrode | |
WO2002041363A9 (en) | System and methods for laser assisted deposition | |
CH637168A5 (en) | METHOD AND DEVICE FOR VACUUM EVAPORATION DEPOSITION USING A MODULATED ELECTRON BEAM AND A SCREEN. | |
US5707900A (en) | Method of heat-treating semiconductor crystal of a group II-group VI compound | |
Sharma et al. | Optical and electrical properties of ZnSe thin films: effect of vacuum annealing | |
JP3655547B2 (en) | Method for forming semiconductor thin film | |
JP4811890B2 (en) | Method for producing photoconductive member | |
JP2002241930A (en) | Method for deposition of nitride thin film | |
JPS631747B2 (en) | ||
RU2829701C1 (en) | Method of creating photosensitive surface-barrier structure | |
JPS632920B2 (en) | ||
JPH02226718A (en) | Production of unsingle crystal semiconductor | |
JPS6235512A (en) | Manufacture of single crystal thin film of semiconductor | |
JP2003017431A (en) | Annealing device | |
JP3341361B2 (en) | Manufacturing method of ultrafine particle dispersion material | |
JPS583221A (en) | Ion beam accumulation | |
JPS60240119A (en) | Molecular beam crystal growth | |
JPH0689861A (en) | Semiconductor epitaxial substrate and formation thereof | |
JPH0860359A (en) | Production of semiconductor thin film having chalcopyrite structure | |
JPH1036199A (en) | Compound substrate, compound semiconductor and their production |