JPH071479A - Manufacture of heat-insulating structure - Google Patents
Manufacture of heat-insulating structureInfo
- Publication number
- JPH071479A JPH071479A JP5172299A JP17229993A JPH071479A JP H071479 A JPH071479 A JP H071479A JP 5172299 A JP5172299 A JP 5172299A JP 17229993 A JP17229993 A JP 17229993A JP H071479 A JPH071479 A JP H071479A
- Authority
- JP
- Japan
- Prior art keywords
- heat insulating
- insulating structure
- foam
- enclosure
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Refrigerator Housings (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、保冷、保温等を目的と
する真空断熱方式の断熱性構造体の製造法に関し、更に
詳しくは、優れた断熱性能が得られ、複雑な形状のもの
でも容易に製造できる断熱性構造体の製造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a vacuum heat insulating type heat insulating structure for the purpose of keeping cold, keeping warm, etc. More specifically, it has excellent heat insulating performance and is of a complicated shape. The present invention relates to a method of manufacturing a heat insulating structure that can be easily manufactured.
【0002】[0002]
【従来の技術】冷蔵庫など高い断熱性を要求される機器
の断熱材としては、熱伝導率が0.025kcal/m
・hr・℃未満の高断熱性構造体が用いられている。2. Description of the Related Art As a heat insulating material for equipment such as a refrigerator that requires high heat insulation, the heat conductivity is 0.025 kcal / m.
-A highly heat-insulating structure with a temperature lower than hr- ° C is used.
【0003】従来、このような断熱性構造体としては、
硬質ウレタンフォーム等の発泡性熱硬化性樹脂を、包囲
材で覆って包囲体としたものが用いられてきた。こうし
た発泡性熱硬化性樹脂は、CFC(クロロフルオロカー
ボン)、HCFC(ヒドロクロロフルオロカーボン)、
PFC(パーフルオロカーボン)、HFC(ヒドロフル
オロカーボン)など熱伝導率の極めて低い物質を発泡剤
として使用し、かつ独立気泡率を高めて発泡させること
により、独立気泡の内部に発泡剤をガスとして残留さ
せ、その熱伝導率の低さを利用して、優れた断熱性を持
たせるものであった。なお、上記に関連する従来技術と
しては、例えば特開平3−243614号公報等が挙げ
られる。Conventionally, as such a heat insulating structure,
A foaming thermosetting resin such as a rigid urethane foam covered with an enveloping material to form an enclosure has been used. Such foamable thermosetting resins include CFC (chlorofluorocarbon), HCFC (hydrochlorofluorocarbon),
By using a substance with extremely low thermal conductivity such as PFC (perfluorocarbon) or HFC (hydrofluorocarbon) as a foaming agent, and increasing the closed cell rate to foam, the foaming agent remains as a gas inside the closed cells. , It was intended to have excellent heat insulating properties by utilizing its low thermal conductivity. As a conventional technique related to the above, there is, for example, Japanese Patent Laid-Open No. 3-243614.
【0004】しかしながら、CFCは、成層圏のオゾン
層を破壊したり温室効果を増長する地球環境の破壊物質
として、近年世界的に問題となっており、生産量及び消
費量が規制されることになった。また、CFCの代替品
とされるHCFCやPFC、HFC等も、オゾン層破壊
や温室効果増長への影響が懸念され、大量に使用するこ
とについて問題を残している。However, CFC has become a global problem in recent years as a substance that destroys the ozone layer in the stratosphere and increases the greenhouse effect, and has become a global problem in recent years, and its production and consumption are regulated. It was Further, HCFCs, PFCs, HFCs, and the like, which are substitutes for CFCs, have concerns about their influence on the ozone layer depletion and the increase in the greenhouse effect, and thus have a problem in using in large quantities.
【0005】以上のような事情から、硬質ウレタンフォ
ームなど発泡性熱硬化性樹脂製造における発泡剤として
は、含フッ素化合物以外の発泡剤である水、有機溶媒等
が用いられるようになっているが、これらはいずれもC
FC類に比べて熱伝導率が高いため、上記のような独立
気泡率を高めて発泡する方法では、従来のCFC類で発
泡したものほどの高断熱性を得ることは難しい。Under the circumstances described above, as a foaming agent in the production of a foamable thermosetting resin such as a rigid urethane foam, water, an organic solvent or the like, which is a foaming agent other than a fluorine-containing compound, has been used. , These are all C
Since the thermal conductivity is higher than that of FCs, it is difficult to obtain high thermal insulation as foamed with conventional CFCs by the method of foaming by increasing the closed cell rate as described above.
【0006】一方、断熱性構造体としては、上記のよう
な低熱伝導率のガスを利用したものの他に、真空断熱方
式によるものがある。これは、連通気泡率の高い有機発
泡体や無機粉体等の形状保持材を、合成樹脂フィルムと
金属薄膜とをラミネートした袋に充填し、内部を減圧脱
気した後、密封したものである。そして、こうして得ら
れた断熱パネルを、冷蔵庫等のケーシングの外壁又は内
壁に貼り付けることにより、断熱性構造体を形成してい
た。なお、このような真空断熱方式の断熱性構造体に関
連する従来技術としては、例えば特開平3−29477
8号公報等が挙げられる。On the other hand, as the heat insulating structure, there is a vacuum heat insulating system in addition to the above-mentioned one using a gas having a low thermal conductivity. This is obtained by filling a bag in which a synthetic resin film and a metal thin film are laminated with a shape-retaining material such as an organic foam or an inorganic powder having a high open cell rate, degassing the inside under reduced pressure, and then sealing the bag. . Then, the heat insulating panel thus obtained is attached to the outer wall or the inner wall of a casing of a refrigerator or the like to form a heat insulating structure. As a conventional technique related to such a vacuum heat insulating type heat insulating structure, for example, Japanese Patent Laid-Open No. 3-29477.
No. 8 publication and the like can be mentioned.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上記の
ような断熱パネルをケーシングの外壁又は内壁に貼り付
ける方法では、曲面や多数の曲折部分を有するような複
雑な形状の断熱性構造体を作ることは難しく、工程も複
雑化するという問題点があった。However, in the method of attaching the heat insulating panel to the outer wall or the inner wall of the casing as described above, a heat insulating structure having a complicated shape having a curved surface or a large number of bent portions is formed. However, there is a problem that the process is complicated and the process is complicated.
【0008】また、ケーシング等の壁の全面に断熱パネ
ルを貼ることが難しいため、断熱パネルが貼られた特定
箇所のみ断熱性が向上するだけで、構造体全体としての
断熱性を向上させることが困難であった。Since it is difficult to attach the heat insulating panel to the entire surface of the wall such as the casing, the heat insulating property of the entire structure can be improved only by improving the heat insulating property only at the specific portion where the heat insulating panel is attached. It was difficult.
【0009】更に、減圧工程以降の取り扱い中に断熱パ
ネルの袋が破損したり、あるいは減圧した後に発泡性樹
脂から未反応の原料等が遊離したりして、減圧状態を保
てなくなり、断熱性能が低下する虞れがあった。Further, the bag of the heat insulating panel is damaged during handling after the depressurizing step, or unreacted raw materials are released from the foamable resin after depressurizing, so that the depressurized state cannot be maintained and the heat insulating performance is deteriorated. Could be reduced.
【0010】したがって、本発明の目的は、複雑な形状
の断熱性構造体でも生産性よく容易に製造でき、優れた
断熱性能を長期に亙って維持できるようにした断熱性構
造体の製造法を提供することにある。Therefore, an object of the present invention is to provide a method of manufacturing a heat insulating structure which can easily manufacture a heat insulating structure having a complicated shape with high productivity and can maintain excellent heat insulating performance for a long period of time. To provide.
【0011】[0011]
【課題を解決するための手段】上記目的を達成するた
め、本発明の断熱性構造体の製造法は、独立気泡率が5
0%以下の発泡体を与える発泡性樹脂原料を、所定形状
を有する型内に注入し、発泡硬化させて発泡体とし、次
いで前記発泡体を型より取り出して、通気性を有さない
材料からなる包囲体内に配置したのち、前記包囲体内を
大気圧以下に減圧脱気し、最後に開口部を封止して密封
することを特徴とする。To achieve the above object, the method for producing a heat insulating structure according to the present invention has a closed cell ratio of 5 or less.
A foamable resin raw material that gives 0% or less of a foam is poured into a mold having a predetermined shape, foam-cured to form a foam, and then the foam is taken out of the mold to obtain a material having no air permeability. After arranging in the enclosure, the enclosure is depressurized to atmospheric pressure or lower, and finally the opening is sealed and sealed.
【0012】以下、本発明について、更に詳細に説明す
る。The present invention will be described in more detail below.
【0013】本発明において、発泡性樹脂原料として
は、独立気泡率が50%以下の発泡体を得られるように
調整されたものが用いられる。発泡体の独立気泡率が5
0%を超えると、減圧時に断熱性構造体の内部が一様に
真空になりにくいため、好ましくない。発泡性樹脂原料
としては、例えばウレタン樹脂、フェノール樹脂、スチ
レン樹脂等の熱硬化性樹脂を与えるものが好ましく、特
に水のみを発泡剤としたウレタン樹脂原料が好ましい。In the present invention, as the foamable resin raw material, one prepared so as to obtain a foam having a closed cell ratio of 50% or less is used. The closed cell ratio of the foam is 5
When it exceeds 0%, the inside of the heat insulating structure is unlikely to be uniformly vacuumed when the pressure is reduced, which is not preferable. As the foamable resin raw material, for example, a material that gives a thermosetting resin such as urethane resin, phenol resin, styrene resin is preferable, and particularly a urethane resin raw material using only water as a foaming agent is preferable.
【0014】ウレタン樹脂を与える原料としては、活性
水素化合物、ポリイソシアネート化合物等の主剤に、触
媒、発泡剤、整泡剤、充填剤、安定剤、着色剤、難燃
剤、その他の添加剤を適宜配合したものが用いられる。As a raw material for providing the urethane resin, a catalyst, a foaming agent, a foam stabilizer, a filler, a stabilizer, a colorant, a flame retardant, and other additives are appropriately added to a main component such as an active hydrogen compound and a polyisocyanate compound. A blended product is used.
【0015】活性水素化合物としては、水酸基やアミノ
基などの活性水素基を2以上有する化合物を、単独又は
混合して使用する。また、必要に応じて、ポリアミンや
モノアルカノールアミンなどのアミノ基含有化合物を配
合してもよい。As the active hydrogen compound, compounds having two or more active hydrogen groups such as hydroxyl groups and amino groups are used alone or in combination. Moreover, you may mix | blend amino group containing compounds, such as polyamine and monoalkanolamine, as needed.
【0016】2以上の水酸基を有する化合物としては、
ポリオールが好ましいが、2以上のフェノール性水酸基
を有する化合物、例えばフェノール樹脂初期縮合物など
も使用できる。As the compound having two or more hydroxyl groups,
A polyol is preferable, but a compound having two or more phenolic hydroxyl groups, such as a phenol resin initial condensate, can also be used.
【0017】ポリオールとしては、ポリエーテル系ポリ
オール、ポリエステル系ポリオール、多価アルコール、
水酸基含有ジエン系ポリマーなどがあり、特にポリエー
テル系ポリオールを1種類又は2種類以上混合して用い
ることが好ましい。また、ポリエーテル系ポリオールを
主成分として、ポリエステル系ポリオール、多価アルコ
ール、ポリアミン、アルカノールアミン、その他の活性
水素化合物を適宜配合したものを用いてもよい。As the polyol, polyether type polyol, polyester type polyol, polyhydric alcohol,
There are hydroxyl group-containing diene-based polymers and the like, and it is particularly preferable to use one type or a mixture of two or more types of polyether type polyols. Moreover, you may use the thing which blended the polyester type polyol, polyhydric alcohol, polyamine, alkanolamine, and other active hydrogen compounds suitably with polyether type polyol as a main component.
【0018】ポリエーテル系ポリオールとしては、多価
アルコール、糖類、アルカノールアミン、芳香族ポリア
ミン、多価フェノールその他のイニシエーターに環状エ
ーテル、特にプロピレンオキシドやエチレンオキシドな
どのアルキレンオキシドを付加して得られるものが好ま
しい。また、ポリオールとしてポリマーポリオールある
いはグラフトポリオールと呼ばれる主にポリエーテル系
ポリオール中にビニルポリマーの微粒子が分散したポリ
オール組成物も使用できる。The polyether polyols are obtained by adding cyclic ethers, particularly alkylene oxides such as propylene oxide and ethylene oxide, to initiators such as polyhydric alcohols, sugars, alkanolamines, aromatic polyamines, polyhydric phenols and the like. Is preferred. Further, as the polyol, a polyol composition in which fine particles of vinyl polymer are mainly dispersed in a polyether polyol called a polymer polyol or a graft polyol can also be used.
【0019】ポリエステル系ポリオールとしては、多価
アルコール−多価カルボン酸縮合系のポリオールや環状
エステル開環重合体系のポリオールがある。Examples of the polyester-based polyols include polyhydric alcohol-polycarboxylic acid condensation type polyols and cyclic ester ring-opening polymer type polyols.
【0020】なお、上記多価アルコールとしてはエチレ
ングリコール、プロピレングリコール、ジエチレングリ
コール、ジプロピレングリコール、グリセリン、トリメ
チロールプロパン、ペンタエリスリトールなどを使用で
きる。As the polyhydric alcohol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, pentaerythritol and the like can be used.
【0021】また、糖類としては、シュークロース、デ
キストロース、ソルビトールなどがある。アルカノール
アミンとしてはジエタノールアミン、トリエタノールア
ミンなどを使用できる。The sugars include sucrose, dextrose and sorbitol. As the alkanolamine, diethanolamine, triethanolamine or the like can be used.
【0022】更に、ポリアミンとしては、エチレンジア
ミン、トルエンジアミン、ジアミノジフェニルメタン、
ポリメチレンポリフェニルアミンなどを使用できる。Further, as the polyamine, ethylenediamine, toluenediamine, diaminodiphenylmethane,
Polymethylene polyphenylamine etc. can be used.
【0023】更にまた、多価フェノールとしては、ビス
フェノールA、ビスフェノールS、フェノール樹脂系初
期縮合物などを使用できる。Furthermore, as the polyhydric phenol, bisphenol A, bisphenol S, phenol resin type initial condensate and the like can be used.
【0024】なお、本発明において、上記ポリオールの
水酸基価は200〜800が好ましい。In the present invention, the hydroxyl value of the polyol is preferably 200 to 800.
【0025】上記活性水素化合物と反応させるポリイソ
シアネート化合物としては、イソシアネート基を2以上
有する芳香族系、脂肪環族系、あるいは脂肪族系のポリ
イソシアネート、それら2種以上の混合物、及びそれら
を変性して得られる変性ポリイソシアネートがある。具
体的には、例えば、トリレンジイソシアネート、ジフェ
ニルメタンジイソシアネート、ポリメチレンポリフェニ
ルイソシアネート、キシリレンジイソシアネート、ヘキ
サメチレンジイソシアネートなどのポリイソシアネート
やそれらのプレポリマー型変性体、ヌレート変性体、ウ
レア変性体などがある。As the polyisocyanate compound to be reacted with the above-mentioned active hydrogen compound, aromatic, alicyclic or aliphatic polyisocyanate having two or more isocyanate groups, a mixture of two or more thereof, and a modification thereof There is a modified polyisocyanate obtained by. Specific examples include polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenyl isocyanate, xylylene diisocyanate, and hexamethylene diisocyanate, and their prepolymer-type modified products, nurate modified products, and urea modified products. .
【0026】また、触媒としては、活性水素基とイソシ
アネート基の反応を促進させる有機スズ化合物などの金
属化合物系触媒やトリエチレンジアミンなどの3級アミ
ン触媒が使用される。また、カルボン酸金属塩などのイ
ソシアネート基どうしを反応させる多量化触媒が目的に
応じて使用される。特に、断熱性構造体の内部を減圧し
た後に、触媒が発泡樹脂からブリードアウト(遊離)す
るのを防止するため、イソシアネート基と反応しうる活
性水素基を含有する化合物が好ましく、このような化合
物としてはDMEA(ジメチルエタノールアミン)、D
EEA(ジエチルエタノールアミン)などが挙げられ
る。As the catalyst, a metal compound catalyst such as an organic tin compound which promotes a reaction between an active hydrogen group and an isocyanate group, or a tertiary amine catalyst such as triethylenediamine is used. Further, a polymerizing catalyst for reacting isocyanate groups such as carboxylic acid metal salt is used depending on the purpose. In particular, a compound containing an active hydrogen group capable of reacting with an isocyanate group is preferable in order to prevent the catalyst from bleeding out (release) from the foamed resin after decompressing the inside of the heat insulating structure. As DMEA (dimethyl ethanolamine), D
EEA (diethyl ethanolamine) etc. are mentioned.
【0027】整泡剤としては、例えばシリコーン系整泡
剤や含フッ素化合物系整泡剤などが使用される。整泡剤
においても、上記触媒と同様な理由から、イソシアネー
ト基と反応しうる活性水素基を含有する化合物が好まし
く、例えばシリコーン系整泡剤では、ポリジエンメチル
シロキサン鎖へのグラフトポリオールの末端に水酸基を
有するものなどが挙げられる。As the foam stabilizer, for example, a silicone type foam stabilizer or a fluorine-containing compound type foam stabilizer is used. Also in the foam stabilizer, a compound containing an active hydrogen group capable of reacting with an isocyanate group is preferable for the same reason as in the above catalyst. For example, in a silicone foam stabilizer, the compound is added to the end of the graft polyol to the polydienemethylsiloxane chain. Examples thereof include those having a hydroxyl group.
【0028】発泡剤としては、CFC、HCFC、PF
C、HFC等の含フッ素化合物や、水、有機溶媒類等を
使用できるが、水を単独で用いるのが特に好ましい。As the foaming agent, CFC, HCFC, PF
Fluorine-containing compounds such as C and HFC, water, organic solvents and the like can be used, but it is particularly preferable to use water alone.
【0029】次に、フェノール樹脂を与える原料として
は、フェノール、o,m,p−クレゾール、キシレノー
ル、カチコール、レゾルシン、ビスフェノールA等のフ
ェノール類と、ホルマリン、パラホルムアルデヒド、フ
ルフラール等のアルデヒド類とを、アルカリ触媒又は酸
性触媒で付加重合して得られる樹脂、又はこれらを変性
した樹脂に、硬化剤、発泡剤、その他の添加剤を配合し
たものが用いられる。なお、前記フェノール樹脂はレゾ
ール型、ノボラック型のどちらでもよいが、レゾール型
が特に好ましい。Next, as raw materials for providing the phenol resin, phenol, o, m, p-cresol, xylenol, catechol, resorcin, bisphenol A, and other aldehydes, and formalin, paraformaldehyde, furfural, and other aldehydes are used. A resin obtained by addition-polymerizing with an alkali catalyst or an acidic catalyst, or a resin obtained by modifying these resins, with a curing agent, a foaming agent, and other additives is used. The phenol resin may be either a resol type or a novolac type, but a resol type is particularly preferable.
【0030】上記硬化剤としては、通常使用される塩
酸、硫酸、リン酸、フェノールスルホン酸、ベンゼンス
ルホン酸、トルエンスルホン酸、メタクレゾールスルホ
ン酸、レゾルシノールスルホン酸等を使用できる。硬化
剤の添加量は、フェノール樹脂100重量部に対し1〜
40重量部が好ましい。As the above-mentioned curing agent, usually used hydrochloric acid, sulfuric acid, phosphoric acid, phenol sulfonic acid, benzene sulfonic acid, toluene sulfonic acid, metacresol sulfonic acid, resorcinol sulfonic acid and the like can be used. The amount of the curing agent added is 1 to 100 parts by weight of the phenol resin.
40 parts by weight is preferred.
【0031】また、上記発泡剤としては、R123
(1,1−ジクロロ−2,2,2−トリフルオロエタ
ン)、R22(クロロジフルオロメタン)、R141b
(1,1−ジクロロ−1−フルオロエタン)等のHCF
Cや、R134a(1,1,1,2−テトラフルオロエ
タン)等のHFC、ペンタン等の炭化水素類、ジクロロ
メタン等のハロゲン化炭化水素類などを1〜50重量部
添加して使用できる。As the foaming agent, R123 is used.
(1,1-dichloro-2,2,2-trifluoroethane), R22 (chlorodifluoromethane), R141b
HCF such as (1,1-dichloro-1-fluoroethane)
1 to 50 parts by weight of C, HFCs such as R134a (1,1,1,2-tetrafluoroethane), hydrocarbons such as pentane, halogenated hydrocarbons such as dichloromethane and the like can be used.
【0032】スチレン系樹脂を与える原料としては、ス
チレン系単量体の重合体又は共重合体、スチレン系単量
体と他の単量体との共重合体を得るものが用いられる。
ここで、スチレン系単量体とは、スチレン、α−メチル
スチレン、ビニルトルエン、クロルスチレン等であり、
他の単量体としては、ジビニルベンゼン、アクリロニト
リル、メチルメタクリレート等のビニル系単量体等であ
る。また、発泡剤には、上記フェノール樹脂原料と同様
のものを使用できる。As the raw material for providing the styrene resin, a material for obtaining a polymer or copolymer of a styrene monomer or a copolymer of a styrene monomer and another monomer is used.
Here, the styrene-based monomer is styrene, α-methylstyrene, vinyltoluene, chlorostyrene, or the like,
Examples of other monomers include vinyl monomers such as divinylbenzene, acrylonitrile, and methyl methacrylate. Further, as the foaming agent, the same one as the above-mentioned phenol resin raw material can be used.
【0033】上記発泡樹脂原料を容器に注入するための
注入機としては、低圧発泡機、高圧発泡機のどちらを用
いてもよい。一般に、ウレタン樹脂原料を用いる場合に
は高圧発泡機が好ましく、フェノール樹脂原料、スチレ
ン系樹脂原料を用いる場合には低圧発泡機が好ましい。
また、樹脂の注入速度は、100〜1000g/秒程度
が好ましい。As a pouring machine for pouring the above foamed resin raw material into a container, either a low pressure foaming machine or a high pressure foaming machine may be used. Generally, a high-pressure foaming machine is preferable when a urethane resin raw material is used, and a low-pressure foaming machine is preferable when a phenol resin raw material or a styrene resin raw material is used.
Moreover, the injection rate of the resin is preferably about 100 to 1000 g / sec.
【0034】また、上記発泡性樹脂原料は、注入前に予
め脱気して、溶存ガス等を除去したのち、型内に注入す
るのが好ましい。これによって、発泡体中に残存する溶
存ガス等が真空脱気後の包囲体内部で遊離することによ
る真空度の低下を防ぐことができる。Further, it is preferable that the foamable resin raw material is degassed in advance before pouring to remove dissolved gas and the like and then injected into the mold. As a result, it is possible to prevent the degree of vacuum from decreasing due to the dissolved gas or the like remaining in the foam body being liberated inside the envelope body after vacuum deaeration.
【0035】本発明で用いる型の材質、形状等に特に制
限はなく、一般にアルミニウムや鋳物製のものが用いら
れる。また、型を所定温度に調整するための温度調整装
置等を設けるのが好ましい。The material and shape of the mold used in the present invention are not particularly limited, and those made of aluminum or casting are generally used. Further, it is preferable to provide a temperature adjusting device or the like for adjusting the mold to a predetermined temperature.
【0036】一般に、ウレタン樹脂原料等をスラブ発泡
させた場合、反応熱が蓄積して発泡体が焼ける(スコー
チ現象)等の問題点が生じやすいが、本発明のように型
内において、薄い形状で発泡硬化させれば、このような
問題は全く生じない。In general, when a urethane resin raw material or the like is slab-foamed, a problem such as reaction heat accumulating and the foam being burned (scorch phenomenon) is likely to occur. However, as in the present invention, a thin shape is formed in the mold. If foamed and cured in, no such problems occur.
【0037】こうして得られた所定形状の発泡体は、型
から取り出したのち、そのまま包囲体中に配置してもよ
いが、40℃以上で1分以上、好ましくは100℃以上
で5分以上放置して、発泡体内に溶解している揮発成分
を除去したのち、包囲体中に配置するのが好ましい。こ
れによって、揮発成分が真空脱気後の包囲体中で飛散す
ることによる真空度の低下を防ぐことができる。The thus obtained foam having a predetermined shape may be placed in the envelope as it is after being taken out from the mold, but it is left at 40 ° C. or higher for 1 minute or longer, preferably 100 ° C. or higher for 5 minutes or longer. Then, after removing the volatile components dissolved in the foamed body, it is preferable to dispose the foamed body in the enclosure. As a result, it is possible to prevent a decrease in the degree of vacuum caused by the volatile components being scattered in the envelope body after vacuum deaeration.
【0038】また、発泡体を活性炭、ゼオライト等のガ
ス吸着物質とともに包囲体内に配置して、上記熱処理で
除去できなかった揮発成分を除去することもできる。It is also possible to arrange the foam together with a gas adsorbing substance such as activated carbon or zeolite in the enclosure to remove volatile components which could not be removed by the heat treatment.
【0039】本発明における包囲体は、通気性を有さな
い材料で形成され、特に、空気の成分である酸素、窒
素、二酸化炭素等に対して不透過性のものが用いられ
る。このような包囲体としては、例えば、ステンレスな
どガス不透過性の材料を単独で用いてもよく、また、金
属箔等のガス不透過性に優れた材料と、合成樹脂フィル
ム等の補強材料とを貼り合わせたものであってもよい。
具体的には、ポリエチレンフィルムと、アルミニウム箔
を4枚ずつ交互に積層し、熱ロールを用いて140℃で
熱融着して作製した薄膜を、袋状に成形したもの等を用
いることができ、この他にも、ポリ塩化ビニル、ポリ塩
化ビニリデン、ポリエチレン、ポリプロピレン、ポリブ
チレンテレフタレート、ポリスチレン、ABS樹脂、F
RPなどのプラスチックや、アルミニウム、金、銀、
銅、軟鋼、クロム、ニッケルなどの金属からなる薄膜あ
るいは板を、単独又は組み合わせて使用できる。The envelope in the present invention is formed of a material that does not have air permeability, and in particular, one that is impermeable to oxygen, nitrogen, carbon dioxide and the like which are components of air is used. As such an enclosure, for example, a gas impermeable material such as stainless steel may be used alone, and a material excellent in gas impermeability such as a metal foil and a reinforcing material such as a synthetic resin film. It may be a laminate of.
Specifically, a polyethylene film and four aluminum foils are alternately laminated, and a thin film produced by heat-sealing at 140 ° C. using a heat roll is formed into a bag shape. In addition to these, polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polybutylene terephthalate, polystyrene, ABS resin, F
Plastic such as RP, aluminum, gold, silver,
Thin films or plates made of a metal such as copper, mild steel, chromium or nickel can be used alone or in combination.
【0040】なお、上記包囲体の形状は、成形された発
泡体を包み込むような中空を有するものであればよく、
例えば、発泡体を包んだ状態で全体としてパネル形状を
なすもの、箱形状をなすものなどが挙げられる。The envelope may have any shape as long as it has a hollow space for wrapping the molded foam.
For example, it may be a panel-shaped one or a box-shaped one as a whole in a state in which the foam is wrapped.
【0041】こうして所定形状に成形された発泡体を包
囲体で包み込んだのち、ロータリーポンプ、拡散ポン
プ、ブースターポンプ、あるいはアスピレータ等の脱気
装置を用いて、包囲体内部を大気圧以下、好ましくは−
0.5kg/cm2 以下にまで脱気する。After wrapping the foam molded in a predetermined shape in this way with the envelope, the inside of the envelope is reduced to atmospheric pressure or less, preferably with a deaerator such as a rotary pump, a diffusion pump, a booster pump, or an aspirator. −
Degas to 0.5 kg / cm 2 or less.
【0042】所定の圧力まで脱気を行ったのち、脱気装
置を取外し、開口部をシールして包囲体を密封すること
によって、所望の形状の断熱性構造体を得ることができ
る。更に、こうして得られた断熱性構造体を1つ以上用
いることにより、所望の形状の断熱性の箱体や容器等を
構成することができる。After deaeration to a predetermined pressure, the deaeration device is removed, the opening is sealed, and the enclosure is sealed to obtain a heat insulating structure having a desired shape. Further, by using one or more heat insulating structures thus obtained, a heat insulating box or container having a desired shape can be constructed.
【0043】[0043]
【作用】本発明によれば、発泡樹脂原料を所定形状の型
内に注入し、発泡硬化させたのち取り出すので、パネル
形状のものだけでなく、箱形状などの複雑な形状のもの
でも容易に製造することができる。そして、この発泡体
を通気性を有さない包囲体で包み込み、内部を減圧して
脱気したのち、密封することにより、所望の形状の断熱
性構造体を生産性よく製造できる。According to the present invention, the foamed resin raw material is poured into a mold having a predetermined shape, foamed and cured, and then taken out. Therefore, not only a panel-shaped one but also a complicated shape such as a box-shaped one can be easily manufactured. It can be manufactured. Then, the foamed body is wrapped with an enclosure having no air permeability, the interior is decompressed to be deaerated, and then sealed, whereby a heat insulating structure having a desired shape can be manufactured with high productivity.
【0044】また、包囲体内を減圧して密封することに
より所望の形状の断熱性構造体が得られ、パネル形状の
断熱性構造体を貼り合わせるなどの作業がいらないの
で、減圧工程以降の取り扱い中に包囲体が破損したりす
る虞れが少なくなる。Further, since the heat insulating structure having a desired shape can be obtained by decompressing and sealing the inside of the enclosure, and the work such as pasting the panel shape heat insulating structure is not necessary. The risk of damage to the enclosure is reduced.
【0045】更に、成形された発泡体を、40℃以上で
1分以上放置したのち、包囲体で包んで減圧する場合に
は、発泡体中に溶解している揮発性成分を除去すること
ができ、減圧脱気ののちに揮発性成分によって真空度が
低下し、断熱性能が低下することを防止できる。Furthermore, when the molded foam is left at 40 ° C. or higher for 1 minute or more and then wrapped in an enclosure to reduce the pressure, the volatile components dissolved in the foam can be removed. Therefore, it is possible to prevent the degree of vacuum from being lowered by the volatile component after the deaeration under reduced pressure and the heat insulating performance from being lowered.
【0046】[0046]
実施例1 図1(a)に示すような、凹型の断面を有する雌型1
と、凸型の断面を有する雄型2とを、同図(b)に示す
ように組み付けて、それらの間に箱形状の空間を形成
し、予め所定温度に調整したのち、上記空間に、発泡性
樹脂原料4を、雌型1の側部に設けられた注入口3を通
じて、所定量注入した。Example 1 A female mold 1 having a concave cross section as shown in FIG.
And a male mold 2 having a convex cross section are assembled as shown in FIG. 2B, a box-shaped space is formed between them, and the temperature is adjusted in advance to a predetermined temperature. A predetermined amount of the foamable resin raw material 4 was injected through the injection port 3 provided on the side portion of the female mold 1.
【0047】発泡性樹脂原料4としては、シュークロー
スとジエタノールアミンの混合物に、水酸化カリウムを
触媒としてエチレンオキシド及びプロピレンオキシドを
付加した水酸基価350のポリオール90部と、グリセ
リンに水酸化カリウムを触媒としてプロピレンオキシド
を付加した水酸基価110のポリオール10部と、整泡
剤1.5部と、アミン触媒2.5部とに、発泡剤として
の水4.5部と、当量の1.10倍のイソシアネート
「MR−200」(商品名、日本ポリウレタン社製)と
を用いた。また、原料の注入には、高圧発泡機(PEC
社製、商品名「プロマート50」)を用いた。As the foaming resin raw material 4, 90 parts of a polyol having a hydroxyl value of 350 obtained by adding ethylene oxide and propylene oxide with potassium hydroxide as a catalyst to a mixture of sucrose and diethanolamine, and propylene with potassium hydroxide as a catalyst in glycerin were used. 10 parts of a polyol having a hydroxyl value of 110 with an oxide added, 1.5 parts of a foam stabilizer, 2.5 parts of an amine catalyst, 4.5 parts of water as a foaming agent, and 1.10 times the equivalent of isocyanate. "MR-200" (trade name, manufactured by Nippon Polyurethane Industry Co., Ltd.) was used. In addition, high-pressure foaming machine (PEC
The product name "Promart 50" manufactured by the company was used.
【0048】こうして発泡性樹脂原料4を注入したの
ち、注入口3を閉じて発泡硬化させ、独立気泡率8%の
ウレタン発泡体を得た。After injecting the foamable resin raw material 4 in this manner, the injection port 3 was closed and foaming and curing were performed to obtain a urethane foam having a closed cell rate of 8%.
【0049】次に、同図(c)に示すように、雌型1と
雄型2を開いて、硬化した箱状の発泡体5を型より取り
出したのち、同図(d)に示すように、発泡体5の外周
面に密接する形状をなし、側面部に脱気口8が形成され
た外箱6内に配置し、更に、発泡体5の内周面及び上縁
部に密接する形状をなす内箱7で覆って、包囲体とし
た。次いで、外箱6と内箱7との接合部を封止し、脱気
口8を通じて内部を1Torrの真空にしたのち、脱気
口8を封止して、物品を収容するための中空9を有する
箱状の断熱性構造体10を得た。以上のようにして製造
した断熱性構造体10を、実施例1とする。Next, as shown in FIG. 3C, the female mold 1 and the male mold 2 are opened, and the cured box-shaped foam body 5 is taken out from the mold. Then, as shown in FIG. Is placed in an outer box 6 having a shape close to the outer peripheral surface of the foam 5 and having a degassing port 8 formed on the side surface thereof, and further closely contacted to the inner peripheral surface and the upper edge of the foam 5. It was covered with an inner box 7 having a shape to form an enclosure. Next, the joint between the outer box 6 and the inner box 7 is sealed, the interior is evacuated to a vacuum of 1 Torr through the deaeration port 8, and then the deaeration port 8 is sealed to form a hollow 9 for accommodating an article. A box-shaped heat insulating structure 10 having The heat insulating structure 10 manufactured as described above is referred to as Example 1.
【0050】実施例2 図2(a)に示すような雌型11及び雄型12を、同図
(b)に示すように組み付けて、平板形状の内部空間を
形成させ、予め所定温度に調整したのち、上記内部空間
に、実施例1と同様な発泡性樹脂原料14を、雌型11
の側部に設けられた注入口13を通じて、所定量注入し
た。Example 2 A female mold 11 and a male mold 12 as shown in FIG. 2 (a) were assembled as shown in FIG. 2 (b) to form a flat internal space, and the temperature was adjusted in advance to a predetermined temperature. After that, the same foamable resin raw material 14 as that of the first embodiment is placed in the internal space of the female mold 11.
A predetermined amount was injected through the injection port 13 provided on the side part of the.
【0051】こうして発泡性樹脂原料14を注入したの
ち、注入口13を閉じて発泡硬化させ、独立気泡率8%
のウレタン発泡体を得た。After injecting the foamable resin raw material 14 in this way, the injection port 13 is closed to foam-cure, and the closed cell ratio 8%.
A urethane foam of was obtained.
【0052】次に、同図(c)に示すように、雌型11
及び雄型12を開いて硬化した板形状の発泡体15を型
より取り出したのち、同図(d)に示すように、発泡体
15の3面に密接する箱状をなし、側面部に脱気口18
が形成された内壁材16内に配置し、残る1面を、外壁
材17で覆って、包囲体とした。次いで、内壁材16と
外壁材17との接合部を封止し、脱気口18を通じて内
部を1Torrの真空にしたのち、脱気口18を封止し
て、板状の断熱性構造体20を得た。以上のようにして
製造した断熱性構造体20を、実施例2とする。Then, as shown in FIG.
Then, after the male mold 12 is opened and the cured plate-shaped foam 15 is taken out of the mold, as shown in FIG. Mouth 18
It was placed in the inner wall material 16 in which was formed, and the remaining one surface was covered with the outer wall material 17 to form an enclosure. Then, the joint portion between the inner wall material 16 and the outer wall material 17 is sealed, the inside is evacuated to 1 Torr through the deaeration port 18, and then the deaeration port 18 is sealed to form a plate-shaped heat insulating structure 20. Got The heat insulating structure 20 manufactured as described above is referred to as Example 2.
【0053】実施例3 実施例1及び2で得られた断熱性構造体10、20を組
み合わせて、図3に示すような、1面を除く5面を実施
例1の構造体で囲み、残る1面を実施例2の構造体で封
止できるようにして、内部空間9に物品を収納するよう
にした直方体状の断熱性容器を得た。以上のようにして
製造した断熱性容器を、実施例3とする。Example 3 By combining the heat insulating structures 10 and 20 obtained in Examples 1 and 2, as shown in FIG. 3, five surfaces except one surface are surrounded by the structure of Example 1 and left. One side was sealed with the structure of Example 2 to obtain a rectangular parallelepiped heat-insulating container in which articles were housed in the internal space 9. The heat insulating container manufactured as described above is referred to as Example 3.
【0054】比較例1 実施例1と同様の組成の発泡性樹脂原料をフリー発泡
し、密度0.04g/cm3 、総重量10kg、独立気
泡率8%のスラブフォーム(硬質ウレタンフォーム)を
得た。ただし、このスラブフォームの内部は、スコーチ
していて使用不可能であった。このスラブフォームのス
コーチ部分を除いて切断して20cm×20cm×2c
mのパネルを得た。このパネルをアルミニウムラミネー
トフィルムで形成された袋に入れ、内部を1Torrの
真空に脱気したのち脱気口を封止して、断熱パネルを得
た。Comparative Example 1 A slab foam (hard urethane foam) having a density of 0.04 g / cm 3 , a total weight of 10 kg and a closed cell rate of 8% was obtained by free-foaming a foaming resin material having the same composition as in Example 1. It was However, the inside of this slab foam was scorch and unusable. 20cm x 20cm x 2c by cutting except the scorch part of this slab foam
m panels were obtained. This panel was put in a bag formed of an aluminum laminate film, the inside was evacuated to a vacuum of 1 Torr, and then the deaeration port was sealed to obtain a heat insulating panel.
【0055】図4に示すように、上記真空パネル31
を、実施例1で用いたものと同様の形状をなす内箱33
の外周面に取り付けたのち、外箱32と組み合わせて接
合部を封止し、実施例1と同様の形状を有する箱状の成
形物を得た。なお、外箱32と、内箱33との間隙に
は、独立気泡を有するウレタン樹脂34を充填した。As shown in FIG. 4, the vacuum panel 31 described above is used.
Is an inner box 33 having the same shape as that used in Example 1.
After being attached to the outer peripheral surface of, the joint portion was sealed by combining with the outer box 32 to obtain a box-shaped molded product having the same shape as in Example 1. A urethane resin 34 having closed cells was filled in the gap between the outer box 32 and the inner box 33.
【0056】一方、上記断熱パネル31を、実施例2で
用いたものと同様の形状をなす内壁材35の内周面に取
り付けたのち、外壁材36と組み合わせて接合部を封止
し、実施例2と同様の形状を有する板状の成形物を得
た。なお、内壁材35と、外壁材36との間隙には、上
記と同様に、独立気泡を有するウレタン樹脂34を充填
した。On the other hand, the heat insulating panel 31 is attached to the inner peripheral surface of the inner wall material 35 having the same shape as that used in the second embodiment, and then the joint portion is sealed by combining with the outer wall material 36. A plate-shaped molded product having the same shape as in Example 2 was obtained. The gap between the inner wall material 35 and the outer wall material 36 was filled with the urethane resin 34 having closed cells as in the above.
【0057】上記箱状の成形物の開口面に上記板状の成
形物を被せて、図4に示すような、内部空間37に物品
を収納するようにした直方体状の断熱性容器を得た。以
上のようにして製造した断熱性容器を、比較例1とす
る。The opening surface of the box-shaped molded article was covered with the plate-shaped molded article to obtain a rectangular parallelepiped heat-insulating container as shown in FIG. . The heat insulating container manufactured as described above is referred to as Comparative Example 1.
【0058】実施例4 実施例1において、ウレタン発泡体を型から取り出した
のち、120℃で20分間放置し、その後、外箱内に配
置して、箱状の断熱性構造体を得た。以上のようにして
製造した断熱性構造体を、実施例4とする。Example 4 In Example 1, the urethane foam was taken out of the mold, allowed to stand at 120 ° C. for 20 minutes, and then placed in an outer box to obtain a box-shaped heat insulating structure. The heat insulating structure manufactured as described above is referred to as Example 4.
【0059】実施例5 実施例2において、ウレタン発泡体を型から取り出した
のち、120℃で20分間放置し、その後、内壁材内に
配置して、板状の断熱性構造体を得た。以上のようにし
て製造した断熱性構造体を、実施例5とする。Example 5 In Example 2, the urethane foam was taken out of the mold, allowed to stand at 120 ° C. for 20 minutes, and then placed in the inner wall material to obtain a plate-shaped heat insulating structure. The heat insulating structure manufactured as described above is referred to as Example 5.
【0060】実施例6 実施例4及び5で得られた断熱性構造体を組み合わせ
て、実施例3と同様な箱状の断熱性容器を得た。以上の
ようにして製造した断熱性容器を、実施例6とする。Example 6 By combining the heat insulating structures obtained in Examples 4 and 5, a box-like heat insulating container similar to that in Example 3 was obtained. The heat insulating container manufactured as described above is referred to as Example 6.
【0061】比較例2 比較例1と同様にして得られた20cm×20cm×2
cmのパネルを、120℃で20分間放置したのち、ア
ルミニウムラミネートフィルムの袋で覆い、内部を1T
orrの真空に脱気したのち脱気口を封止して、断熱パ
ネルを得た。Comparative Example 2 20 cm × 20 cm × 2 obtained in the same manner as Comparative Example 1
The panel of cm is left at 120 ° C for 20 minutes, then covered with a bag of aluminum laminate film, and the inside is 1T.
After deaeration to a vacuum of orr, the deaeration port was sealed to obtain a heat insulating panel.
【0062】この断熱パネルを用いて、比較例1と同様
にして、箱状の断熱性容器を得た。以上のようにして製
造した断熱性容器を、比較例2とする。Using this heat insulating panel, a box-like heat insulating container was obtained in the same manner as in Comparative Example 1. The heat insulating container manufactured as described above is referred to as Comparative Example 2.
【0063】実施例7 レゾール型フェノール樹脂100重量部、シリコーン系
整泡剤を2部、酸性硬化剤20部、R141bを43部
を、二液型の低圧発泡機で型内に注入し、実施例1と同
様にして箱状の断熱性構造体を得た。以上のようにして
製造した断熱性構造体を、実施例7とする。Example 7 100 parts by weight of a resol type phenol resin, 2 parts of a silicone type foam stabilizer, 20 parts of an acid curing agent, and 43 parts of R141b were poured into a mold by a two-pack type low-pressure foaming machine to carry out. A box-shaped heat insulating structure was obtained in the same manner as in Example 1. The heat insulating structure manufactured as described above is referred to as Example 7.
【0064】実施例8 実施例7と同様の原料を二液型の低圧発泡機で型内に注
入する他は、実施例2と同様にして、板状の断熱性構造
体を得た。以上のようにして製造した断熱性構造体を、
実施例8とする。Example 8 A plate-like heat insulating structure was obtained in the same manner as in Example 2 except that the same raw material as in Example 7 was injected into the mold with a two-pack type low pressure foaming machine. The heat insulating structure manufactured as described above,
This is Example 8.
【0065】実施例9 実施例7及び8で得られた断熱性構造体を組み合わせ
て、実施例3と同様な箱状の断熱性容器を得た。以上の
ようにして製造した断熱性容器を、実施例9とする。Example 9 The heat insulating structures obtained in Examples 7 and 8 were combined to obtain a box-like heat insulating container similar to that in Example 3. The heat insulating container manufactured as described above is referred to as Example 9.
【0066】比較例3 実施例7と同様の原料をフリー発泡し、得られたスラブ
フォームから、20cm×20cm×5cmのパネルを
切り出し、比較例1と同様にして箱状の断熱性容器を得
た。以上のようにして製造した断熱性容器を、比較例3
とする。Comparative Example 3 The same raw material as in Example 7 was free-foamed, and a panel of 20 cm × 20 cm × 5 cm was cut out from the obtained slab foam, and a box-shaped heat insulating container was obtained in the same manner as in Comparative Example 1. It was The heat insulating container manufactured as described above was used as Comparative Example 3
And
【0067】試験例 上記実施例3、6、9及び比較例1、2、3の断熱性容
器内部のほぼ中央部に温度計を設置し、次いで、各断熱
性容器を50℃の温度下に放置して、内部の温度が50
℃になるまでの時間を比較した。その結果を、表1に示
す。Test Example A thermometer was installed at approximately the center of the inside of the heat insulating container of Examples 3, 6, 9 and Comparative Examples 1, 2 and 3, and then each heat insulating container was kept at a temperature of 50 ° C. If left unattended, the internal temperature is 50
The time to reach ℃ was compared. The results are shown in Table 1.
【0068】[0068]
【表1】 [Table 1]
【0069】表1に示されるように、本発明の断熱性容
器は、従来のものに比べて優れた断熱性を有していた。
また、発泡体を包囲体内に配置する前に、熱処理を行う
ことにより、断熱性を更に高めることができた。As shown in Table 1, the heat insulating container of the present invention had excellent heat insulating properties as compared with the conventional container.
In addition, heat treatment was performed before the foam was placed in the enclosure, so that the heat insulating property could be further enhanced.
【0070】[0070]
【発明の効果】以上説明したように、本発明の製造法に
よれば、発泡樹脂原料を、所定形状の型内に注入して発
泡硬化させたのち、これを取り出して通気性を有さない
包囲体内に配置し、次いで包囲体内部を脱気したのち、
密封するので、所望の形状の断熱性構造体を、生産性よ
く容易に製造することが可能になる。また、最初から例
えば箱形状等に成形できるので、板状の断熱パネルを貼
り合わせて組み立てるなどの作業がいらず、減圧工程以
降の取り扱い中に包囲体が破損したりする虞れが少なく
なる。更に、成形された発泡体を、40℃以上で1分以
上放置したのち、包囲体で包んで減圧する場合には、発
泡体中に溶解している揮発性成分を除去することができ
るので、断熱性能が低下することを防止することができ
る。As described above, according to the manufacturing method of the present invention, the foamed resin raw material is poured into a mold of a predetermined shape to foam and cure, and then the foamed resin raw material is taken out and has no air permeability. After placing inside the enclosure and then deaerating the inside of the enclosure,
Since it is hermetically sealed, it becomes possible to easily manufacture a heat insulating structure having a desired shape with high productivity. Further, since it can be formed into a box shape or the like from the beginning, there is no need to perform an operation such as laminating and assembling plate-like heat insulating panels, and the risk of damage to the enclosure during handling after the depressurization step is reduced. Furthermore, when the molded foam is left at 40 ° C. or higher for 1 minute or more and then wrapped in an enclosure to reduce the pressure, the volatile components dissolved in the foam can be removed. It is possible to prevent the heat insulating performance from decreasing.
【図1】本発明の一実施例による断熱性構造体の製造工
程を示す説明図FIG. 1 is an explanatory view showing a manufacturing process of a heat insulating structure according to an embodiment of the present invention.
【図2】本発明の他の実施例による断熱性構造体の製造
工程を示す説明図FIG. 2 is an explanatory view showing a manufacturing process of a heat insulating structure according to another embodiment of the present invention.
【図3】本発明により製造される断熱性容器の一実施例
を示す概略図FIG. 3 is a schematic view showing an embodiment of a heat insulating container manufactured according to the present invention.
【図4】従来の方法により製造された断熱性容器の一例
を示す概略図FIG. 4 is a schematic view showing an example of a heat insulating container manufactured by a conventional method.
1、11:雌型 2、12:雄型 4、14:発泡性樹脂原料 5、15:発泡体 10、20:断熱性構造体 21、41:断熱性箱体 31:断熱パネル 34:充填材 1, 11: Female type 2, 12: Male type 4, 14: Foaming resin raw material 5, 15: Foamed body 10, 20: Heat insulating structure 21, 41: Heat insulating box body 31: Heat insulating panel 34: Filler
───────────────────────────────────────────────────── フロントページの続き (72)発明者 武安 弘光 神奈川県川崎市幸区塚越3丁目474番地2 旭硝子株式会社玉川分室内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiromitsu Takeyasu, Hiromitsu Takeyasu 3-474-3 Tsukoshi, Tsukagoshi-ku, Kawasaki-shi, Kanagawa Asahi Glass Co., Ltd. Tamagawa branch room
Claims (7)
発泡性樹脂原料(4、14)を、所定形状を有する型
(1、2、11、12)内に注入し、発泡硬化させて発
泡体(5、15)とし、次いで前記発泡体(5、15)
を型(1、2、11、12)より取り出して、通気性を
有さない材料からなる包囲体(6、7、16、17)内
に配置したのち、前記包囲体(6、7、16、17)内
を大気圧以下に減圧脱気し、最後に開口部(8、18)
を封止して密封することを特徴とする断熱性構造体の製
造法。1. A foaming resin material (4, 14) which gives a foam having a closed cell ratio of 50% or less is poured into a mold (1, 2, 11, 12) having a predetermined shape and foam-cured. To form a foam (5, 15), and then the foam (5, 15)
Is taken out from the mold (1, 2, 11, 12) and placed in an enclosure (6, 7, 16, 17) made of a material that does not have air permeability, and then the enclosure (6, 7, 16) , 17) is degassed to below atmospheric pressure, and finally the opening (8, 18)
A method for producing a heat insulating structure, which comprises:
化性樹脂原料である請求項1記載の断熱性構造体の製造
法。2. The method for producing a heat insulating structure according to claim 1, wherein the foaming resin raw material (4, 14) is a thermosetting resin raw material.
剤として水のみを含有するウレタン樹脂原料である請求
項1又は2記載の断熱性構造体の製造法。3. The method for producing a heat insulating structure according to claim 1, wherein the foaming resin material (4, 14) is a urethane resin material containing only water as a foaming agent.
1分以上放置したのち、前記包囲体(6、7、16、1
7)内に配置する請求項1〜3のいずれか1つに記載の
断熱性構造体の製造法。4. The enclosure (6, 7, 16, 1) after leaving the foam (5, 15) at 40 ° C. or higher for 1 minute or more.
7) The method for producing a heat insulating structure according to any one of claims 1 to 3, which is arranged inside.
とともに、前記包囲体(6、7、16、17)内に配置
する請求項1〜4のいずれか1つに記載の断熱性構造体
の製造法。5. The thermal insulation according to claim 1, wherein the foam (5, 15) is placed in the enclosure (6, 7, 16, 17) together with a gas adsorbing substance. Of manufacturing flexible structure.
て、溶存ガス等を除去したのち、前記型(1、2、1
1、12)内に注入する請求項1〜5のいずれか1つに
記載の断熱性構造体の製造法。6. The foamable resin material (4, 14) is degassed to remove dissolved gas and the like, and then the mold (1, 2, 1) is removed.
The method for producing a heat insulating structure according to claim 1, wherein the heat insulating structure is injected into the heat insulating structure.
断熱性構造体を製造する請求項1〜6のいずれか1つに
記載の断熱性構造体の製造法。7. The method for producing a heat insulating structure according to claim 1, wherein a heat insulating structure having a container shape or a panel shape as a whole is manufactured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5172299A JPH071479A (en) | 1993-06-18 | 1993-06-18 | Manufacture of heat-insulating structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5172299A JPH071479A (en) | 1993-06-18 | 1993-06-18 | Manufacture of heat-insulating structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH071479A true JPH071479A (en) | 1995-01-06 |
Family
ID=15939358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5172299A Pending JPH071479A (en) | 1993-06-18 | 1993-06-18 | Manufacture of heat-insulating structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH071479A (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7332214B2 (en) | 2000-09-13 | 2008-02-19 | Nissei Kabushiki Kaisha | Biodegradable molded article, manufacturing method thereof, and composition for expansion molding |
US8043539B2 (en) * | 2002-03-13 | 2011-10-25 | Nissei Company, Ltd. | Process for producing biodegradable molded item and molding dies therefor |
WO2013155323A1 (en) * | 2012-04-11 | 2013-10-17 | Whirlpool Corporation | Method to create vacuum insulated cabinets for refrigerators |
KR101321713B1 (en) * | 2010-11-02 | 2013-10-28 | 청호이엔씨 주식회사 | Heat Insulating Structure |
JP2014025494A (en) * | 2012-07-24 | 2014-02-06 | Mitsubishi Electric Corp | Heat insulation material, method for manufacturing heat insulation material, and heat insulation box using heat insulation material |
US9689604B2 (en) | 2014-02-24 | 2017-06-27 | Whirlpool Corporation | Multi-section core vacuum insulation panels with hybrid barrier film envelope |
US9752818B2 (en) | 2015-12-22 | 2017-09-05 | Whirlpool Corporation | Umbilical for pass through in vacuum insulated refrigerator structures |
US9835369B2 (en) | 2012-04-02 | 2017-12-05 | Whirlpool Corporation | Vacuum insulated structure tubular cabinet construction |
US9840042B2 (en) | 2015-12-22 | 2017-12-12 | Whirlpool Corporation | Adhesively secured vacuum insulated panels for refrigerators |
US10018406B2 (en) | 2015-12-28 | 2018-07-10 | Whirlpool Corporation | Multi-layer gas barrier materials for vacuum insulated structure |
US10030905B2 (en) | 2015-12-29 | 2018-07-24 | Whirlpool Corporation | Method of fabricating a vacuum insulated appliance structure |
US10041724B2 (en) | 2015-12-08 | 2018-08-07 | Whirlpool Corporation | Methods for dispensing and compacting insulation materials into a vacuum sealed structure |
US10052819B2 (en) | 2014-02-24 | 2018-08-21 | Whirlpool Corporation | Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture |
US10161669B2 (en) | 2015-03-05 | 2018-12-25 | Whirlpool Corporation | Attachment arrangement for vacuum insulated door |
US10222116B2 (en) | 2015-12-08 | 2019-03-05 | Whirlpool Corporation | Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system |
US10345031B2 (en) | 2015-07-01 | 2019-07-09 | Whirlpool Corporation | Split hybrid insulation structure for an appliance |
US10365030B2 (en) | 2015-03-02 | 2019-07-30 | Whirlpool Corporation | 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness |
US10422573B2 (en) | 2015-12-08 | 2019-09-24 | Whirlpool Corporation | Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein |
US10422569B2 (en) | 2015-12-21 | 2019-09-24 | Whirlpool Corporation | Vacuum insulated door construction |
US10429125B2 (en) | 2015-12-08 | 2019-10-01 | Whirlpool Corporation | Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein |
US10598424B2 (en) | 2016-12-02 | 2020-03-24 | Whirlpool Corporation | Hinge support assembly |
US10712080B2 (en) | 2016-04-15 | 2020-07-14 | Whirlpool Corporation | Vacuum insulated refrigerator cabinet |
US10907888B2 (en) | 2018-06-25 | 2021-02-02 | Whirlpool Corporation | Hybrid pigmented hot stitched color liner system |
US11009284B2 (en) | 2016-04-15 | 2021-05-18 | Whirlpool Corporation | Vacuum insulated refrigerator structure with three dimensional characteristics |
US11320193B2 (en) | 2016-07-26 | 2022-05-03 | Whirlpool Corporation | Vacuum insulated structure trim breaker |
US11391506B2 (en) | 2016-08-18 | 2022-07-19 | Whirlpool Corporation | Machine compartment for a vacuum insulated structure |
-
1993
- 1993-06-18 JP JP5172299A patent/JPH071479A/en active Pending
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7332214B2 (en) | 2000-09-13 | 2008-02-19 | Nissei Kabushiki Kaisha | Biodegradable molded article, manufacturing method thereof, and composition for expansion molding |
US8043539B2 (en) * | 2002-03-13 | 2011-10-25 | Nissei Company, Ltd. | Process for producing biodegradable molded item and molding dies therefor |
KR101321713B1 (en) * | 2010-11-02 | 2013-10-28 | 청호이엔씨 주식회사 | Heat Insulating Structure |
US9835369B2 (en) | 2012-04-02 | 2017-12-05 | Whirlpool Corporation | Vacuum insulated structure tubular cabinet construction |
US9885516B2 (en) | 2012-04-02 | 2018-02-06 | Whirlpool Corporation | Vacuum insulated door structure and method for the creation thereof |
US9874394B2 (en) | 2012-04-02 | 2018-01-23 | Whirlpool Corporation | Method of making a folded vacuum insulated structure |
US9833942B2 (en) | 2012-04-11 | 2017-12-05 | Whirlpool Corporation | Method to create vacuum insulated cabinets for refrigerators |
WO2013155323A1 (en) * | 2012-04-11 | 2013-10-17 | Whirlpool Corporation | Method to create vacuum insulated cabinets for refrigerators |
US10350817B2 (en) | 2012-04-11 | 2019-07-16 | Whirlpool Corporation | Method to create vacuum insulated cabinets for refrigerators |
JP2014025494A (en) * | 2012-07-24 | 2014-02-06 | Mitsubishi Electric Corp | Heat insulation material, method for manufacturing heat insulation material, and heat insulation box using heat insulation material |
US9689604B2 (en) | 2014-02-24 | 2017-06-27 | Whirlpool Corporation | Multi-section core vacuum insulation panels with hybrid barrier film envelope |
US10052819B2 (en) | 2014-02-24 | 2018-08-21 | Whirlpool Corporation | Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture |
US10105931B2 (en) | 2014-02-24 | 2018-10-23 | Whirlpool Corporation | Multi-section core vacuum insulation panels with hybrid barrier film envelope |
US10365030B2 (en) | 2015-03-02 | 2019-07-30 | Whirlpool Corporation | 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness |
US11713916B2 (en) | 2015-03-05 | 2023-08-01 | Whirlpool Corporation | Attachment arrangement for vacuum insulated door |
US11243021B2 (en) | 2015-03-05 | 2022-02-08 | Whirlpool Corporation | Attachment arrangement for vacuum insulated door |
US10161669B2 (en) | 2015-03-05 | 2018-12-25 | Whirlpool Corporation | Attachment arrangement for vacuum insulated door |
US10345031B2 (en) | 2015-07-01 | 2019-07-09 | Whirlpool Corporation | Split hybrid insulation structure for an appliance |
US10605519B2 (en) | 2015-12-08 | 2020-03-31 | Whirlpool Corporation | Methods for dispensing and compacting insulation materials into a vacuum sealed structure |
US10907886B2 (en) | 2015-12-08 | 2021-02-02 | Whirlpool Corporation | Methods for dispensing and compacting insulation materials into a vacuum sealed structure |
US10041724B2 (en) | 2015-12-08 | 2018-08-07 | Whirlpool Corporation | Methods for dispensing and compacting insulation materials into a vacuum sealed structure |
EP3387346A4 (en) * | 2015-12-08 | 2019-07-24 | Whirlpool Corporation | Methods for dispensing and compacting insulation materials into a vacuum sealed structure |
US10422573B2 (en) | 2015-12-08 | 2019-09-24 | Whirlpool Corporation | Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein |
US10429125B2 (en) | 2015-12-08 | 2019-10-01 | Whirlpool Corporation | Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein |
US10222116B2 (en) | 2015-12-08 | 2019-03-05 | Whirlpool Corporation | Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system |
US10422569B2 (en) | 2015-12-21 | 2019-09-24 | Whirlpool Corporation | Vacuum insulated door construction |
US9752818B2 (en) | 2015-12-22 | 2017-09-05 | Whirlpool Corporation | Umbilical for pass through in vacuum insulated refrigerator structures |
US9840042B2 (en) | 2015-12-22 | 2017-12-12 | Whirlpool Corporation | Adhesively secured vacuum insulated panels for refrigerators |
US10018406B2 (en) | 2015-12-28 | 2018-07-10 | Whirlpool Corporation | Multi-layer gas barrier materials for vacuum insulated structure |
US10030905B2 (en) | 2015-12-29 | 2018-07-24 | Whirlpool Corporation | Method of fabricating a vacuum insulated appliance structure |
US10712080B2 (en) | 2016-04-15 | 2020-07-14 | Whirlpool Corporation | Vacuum insulated refrigerator cabinet |
US11009284B2 (en) | 2016-04-15 | 2021-05-18 | Whirlpool Corporation | Vacuum insulated refrigerator structure with three dimensional characteristics |
US11609037B2 (en) | 2016-04-15 | 2023-03-21 | Whirlpool Corporation | Vacuum insulated refrigerator structure with three dimensional characteristics |
US11320193B2 (en) | 2016-07-26 | 2022-05-03 | Whirlpool Corporation | Vacuum insulated structure trim breaker |
US11391506B2 (en) | 2016-08-18 | 2022-07-19 | Whirlpool Corporation | Machine compartment for a vacuum insulated structure |
US10598424B2 (en) | 2016-12-02 | 2020-03-24 | Whirlpool Corporation | Hinge support assembly |
US10907888B2 (en) | 2018-06-25 | 2021-02-02 | Whirlpool Corporation | Hybrid pigmented hot stitched color liner system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH071479A (en) | Manufacture of heat-insulating structure | |
RU2421656C2 (en) | Method to manufacture vacuum insulation panels | |
JP3322852B2 (en) | Open cell rigid polyurethane foam molding and method for producing the same | |
KR100335874B1 (en) | Insulation and its manufacturing method | |
US5856678A (en) | Open-celled rigid polyurethane foam | |
US20130068990A1 (en) | Composite materials comprising a polymer matrix and granules embedded therein | |
JPH11503774A (en) | Non-planar exhaust heat insulation panel and method of manufacturing the same | |
EP0707612A1 (en) | Microporous isocyanate-based polymer compositions and method of preparation | |
JP6965046B2 (en) | Interior materials for vehicles | |
EP1512707B1 (en) | Open celled rigid polyurethane foams | |
CN108383990B (en) | Preparation method of hard polyether polyol for all-water foaming | |
JPH06339936A (en) | Foamed body and manufacture of heat insulated structure using the same | |
JP2014141595A (en) | Method of manufacturing rigid foam synthetic resin | |
JPH07110097A (en) | Heat insulation material | |
CN111372963B (en) | Method for producing open-celled rigid foams containing urethane and isocyanurate groups | |
JPH07156313A (en) | Heat insulating structural body and production thereof | |
JPH071477A (en) | Manufacture of heat-insulating structure | |
EP1842976B1 (en) | Coated foam boards | |
JP2003227594A (en) | Vacuum insulation panel and refrigerator using the same | |
JP2001354744A (en) | Production method for rigid polyurethane foam | |
JP2001181364A (en) | Method for manufacturing open-cell rigid polyurethane foam molded body | |
JPH06229498A (en) | Adiabatic structure body and box body using the same | |
JP2004176027A (en) | Method for producing rigid polyurethane foam | |
JPH04351622A (en) | Open-cell rigid polyurethane foam and thermal insulator prepared therefrom | |
JPH01189479A (en) | Preparation of core of heat insulating body |