JPH0712420B2 - Separation membrane for dehydration - Google Patents

Separation membrane for dehydration

Info

Publication number
JPH0712420B2
JPH0712420B2 JP3358437A JP35843791A JPH0712420B2 JP H0712420 B2 JPH0712420 B2 JP H0712420B2 JP 3358437 A JP3358437 A JP 3358437A JP 35843791 A JP35843791 A JP 35843791A JP H0712420 B2 JPH0712420 B2 JP H0712420B2
Authority
JP
Japan
Prior art keywords
dehydration
separation
membrane
water
experiment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3358437A
Other languages
Japanese (ja)
Other versions
JPH05177120A (en
Inventor
純男 山田
勤 仲川
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP3358437A priority Critical patent/JPH0712420B2/en
Publication of JPH05177120A publication Critical patent/JPH05177120A/en
Publication of JPH0712420B2 publication Critical patent/JPH0712420B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

本発明は、有機液体水溶液を分離、濃縮したり、あるい
は有機溶媒、特にメタノール、エタノール、プロパノー
ルなどの水溶性アルコール溶液中に含まれる水分を除去
するための脱水用分離膜に関するものである。特に高含
水のメタノール、エタノール水溶液の脱水に対して高効
率の分離性能を示すことを特徴とする脱水用分離膜に関
するものである。
The present invention relates to a separation membrane for dehydration for separating and concentrating an organic liquid aqueous solution, or for removing water contained in an organic solvent, particularly a water-soluble alcohol solution such as methanol, ethanol, or propanol. In particular, the present invention relates to a separation membrane for dehydration, which is characterized by exhibiting highly efficient separation performance for dehydration of a highly water-containing aqueous methanol or ethanol solution.

【0001】[0001]

【産業上の利用分野】パーベーパレーション法の膜分離
技術は、分離濃縮技術、特に有機溶媒の脱水工程におけ
る省エネルギー化と、将来のエネルギー問題の解決の一
方策として取り上げられている、再生可能なバイオマス
エネルギーの有効利用におけるアルコールの効率的濃縮
の二つの観点から注目されている。したがって、分離対
象物としては、前者の場合は一般の有機液体、後者の場
合は、水−アルコール混合系、特にエタノール水溶液の
分離が研究開発の目標になることが多い。この水−アル
コール混合系を含む含水有機液体を分離対象とする分離
膜としては、大きく分けて水選択透過型(脱水用)とア
ルコール選択透過型の2種類がある。
[Industrial application] The membrane separation technology of the pervaporation method is a renewable technology which has been taken up as one of the solutions for separating and concentrating technology, especially energy saving in the dehydration process of organic solvents and solving future energy problems. Attention has been paid from two viewpoints of efficient concentration of alcohol in effective utilization of biomass energy. Therefore, in the former case, the target of separation is often a general organic liquid, and in the latter case, the separation of a water-alcohol mixed system, especially an ethanol aqueous solution, is often the goal of research and development. Separation membranes for separating the water-containing organic liquid containing the water-alcohol mixed system are roughly classified into two types, a water selective permeation type (for dehydration) and an alcohol selective permeation type.

【0002】[0002]

【従来の技術及びその問題点】これまで脱水膜として広
く研究され、また一部実用化されている水選択分離膜に
ついては、まず膜素材が水に対して高い親和性を示す相
互作用があることが必要であるが、その代表として静電
相互作用と水素結合相互作用があげられる。
2. Description of the Related Art Regarding water selective separation membranes, which have been widely studied as dehydration membranes and partially put into practical use, there is an interaction in which the membrane material has a high affinity for water. However, electrostatic interaction and hydrogen bonding interaction are typical examples.

【0003】静電相互作用に着目した水選択透過型の分
離膜としては、膜中にイオン交換型荷電基をもつカチオ
ン交換膜とアニオン交換膜のイオン交換膜がある。カチ
オン交換膜としてはスルホン化ポリエチレンを用いた場
合(J.Polym.Sci.,Polym.Lett.Ed. 23, 577, 1985)とナ
フィオンホローファイバーを用いた場合(J.Memb.Sci.,
24, 101, 1985)で、同様にその膜性能が対イオンの影響
を受けることが報告されている。アルカリ金属イオンの
うちでは、水和数の小さいイオンほどその水選択性は向
上する傾向が見られた。これは、対イオンの水和数、水
素結合相互作用、形成されるクラスターの構造など複雑
な影響によっていると考えられる。更にこの場合、水は
膜内に存在する荷電基によって形成されるイオンクラス
ター領域を透過し、一方アルコールは膜内の非晶質部分
を溶解−拡散しながら膜透過していると推論されてい
る。
As water selective permeation type separation membranes focusing on electrostatic interaction, there are ion exchange membranes of cation exchange membranes and anion exchange membranes having ion exchange type charged groups in the membranes. As the cation exchange membrane, sulfonated polyethylene was used (J.Polym.Sci., Polym.Lett.Ed. 23 , 577, 1985) and Nafion hollow fiber was used (J.Memb.Sci.,
24 , 101, 1985), which similarly reported that the membrane performance was affected by counterions. Among the alkali metal ions, the smaller the hydration number, the more the water selectivity tended to improve. It is thought that this is due to complex effects such as the hydration number of the counterion, hydrogen bonding interaction, and the structure of the formed cluster. Furthermore, in this case, it is inferred that water permeates the ion cluster region formed by the charged groups present in the membrane, while alcohol permeates the membrane while dissolving and diffusing the amorphous portion in the membrane. .

【0004】アニオン交換膜による水−エタノール混合
液の分離として、四級化ポリ(4-ビニルピリジン-co-ア
クリロニトリル)膜による研究例(J.Appl.Polym.Sci.,
33,2369, 1987)がある。この膜は、低透過流速と耐久
性を除けば、実用に供せられるだけの分離性能が得られ
た。
As an example of separation of a water-ethanol mixed solution by an anion exchange membrane, a study example by a quaternized poly (4-vinylpyridine-co-acrylonitrile) membrane (J.Appl.Polym.Sci.,
33 , 2369, 1987). This membrane had a separation performance sufficient for practical use, except for the low permeation flow rate and durability.

【0005】水素結合相互作用を利用した分離膜として
は、イミド基、カルボキシル基などの官能基を持った膜
素材が研究された。例えばイミド基とエステル基とをあ
わせ持つ共重合膜(Macromolecules,19,47,1986)は分
離係数として2000以上の値を与えたが、その透過速度は
実用化という観点からは低すぎるものであった。
Membrane materials having functional groups such as imide groups and carboxyl groups have been studied as separation membranes utilizing hydrogen bonding interaction. For example, a copolymer membrane having both imide groups and ester groups (Macromolecules, 19 , 47, 1986) gave a separation coefficient of 2000 or more, but its permeation rate is too low from the viewpoint of practical use. It was

【0006】[0006]

【発明が解決しようとする課題】以上のように、水に対
する高い親和性を示す、膜と透過液の代表的な相互作用
として、静電相互作用と水素結合相互作用が取り挙げら
れ、水選択透過型分離膜が開発されてきたが、この他強
い相互作用でないが、親水性を示す相互作用としては、
非イオン性の親水性基をもつ一種の親水性ポリマーにお
ける化学的な親和力がある。
As described above, the typical interactions between the membrane and the permeate, which have a high affinity for water, include electrostatic interactions and hydrogen bonding interactions. Permeation type separation membrane has been developed, but other than this, strong interaction is not
There is a chemical affinity for a kind of hydrophilic polymer having a nonionic hydrophilic group.

【0007】しかしながら、これらの相互作用を活用し
たこれまでの脱水膜は、分離対象として低含水の有機溶
媒にしか適用されず、またこの低濃度領域では一般に極
めて低い透過流速しか得られていない。なぜならば、こ
れらの脱水膜は、高含水濃度領域では水に対する親和性
が強いために分離性能が低下するばかりでなく、膜が破
壊されるためである。したがって、この高含水領域の濃
度に適用できる、しかも高透過流速の脱水膜が強く要望
されてきた。
However, conventional dehydration membranes utilizing these interactions are applied only to low-water-content organic solvents as separation targets, and generally, extremely low permeation flow rates are obtained in this low-concentration region. This is because these dehydrated membranes have a strong affinity for water in a high water content concentration region, so that not only the separation performance is deteriorated but also the membranes are destroyed. Therefore, there has been a strong demand for a dehydration membrane that can be applied to the concentration in the high water content region and has a high permeation flow rate.

【0008】[0008]

【課題を解決するための手段】本発明は、このような欠
点を克服するために、他の合成高分子素材を種々研究、
検討を重ねた結果、水−エタノールに対して親和性の強
い、すなわち溶解性の高いホモポリマーのモノマー成分
からなるが、水−エタノール混合液に対しては溶解しな
い親水性−疎水性モノマーの共重合膜に着目し、本発明
を完成するに至った。
In order to overcome the above drawbacks, the present invention has variously studied other synthetic polymer materials,
As a result of repeated studies, a hydrophilic-hydrophobic monomer co-polymer which is composed of a homopolymer monomer component having a strong affinity for water-ethanol, that is, having a high solubility, but is insoluble in a water-ethanol mixed solution is used. Focusing on the polymer film, the present invention has been completed.

【0009】静電相互作用と水素結合相互作用は、これ
までの研究から水を優先透過させ、分離係数を高く維持
するには必要条件と考えられるが、それらの作用が強す
ぎる場合にはこれまでの脱水膜の例にみられるように、
高含水混合液に対しては分離性は高く保持できない。そ
こで非イオン性親水基とはいかなくとも、静電あるいは
水素相互作用を多少弱めた化学構造をもち、又透過流速
を高めるため水−アルコール混合液に対して親和性の強
い膜素材が必要であることが分かった。
[0009] Electrostatic interaction and hydrogen-bonding interaction are considered to be necessary conditions for the preferential permeation of water and maintaining a high separation coefficient according to the studies so far. As can be seen in the examples of dehydration membranes up to
Separability is high and cannot be maintained for a highly water-containing mixture. Therefore, even if it is not a nonionic hydrophilic group, it needs a membrane material that has a chemical structure that weakens electrostatic or hydrogen interactions to some extent and that has a strong affinity for a water-alcohol mixed solution in order to increase the permeation flow rate. I knew it was.

【0010】本発明の共重合膜は、疎水性モノマーであ
るメタクリル酸メチルと、親水性モノマーであるアクリ
ル酸の二元共重合体で、それを溶剤蒸発法を使って製膜
した。本発明の脱水膜では、メタクリル酸メチルとアク
リル酸との共重合及び組成のみの検討で、架橋剤を加え
た実施例は検討していないが、ジエポキシド、ジアミン
などの架橋剤によって架橋構造を形成させることによっ
て分離性能と耐久性は向上するものと考えられる。
The copolymer film of the present invention is a binary copolymer of methyl methacrylate, which is a hydrophobic monomer, and acrylic acid, which is a hydrophilic monomer, and is formed by a solvent evaporation method. In the dehydrated film of the present invention, only the copolymerization of methyl methacrylate and acrylic acid and the composition are examined, and an example in which a crosslinking agent is added has not been examined, but a crosslinked structure is formed by a crosslinking agent such as diepoxide or diamine. By doing so, it is considered that the separation performance and durability are improved.

【0011】[0011]

【作用】本発明で取扱った共重合体は別の観点から眺め
ると、一成分のメタクリル酸メチルのホモポリマーであ
るポリメタクリル酸メチルは水−エタノール混合液に溶
解し、他成分のアクリル酸のホモポリマーであるポリア
クリル酸もまた水−エタノール混合液に対して完全には
溶解しないまでも部分的に溶解するというように、当該
共重合体の成分ホモポリマーが供給液に溶解しやすい性
質を持ったものである。つまり両成分のホモポリマーは
一応親水性と疎水性に分けられても被分離液の水−エタ
ノール混合液には非常に親和性の高いものである。本発
明ではこのように、水選択型の分離性を付与するため親
水性化した分離活性ドメインと、これによって引き起こ
される膨潤を抑えるための構造支持ドメインに、それぞ
れ相当する親水性モノマーと疎水性モノマーからなる共
重合膜でも、被分離液に対して高い親和性、すなわち溶
解性のモノマーからなる高分子膜であるがゆえに高い液
分離挙動が発揮されたものと考えられる。
From a different point of view, the copolymer treated in the present invention is such that polymethylmethacrylate, which is a homopolymer of methylmethacrylate as a component, is dissolved in a water-ethanol mixed solution and The homopolymer polyacrylic acid is also partially dissolved in the water-ethanol mixed solution, if not completely dissolved, such that the homopolymer component of the copolymer is easily dissolved in the feed solution. I have it. In other words, the homopolymers of both components have a very high affinity for the water-ethanol mixed liquid to be separated even if they are classified into hydrophilic and hydrophobic. In the present invention, as described above, a hydrophilic monomer and a hydrophobic monomer respectively corresponding to the separation active domain which has been hydrophilized to impart the water-selective separation property and the structural support domain for suppressing the swelling caused by the separation active domain. It is considered that even the copolymer membrane made of (1) has a high affinity for the liquid to be separated, that is, a high-performance liquid separation behavior because it is a polymer film made of a soluble monomer.

【0012】[0012]

【実施例】次に、本発明を実施例により更に具体的に説
明する。一般にメタクリル酸メチルとアクリル酸モノマ
ーには重合禁止剤が含まれているので、亜硫酸水素ナト
リウム水溶液や水酸化ナトリウム水溶液で重合禁止剤を
取り除き、一たん濾過してから減圧蒸留を行い、精製後
直ちに使用した。
EXAMPLES Next, the present invention will be described more specifically by way of examples. In general, methyl methacrylate and acrylic acid monomers contain a polymerization inhibitor, so remove the polymerization inhibitor with an aqueous solution of sodium hydrogen sulfite or an aqueous solution of sodium hydroxide, filter once and perform vacuum distillation, and immediately after purification. used.

【0013】メタクリル酸メチルとアクリル酸の共重合
は、モノマー総量の0.05mol%のα,α'-アゾビスイソ
ブチロニトリル(AIBN)を開始剤とし、55℃で3時
間封管重合を続けて、合成した。塊状重合を行うに際
し、重合アンプル管中にメタクリル酸メチルとアクリル
酸のモノマーを加えた後、モノマー中の溶存空気を取り
除くために真空ラインを使って凍結−溶融による脱気を
繰り返したあと、モノマーの入った重合管を封管し、塊
状重合を行った。重合時間経過後、特級テトラヒドロフ
ラン(THF)に溶かし、再沈殿して精製した。
Copolymerization of methyl methacrylate and acrylic acid is carried out by using 0.05 mol% of the total amount of monomers, α, α'-azobisisobutyronitrile (AIBN) as an initiator, and conducting the sealed tube polymerization at 55 ° C. for 3 hours. And synthesized. When performing bulk polymerization, after adding methyl methacrylate and acrylic acid monomers into the polymerization ampoule tube, freeze-melt degassing was repeated using a vacuum line to remove dissolved air in the monomers, and then the monomer The polymerization tube containing was sealed and bulk polymerization was carried out. After the lapse of the polymerization time, it was dissolved in special grade tetrahydrofuran (THF) and reprecipitated for purification.

【0014】メタクリル酸メチルとアクリル酸の溶媒と
して知られているいくつかの溶媒の溶解性を調べ、本発
明の共重合体の製膜用の溶媒としてはTHFを選んだ。
製膜にはメタクリル酸メチル−アクリル酸を約2wt%の
濃度になるように特級THFに完全に溶かし、水平にし
たガラス板上にキャストした。乾燥後ガラス板ごと脱イ
オン水中に浸漬して膜を剥離した。剥離した膜は、次の
実験に使用するまで脱イオン水中に保存した。
The solubility of several solvents known as solvents for methyl methacrylate and acrylic acid was investigated, and THF was selected as the solvent for forming the film of the copolymer of the present invention.
For film formation, methyl methacrylate-acrylic acid was completely dissolved in special grade THF to a concentration of about 2 wt% and cast on a leveled glass plate. After drying, the entire glass plate was immersed in deionized water to peel off the film. The stripped film was stored in deionized water until used in the next experiment.

【0015】共重合膜の含水率を増加させ、透過性を高
める目的で、共重合膜中のアクリル酸のカルボキシル基
をNa型(-COONa)に変換する改質反応を行った。1N
の水酸化ナトリウム水溶液中に膜を浸し、室温で24時間
放置後膜を取り出して脱イオン水で洗浄した。
For the purpose of increasing the water content of the copolymer film and increasing the permeability, a modification reaction was carried out to convert the carboxyl groups of acrylic acid in the copolymer film into Na type (-COONa). 1N
After immersing the membrane in the aqueous sodium hydroxide solution described above and leaving it at room temperature for 24 hours, the membrane was taken out and washed with deionized water.

【0016】実施例において透過速度および分離係数の
測定は通常のパーベーパレーション用の測定装置を用い
て行った。図1に示した測定装置(有効面積15.9cm2
に分離膜を装着し、供給液に水−メタノール系、水−エ
タノール系、水−2-プロパノール系などの混合液を大気
圧下で供給し、真空ポンプにて排気側を0.1mmHg以下に
保持した。供給液と透過液の重量組成はガスクロマトグ
ラフによって測定し、次式(1)によって分離係数を算出
した。
In the examples, the permeation rate and the separation coefficient were measured by using an ordinary measuring device for pervaporation. Measuring device shown in Fig. 1 (effective area 15.9 cm 2 )
Attach a separation membrane to the, supply a mixture of water-methanol, water-ethanol, water-2-propanol, etc. to the supply under atmospheric pressure, and keep the exhaust side at 0.1 mmHg or less with a vacuum pump. did. The weight composition of the feed liquid and the permeate was measured by a gas chromatograph, and the separation coefficient was calculated by the following formula (1).

【化1】[A]1及び[B]1 : 膜透過前のA(水)及
びB(アルコール)の重量分率 [A]2及び[B]
2 : 膜透過後のA(水)及びB(アルコール)の重量
分率 透過速度は次式(2)より求めた。
[A] 1 and [B] 1 : Weight fraction of A (water) and B (alcohol) before permeation through the membrane [A] 2 and [B]
2 : Weight fraction of A (water) and B (alcohol) after permeation through the membrane The permeation rate was calculated by the following formula (2).

【化2】[Chemical 2]

【0017】実施例1 メタクリル酸メチルとアクリル酸の仕込比(mol%)を8
9:11として重合し、共重合物を得た。この共重合物
のテトラヒドロフラン溶液をガラス板上に流延し、常温
で溶媒を徐々に蒸発させ、膜厚23μmの脱水用分離膜を
得た。図1に示した測定装置の液透過セル6にこの分離
膜12を装着し、メタノール水溶液の脱水分離実験を行っ
た。脱水実験の結果を表1に示す。
Example 1 The charging ratio (mol%) of methyl methacrylate and acrylic acid was 8
Polymerization was performed at 9:11 to obtain a copolymer. A tetrahydrofuran solution of this copolymer was cast on a glass plate and the solvent was gradually evaporated at room temperature to obtain a separation membrane for dehydration having a thickness of 23 μm. The separation membrane 12 was attached to the liquid permeation cell 6 of the measuring device shown in FIG. 1 and a dehydration separation experiment of a methanol aqueous solution was conducted. The results of the dehydration experiment are shown in Table 1.

【0018】実施例2 脱水用分離膜として膜厚21μmのものを使用し、分離対
象とするアルコール水溶液としてエタノール水溶液を供
給した以外は実施例1と全く同様にして脱水分離実験を
行った。脱水実験の結果は表2の通りである。
Example 2 A dehydration separation experiment was conducted in exactly the same manner as in Example 1 except that a dehydration separation membrane having a film thickness of 21 μm was used and an ethanol aqueous solution was supplied as an alcohol aqueous solution to be separated. The results of the dehydration experiment are shown in Table 2.

【0019】実施例3 脱水用分離膜として膜厚20μmのものを使用し、分離対
象とするアルコール水溶液として2-プロパノール水溶液
を供給した以外は実施例1と全く同様にして脱水分離実
験を行った。脱水実験の結果は表3の通りである。
Example 3 A dehydration separation experiment was conducted in exactly the same manner as in Example 1 except that a dehydration separation membrane having a film thickness of 20 μm was used and an aqueous alcohol solution to be separated was supplied with a 2-propanol aqueous solution. . The results of the dehydration experiment are shown in Table 3.

【0020】実施例4 メタクリル酸メチルとアクリル酸の仕込比(mol%)を8
0:20として重合し、共重合物を得た。この共重合物
のテトラヒドロフラン溶液をガラス板上に流延し、常温
で溶媒を徐々に蒸発させ、膜厚13μmの脱水用分離膜を
得た。図1に示した測定装置の液透過セル6にこの分離
膜12を装着し、メタノール水溶液の脱水分離実験を行っ
た。脱水実験の結果を表4に示す。
Example 4 The charging ratio (mol%) of methyl methacrylate and acrylic acid was 8
Polymerization was performed at 0:20 to obtain a copolymer. A tetrahydrofuran solution of this copolymer was cast on a glass plate and the solvent was gradually evaporated at room temperature to obtain a dehydration separation membrane having a thickness of 13 μm. The separation membrane 12 was attached to the liquid permeation cell 6 of the measuring device shown in FIG. 1 and a dehydration separation experiment of a methanol aqueous solution was conducted. The results of the dehydration experiment are shown in Table 4.

【0021】実施例5 脱水用分離膜として膜厚16μmのものを使用し、分離対
象とするアルコール水溶液としてエタノール水溶液を供
給した以外は実施例4と全く同様にして脱水分離実験を
行った。脱水実験の結果は表5の通りである。
Example 5 A dehydration separation experiment was conducted in exactly the same manner as in Example 4 except that a dehydration separation membrane having a film thickness of 16 μm was used and an ethanol aqueous solution was supplied as the alcohol aqueous solution to be separated. The results of the dehydration experiment are shown in Table 5.

【0022】実施例6 脱水用分離膜として膜厚16μmのものを使用し、分離対
象とするアルコール水溶液として2-プロパノール水溶液
を供給した以外は実施例4と全く同様にして脱水分離実
験を行った。脱水実験の結果は表6の通りである。
Example 6 A dehydration separation experiment was carried out in exactly the same manner as in Example 4 except that a dehydration separation membrane having a film thickness of 16 μm was used and an aqueous 2-propanol solution was supplied as the alcohol aqueous solution to be separated. . The results of the dehydration experiment are shown in Table 6.

【0023】実施例7 メタクリル酸メチルとアクリル酸の仕込比(mol%)を9
5:5として重合し、共重合物を得た。この共重合物の
テトラヒドロフラン溶液をガラス板上に流延し、常温で
溶媒を徐々に蒸発させ、膜厚14μmの脱水用分離膜を得
た。図1に示した測定装置の液透過セル6にこの分離膜1
2を装着し、メタノール水溶液の脱水分離実験を行っ
た。脱水実験の結果を表7に示す。
Example 7 The charging ratio (mol%) of methyl methacrylate and acrylic acid was 9
Polymerization was performed at 5: 5 to obtain a copolymer. A tetrahydrofuran solution of this copolymer was cast on a glass plate and the solvent was gradually evaporated at room temperature to obtain a separation membrane for dehydration having a film thickness of 14 μm. The separation membrane 1 is provided in the liquid permeation cell 6 of the measuring device shown in FIG.
2 was attached and the dehydration separation experiment of the methanol aqueous solution was performed. The results of the dehydration experiment are shown in Table 7.

【0024】実施例8 脱水用分離膜として膜厚12μmのものを使用し、分離対
象とするアルコール水溶液としてエタノール水溶液を供
給した以外は実施例7と全く同様にして脱水分離実験を
行った。脱水実験の結果は表8の通りである。
Example 8 A dehydration separation experiment was conducted in exactly the same manner as in Example 7 except that a dehydration separation membrane having a thickness of 12 μm was used and an ethanol aqueous solution was supplied as the alcohol aqueous solution to be separated. The results of the dehydration experiment are shown in Table 8.

【0025】実施例9 脱水用分離膜として膜厚15μmのものを使用し、分離対
象とするアルコール水溶液として2-プロパノール水溶液
を供給した以外は実施例7と全く同様にして脱水分離実
験を行った。脱水実験の結果は表9の通りである。
Example 9 A dehydration separation experiment was conducted in exactly the same manner as in Example 7, except that a dehydration separation membrane having a film thickness of 15 μm was used and an aqueous alcohol solution to be separated was supplied with a 2-propanol aqueous solution. . The results of the dehydration experiment are shown in Table 9.

【0026】実施例10 メタクリル酸メチルとアクリル酸の仕込比(mol%)を8
5:15として重合し、共重合物を得た。この共重合物
のテトラヒドロフラン溶液をガラス板上に流延し、常温
で溶媒を徐々に蒸発させ、膜厚16μmの脱水用分離膜を
得た。図1に示した測定装置の液透過セル6にこの分離
膜12を装着し、メタノール水溶液の脱水分離実験を行っ
た。脱水実験の結果を表10に示す。
Example 10 The charging ratio (mol%) of methyl methacrylate and acrylic acid was 8
Polymerization was performed at 5:15 to obtain a copolymer. A tetrahydrofuran solution of this copolymer was cast on a glass plate and the solvent was gradually evaporated at room temperature to obtain a dehydration separation membrane having a thickness of 16 μm. The separation membrane 12 was attached to the liquid permeation cell 6 of the measuring device shown in FIG. 1 and a dehydration separation experiment of a methanol aqueous solution was conducted. The results of the dehydration experiment are shown in Table 10.

【0027】実施例11 脱水用分離膜として膜厚12μmのものを使用し、分離対
象とするアルコール水溶液としてエタノール水溶液を供
給した以外は実施例10と全く同様にして脱水分離実験
を行った。脱水実験の結果は表11の通りである。
Example 11 A dehydration separation experiment was conducted in exactly the same manner as in Example 10 except that a dehydration separation membrane having a film thickness of 12 μm was used and an ethanol aqueous solution was supplied as an alcohol aqueous solution to be separated. The results of the dehydration experiment are shown in Table 11.

【0028】実施例12 脱水用分離膜として膜厚16μmのものを使用し、分離対
象とするアルコール水溶液として2-プロパノール水溶液
を供給した以外は実施例10と全く同様にして脱水分離
実験を行った。脱水実験の結果は表12の通りである。
Example 12 A dehydration separation experiment was carried out in the same manner as in Example 10 except that a dehydration separation membrane having a film thickness of 16 μm was used and an aqueous alcohol solution to be separated was supplied with a 2-propanol aqueous solution. . The results of the dehydration experiment are shown in Table 12.

【0020】[0020]

【発明の効果】実施例1と2にみられるように、メタノ
ールとエタノールのそれぞれの水溶液に対して水の分離
係数が5000以上という極めて高い値が得られた。ま
た実施例5のエタノール水溶液でも分離係数が5000
以上を示した。これらの高い分離性能は含水率80%の
高含水濃度域のアルコール水溶液で達成されたものであ
り、本発明の脱水膜が高含水アルコール、一般的には高
含水の有機溶媒の脱水に優れた利点を有するものであ
る。実施例5のエタノール濃度22%のところで透過流
速が約0.7kg/m2Kgであり、小さくない値である。以
上、本発明の脱水膜は、脱水分離膜として現在最も待望
されていた高含水有機溶媒の脱水操作に対して高効率の
分離性能を発揮することが大きな利点である。
As shown in Examples 1 and 2, a very high value of a separation factor of water of 5000 or more was obtained for each aqueous solution of methanol and ethanol. In addition, the separation coefficient was 5000 even with the aqueous ethanol solution of Example 5.
The above is shown. These high separation performances were achieved with an aqueous alcohol solution having a water content of 80% in a high water content concentration range, and the dehydration membrane of the present invention was excellent in dehydration of a high water content alcohol, generally a high water content organic solvent. It has advantages. At the ethanol concentration of 22% in Example 5, the permeation flow rate is about 0.7 kg / m 2 Kg, which is not a small value. As described above, it is a great advantage that the dehydration membrane of the present invention exhibits highly efficient separation performance against the dehydration operation of the highly water-containing organic solvent, which has been the long-awaited demand for the dehydration separation membrane.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の脱水分離膜の透過分離特性を測定する
ために使用する測定装置。
FIG. 1 is a measuring device used for measuring the permeation separation characteristics of a dehydration separation membrane of the present invention.

【符号の説明】[Explanation of symbols]

1 … 真空ポンプ 2 … コールドトラップ 3 … ガラスコック 4 … 回転マクレオド 5 … 透過蒸気の捕集用コールドトラップ 6 … 液透過セル 7 … 攪拌用モーター 8 … 攪拌器 9 … 投込みヒーター 10 … 電子リレー 11 … 恒温水槽 12 … 分離膜 13 … アルコール水溶液 14 … 透過側チャンバー 1 ... Vacuum pump 2 ... Cold trap 3 ... Glass cock 4 ... Rotating macleod 5 ... Cold trap for collecting permeated vapor 6 ... Liquid permeation cell 7 ... Stirring motor 8 ... Stirrer 9 ... Immersion heater 10 ... Electronic relay 11 ... Constant temperature water tank 12 ... Separation membrane 13 ... Alcohol aqueous solution 14 ... Permeation side chamber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 メタクリル酸メチルとアクリル酸とから
なる二元共重合体を製膜して得られた脱水用分離膜。
1. From methyl methacrylate and acrylic acid
Separation membrane for dehydration obtained by forming a binary copolymer of
JP3358437A 1991-12-27 1991-12-27 Separation membrane for dehydration Expired - Lifetime JPH0712420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3358437A JPH0712420B2 (en) 1991-12-27 1991-12-27 Separation membrane for dehydration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3358437A JPH0712420B2 (en) 1991-12-27 1991-12-27 Separation membrane for dehydration

Publications (2)

Publication Number Publication Date
JPH05177120A JPH05177120A (en) 1993-07-20
JPH0712420B2 true JPH0712420B2 (en) 1995-02-15

Family

ID=18459301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3358437A Expired - Lifetime JPH0712420B2 (en) 1991-12-27 1991-12-27 Separation membrane for dehydration

Country Status (1)

Country Link
JP (1) JPH0712420B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034444B2 (en) 2006-08-04 2011-10-11 Fujifilm Manufacturing Europe B.V. Porous membranes and recording media comprising same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503224A (en) 2005-08-05 2009-01-29 フジフィルム マニュファクチャリング ユーロプ ビー.ブイ. Porous film and recording medium including the same
ATE427156T1 (en) 2005-08-05 2009-04-15 Fujifilm Mfg Europe Bv POROUS MEMBRANE AND RECORDING MEDIUM AND PRODUCTION METHOD THEREOF
WO2007018428A1 (en) 2005-08-05 2007-02-15 Fujifilm Manufacturing Europe B.V. Porous membrane and recording medium comprising same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3195377B2 (en) * 1990-06-14 2001-08-06 リンテック株式会社 Organic solvent selective permeable membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034444B2 (en) 2006-08-04 2011-10-11 Fujifilm Manufacturing Europe B.V. Porous membranes and recording media comprising same

Also Published As

Publication number Publication date
JPH05177120A (en) 1993-07-20

Similar Documents

Publication Publication Date Title
JP4297516B2 (en) Microporous membrane and use thereof
JP3061197B2 (en) Copolymer composition of trifluorostyrene and substituted trifluorostyrene and ion exchange resin made therefrom
US20060124537A1 (en) Pervaporation Membranes and Methods of Use
CA2772306A1 (en) Ion exchange membranes featuring polymer-filled microporous supports
CN1858090A (en) Method for hydrophilic modifying of poly-vinylidene fluoride film
Ruckenstein et al. Poly (acrylic acid)–poly (vinyl alcohol) semi‐and interpenetrating polymer network pervaporation membranes
Kuila et al. Synthesis of full interpenetrating network membranes of poly (acrylic acid-co-acrylamide) in the matrix of polyvinyl alcohol for dehydration of ethylene glycol by pervaporation
WO2015190074A1 (en) Method for producing anion-exchange electrolyte membrane, anion-exchange electrolyte membrane obtained by said method, membrane-electrode assembly for fuel cells provided with said anion-exchange electrolyte membrane, and fuel cell
JPH0712420B2 (en) Separation membrane for dehydration
US4851120A (en) Anionic polysaccharide separation membranes
Ruckenstein et al. Optimization of the mechanical properties of polymeric composite membranes prepared via emulsion pathways
Stevenson et al. The equilibrium water content of some thermoplastic hydroxyalkyl methacrylate polymers
Burshe et al. Dehydration of glycerine-water mixtures by pervaporation
Oh et al. Pervaporation of pyridine–water mixture through poly (acrylonitrile‐co‐4‐styrene sulfonic acid) membrane
Ray et al. Development of methanol selective membranes for separation of methanol–methyl tertiary butyl ether mixtures by pervaporation
Okuno et al. Permeation and separation characteristics of aqueous alcohol solutions through poly (vinyl p-tert-butyl benzoate) membrane
JP2866981B2 (en) Composite semipermeable membrane
JP3336150B2 (en) How to recover the performance of a permselective pervaporation membrane
JPH06218254A (en) Composite film and performance-recovering method therefor
JPH0592129A (en) Composite semipermeable membrane
Won et al. Association behavior in copolymer blend membranes and the pervaporation of water/ethanol mixtures
CN114044930B (en) PVDF-PVIm blend membrane material and anion exchange membrane
JPH0687955B2 (en) Membrane concentration method for alcoholic aqueous solution
JPH0363418B2 (en)
JPH11106593A (en) Polyisopropenyl acetate separation membrane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term