JPH07119237B2 - Hirudin mutant, its production method and anticoagulant - Google Patents

Hirudin mutant, its production method and anticoagulant

Info

Publication number
JPH07119237B2
JPH07119237B2 JP2303096A JP30309690A JPH07119237B2 JP H07119237 B2 JPH07119237 B2 JP H07119237B2 JP 2303096 A JP2303096 A JP 2303096A JP 30309690 A JP30309690 A JP 30309690A JP H07119237 B2 JPH07119237 B2 JP H07119237B2
Authority
JP
Japan
Prior art keywords
hirudin
plasmid
amino acid
acid sequence
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2303096A
Other languages
Japanese (ja)
Other versions
JPH04173798A (en
Inventor
悟 三沢
整 松田
善文 井上
英之 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2303096A priority Critical patent/JPH07119237B2/en
Priority to EP95202092A priority patent/EP0687731B1/en
Priority to PCT/JP1991/001533 priority patent/WO1992008736A1/en
Priority to ES95202092T priority patent/ES2129749T3/en
Priority to AT91919149T priority patent/ATE140929T1/en
Priority to CA002255396A priority patent/CA2255396A1/en
Priority to AT95202092T priority patent/ATE176500T1/en
Priority to DE69121192T priority patent/DE69121192T2/en
Priority to EP91919149A priority patent/EP0511393B1/en
Priority to DE69130872T priority patent/DE69130872T2/en
Priority to ES91919149T priority patent/ES2093717T3/en
Priority to DK91919149.4T priority patent/DK0511393T3/en
Priority to AU88466/91A priority patent/AU648124B2/en
Priority to CA002072375A priority patent/CA2072375C/en
Priority to DK95202092T priority patent/DK0687731T3/en
Publication of JPH04173798A publication Critical patent/JPH04173798A/en
Priority to FI922963A priority patent/FI107928B/en
Priority to NO922671A priority patent/NO303735B1/en
Priority to US07/910,528 priority patent/US5516656A/en
Priority to AU54701/94A priority patent/AU673870B2/en
Priority to US08/348,972 priority patent/US5573929A/en
Publication of JPH07119237B2 publication Critical patent/JPH07119237B2/en
Priority to GR960402781T priority patent/GR3021410T3/en
Priority to NO982207A priority patent/NO982207D0/en
Priority to GR990400915T priority patent/GR3029824T3/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ヒルジン変異体、その製造方法及び該ヒルジ
ン変異体を有効成分として含有する抗凝血剤に関する。
TECHNICAL FIELD The present invention relates to a hirudin mutant, a method for producing the same, and an anticoagulant containing the hirudin mutant as an active ingredient.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be Solved by Prior Art and Invention]

薬用ヒル(Hirudo medicinalis)の唾液腺から分泌さ
れる抗血液凝固因子であるヒルジンは、65個及び66個の
アミノ酸から成るペプチドの混合物である。ヒルジンの
構造はDodt等〔FEBSLett.165,180(1984)〕により解明
され、これはヒルジン変異体(Variant)1(HV1)に相
当し、他のヒルジン変異体であるHV2〔Harvey等Proc.Na
tl.Acad.Sci.USA.83,1084(1986)〕はHV1と9個のアミ
ノ酸が異なり、さらに別のヒルジン変異体であるHV3〔D
odt等Biol.Chem.Hoppe−Seyler.367,803(1986)〕は、
Ser32までHV2と同一で、C末端側でアミノ酸(Ala63
の添加を含む、10個のアミノ酸が異なる。これら3変種
の構造を第1図に示す。
Hirudin, an anticoagulant factor secreted by the salivary glands of the medicinal leech ( Hirudo medicinalis ), is a mixture of peptides consisting of 65 and 66 amino acids. The structure of hirudin was elucidated by Dodt et al. [FEBS Lett. 165 , 180 (1984)], which corresponds to hirudin variant (Variant) 1 (HV1) and is another hirudin variant HV2 [Harvey et al. Proc. Na.
tl.Acad.Sci.USA. 83, 1084 (1986)] have different HV1 and 9 amino acids, which is yet another hirudin variant HV3 [D
odt et al. Biol. Chem. Hoppe-Seyler. 367 , 803 (1986)],
Same as HV2 up to Ser 32 , with amino acid (Ala 63 ) at the C-terminal side
10 amino acids differ, including the addition of. The structures of these three variants are shown in FIG.

これらの天然変異体は65個又は66個のアミノ酸を含み、
2つのドメインを認め得る。つまり、3つのジスルフィ
ド結合を含む球状N末端部分と、プロトロンビン分子中
のトロンビン切断部位又はフィブリノーゲン切断部位と
相同性を示す酸性C末端部分である。
These natural variants contain 65 or 66 amino acids,
Two domains can be recognized. That is, a spherical N-terminal portion containing three disulfide bonds and an acidic C-terminal portion showing homology with the thrombin cleavage site or fibrinogen cleavage site in the prothrombin molecule.

本発明者らは、天然変異体ヒルジンHV1とHV3のC末端ア
ミノ酸配列を比較すると、HV1のLeu64−Gln65がHV3では
Asp65−Glu66に置換されていることを見出した。そし
て、HV1及びHV3の合成遺伝子の作製及びそれらをE.coli
で発現されることについて特許出願(特願平1−207200
号)した。
The present inventors have found that, in a comparison of C-terminal amino acid sequence of naturally occurring variants hirudin HV1 and HV3, Leu 64 -Gln 65 of HV1 is HV3
It found that is substituted with Asp 65 -Glu 66. Then, the production of synthetic genes for HV1 and HV3 and their synthesis in E. coli
Patent application (Japanese Patent Application No. 1-207200)
No.)

これらのヒルジン変異体HV1,HV2及びHV3は、それぞれに
抗トロンビン作用を有しているが、副作用として出血時
間の延長をもたらすなど臨床医薬として使用されるには
充分なものとはいえない。本発明者らは、前記ヒルジン
HV1,HV2及びHV3の一時構造をもとに種々のヒルジン変異
体を作製し、その性質を動物モデルにおいて比較したと
ころヒルジンHV1のアミノ酸残基53位以降をHV3の53位以
降のアミノ酸配列で置き換えたHV1とHV3とのヒルジン変
異体(キメラヒルジン)が高い抗トロンビン作用を有す
るだけでなく、出血時間の延長を軽減することを見出
し、本発明を完成するに至った。
These hirudin mutants HV1, HV2 and HV3 each have an antithrombin activity, but they cannot be said to be sufficient for use as a clinical drug because they cause prolonged bleeding time as a side effect. The present inventors
Various hirudin mutants were prepared based on the temporary structures of HV1, HV2 and HV3, and their properties were compared in animal models.The amino acid residues 53 and higher of hirudin HV1 were replaced with the amino acid sequences of 53 and higher of HV3. The present inventors have found that the hirudin mutant of HV1 and HV3 (chimeric hirudin) not only has a high antithrombin activity but also reduces the extension of bleeding time, and completed the present invention.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、抗トロンビン作用の高い新規なヒルジン変異
体に関する。
The present invention relates to a novel hirudin mutant having high antithrombin activity.

また、本発明は、このような抗凝血作用の高く、かつ出
血傾向の低下したヒルジン変異体のアミノ酸配列をコー
ドしているDNA配列、このDNA配列を含む発現ベクターで
大腸菌を形質転換した形質転換微生物及びこの形質転換
微生物を用いてヒルジン変異体を発現させこれを回収す
るヒルジン変異体の製造法に関する。
The present invention also provides a DNA sequence encoding the amino acid sequence of a hirudin mutant having high anticoagulant activity and reduced bleeding tendency, and a trait obtained by transforming Escherichia coli with an expression vector containing this DNA sequence. The present invention relates to a transformed microorganism and a method for producing a hirudin mutant in which the hirudin mutant is expressed using the transformed microorganism and recovered.

さらに、本発明は、このようなヒルジン変異体を有効成
分とする抗凝血剤に関する。
Furthermore, the present invention relates to an anticoagulant containing such a hirudin mutant as an active ingredient.

本発明の新規なヒルジン変異体は次の一次構造式で示さ
れるアミノ酸配列をもつ。
The novel hirudin variant of the present invention has an amino acid sequence represented by the following primary structural formula.

また、この変異体のアミノ酸配列をコードするDNA配列
は、例えば、次の式で表される。
The DNA sequence encoding the amino acid sequence of this mutant is represented by the following formula, for example.

GTT GTA TAC ACT GAT TGT ACT GAA TCT GGC 30 CAG AAC
CTG TGT CTG TGT GAA GGA TCC AAC 60 GTT TGT GGT CA
G GGT AAC AAA TGT ATC CTC 90 GGG TCT GAT GGT GAA A
AG AAC CAG TGT GTT 120 ACT GGT GAA GGT ACC CCG AAA
CCG CAG TCT 150 CAT AAC CAG GGT GAT TTC GAA CCG A
TC CCG 180 GAA GAC GCG TAC GAT GAA 本発明の(式I)で示されるヒルジン変異体は化学合成
において製造してもよいし、また遺伝子工学的手法によ
って製造してもよい。
GTT GTA TAC ACT GAT TGT ACT GAA TCT GGC 30 CAG AAC
CTG TGT CTG TGT GAA GGA TCC AAC 60 GTT TGT GGT CA
G GGT AAC AAA TGT ATC CTC 90 GGG TCT GAT GGT GAA A
AG AAC CAG TGT GTT 120 ACT GGT GAA GGT ACC CCG AAA
CCG CAG TCT 150 CAT AAC CAG GGT GAT TTC GAA CCG A
TC CCG 180 GAA GAC GCG TAC GAT GAA The hirudin variant represented by (Formula I) of the present invention may be produced by chemical synthesis, or may be produced by a genetic engineering technique.

遺伝子工学的手法で製造するには、後述する実施例で示
すようにまず、ヒルジンHV1分泌プラスミドpMTSHV1及び
pMKSHV1を構築し、これで大腸菌を形質転換してこの形
質転換微生物を用いてヒルジンHV1を分泌生産させる。
このプラスミドpMTSHV1は、第3図に示すようにプロモ
ーター(Ptrp)、ジグナルペプチドをコードするDNA配
列(Pho A signal)、ヒルジンHV1のアミノ酸配列をコ
ードするDNA配列及び転写停止シグナルを含有するDNA配
列(rrnBT1T2)よりなっている。本発明では、ヒルジン
HV1のアミノ酸残基53位以降のアミノ酸配列をHV3の53位
以降のアミノ酸配列で置換するためにHV1分泌プラスミ
ドpMTSHV1を制限酵素で切断してヒルジンHV1の53位以降
のアミノ酸配列をコードするDNA配列を除く。一方、HV3
を発現させるプラスミドpUCHV3の53位からのアミノ酸配
列をコードするDNA配列を制限酵素を用いて切り出す。
このプラスミドpMTSHV1からヒルジンHV1の53位以降のア
ミノ酸配列をコードするDNA配列を除いたDNAとプラスミ
ドpUCHV3由来のヒルジンHV3の53位以降のアミノ酸配列
をコードするDNAとをDNAリガーゼ等を用いて反応させ本
発明のヒルジン変異体のアミノ酸配列をコードするDNA
を含むプラスミドpMTSHV1C3を構築する。
In order to produce it by a genetic engineering method, as shown in Examples described later, first, hirudin HV1 secretion plasmid pMTSHV1 and
pMKSHV1 is constructed, and E. coli is transformed with this, and the transformed microorganism is used to secrete and produce hirudin HV1.
As shown in FIG. 3, this plasmid pMTSHV1 contains a promoter (Ptrp), a DNA sequence encoding a signal peptide (Pho A signal), a DNA sequence encoding the amino acid sequence of hirudin HV1 and a DNA sequence containing a transcription termination signal. (RrnBT 1 T 2 ). In the present invention, hirudin
A DNA sequence encoding the amino acid sequence of Hildin HV1 from position 53 onwards by cutting the HV1 secretion plasmid pMTSHV1 with a restriction enzyme in order to replace the amino acid sequence of amino acid residue 53 onwards of HV1 with the amino acid sequence of position 53 onward of HV3. except for. On the other hand, HV3
The DNA sequence encoding the amino acid sequence from the 53rd position of the plasmid pUCHV3 that expresses is excised using a restriction enzyme.
This plasmid pMTSHV1 is reacted with DNA excluding the DNA sequence encoding the amino acid sequence at the 53rd position of hirudin HV1 and the DNA encoding the amino acid sequence at the 53rd position of hirudin HV3 derived from the plasmid pUCHV3 using a DNA ligase or the like. DNA encoding the amino acid sequence of the hirudin variant of the present invention
Construct the plasmid pMTSHV1C3 containing

このプラスミドpMTSHV1C3は、プラスミドpMTSHV1由来の
プロモーター、シグナルペプチドをコードするDNA配
列、ヒルジンHV1の1位〜52位までのアミノ酸配列をコ
ードするDNA配列と転写停止シグナル及びプラスミドpUC
HV3由来のヒルジンHV3の53位以降のアミノ酸配列をコー
ドするDNA配列を含み、該DNA配列が前記ヒルジンHV1の
1位〜52位までのアミノ酸配列をコードするDNA配列と
転写停止シグナルとの間に組込まれている。
This plasmid pMTSHV1C3 contains a promoter derived from the plasmid pMTSHV1, a DNA sequence encoding a signal peptide, a DNA sequence encoding the amino acid sequence from the 1st position to the 52nd position of hirudin HV1, a transcription termination signal and a plasmid pUC.
It comprises a DNA sequence encoding the amino acid sequence of Hildin HV3 derived from HV3 after position 53, wherein the DNA sequence is located between the DNA sequence encoding the amino acid sequence of positions 1 to 52 of Hirdin HV1 and the transcription termination signal. It is incorporated.

このプラスミドpMTSHV1C3を大腸菌に組込で大腸菌を形
質転換し、この形質転換微生物を培養すると菌体及び培
養液中に本発明のヒルジン変異体が産生される。
Escherichia coli is transformed by incorporating this plasmid pMTSHV1C3 into Escherichia coli, and the transformed microorganism is cultured to produce the hirudin mutant of the present invention in the cells and the culture solution.

本発明では、このヒルジン変異体を通常一般的に知られ
ている方法で単離し、クロマトグラフ、逆相HPLCその他
の精製法によって精製する。
In the present invention, the hirudin mutant is isolated by a generally known method and purified by a chromatograph, reverse phase HPLC or other purification method.

得られたヒルジン変異体は動物モデルにおいてヒルジン
HV1よりも高い抗トロンビン活性と低い出血傾向を示
し、通常製剤の製法として一般的に知られている方法で
製剤とすることによってすぐれた抗凝血剤とすることが
できる。すなわち、本発明のヒルジン変異体は、任意慣
用の製薬用担体や、賦形剤を用いて任意慣用の方法で調
製される。投与は例えば静脈内、皮内、皮下もしくは筋
肉内に、また局所に非経口的に行なうことができる。投
与量は症状や投与対象者の年令、性別等を考慮して個々
の場合に応じて適宜決定されるが、通常成人1日当り0.
1〜100mgであり、これを1日1〜数回に分けて投与す
る。
The obtained hirudin mutant was hirudin in an animal model.
It exhibits a higher antithrombin activity and a lower bleeding tendency than HV1, and can be used as an excellent anticoagulant by preparing a formulation by a method generally known as a method for producing a conventional formulation. That is, the hirudin variant of the present invention is prepared by any conventional method using any conventional pharmaceutical carrier or excipient. Administration can be carried out parenterally, for example intravenously, intracutaneously, subcutaneously or intramuscularly, and topically. The dose is appropriately determined according to each case in consideration of symptoms, age of the recipient, sex, etc., but is usually 0 per adult per day.
It is 1 to 100 mg, which is administered once or several times a day in divided doses.

次に本発明において使用するヒルジンHV1分泌プラスミ
ドpMTSHV1及びpMKSHV1を構築するためのプラスミドpUCH
V1,pMT1及びpMK2の構築方法及びプラスミドpMTSHV1C3を
構築するためのプラスミドpUCHV3の構築方法を参考例と
して示す。
The plasmid pUCH for constructing the hirudin HV1 secretion plasmids pMTSHV1 and pMKSHV1 used in the present invention.
A method for constructing V1, pMT1 and pMK2 and a method for constructing plasmid pUCHV3 for constructing plasmid pMTSHV1C3 are shown as reference examples.

参考例1 プラスミドpUCHV1及びプラスミドpUCHV3の調
製 pUC18 10μgをEcoRI 30単位、HindIII 30単位を用いて
37℃で2時間消化した。これをアガロースゲル電気泳動
に供してベクター部分を抽出し、フェノール抽出により
タンパクを除き、冷エタノールで沈澱させた後、50μl
のTE緩衝液(10mM Tris−HC1、pH8.0、1mM EDTA)に溶
解した。この溶液の50ngの相当量にHV1又はHV3の二重鎖
DNAを含む10μl(66mM Tris・C1、pH7.5、5mM MgCl2
5mM DTT、1mM ATP、T4 DNAリガーゼ300単位)を加え、1
6℃で一晩反応させて、プラスミドpUC18のEcoRIとHindI
IIとの間にHV1遺伝子が挿入されたプラスミドpUCHV1及
びHV3遺伝子が挿入されたプラスミドpUCHV3を得た。
Reference Example 1 Preparation of plasmid pUCHV1 and plasmid pUCHV3 Using 10 units of pUC18 and 30 units of EcoRI and 30 units of HindIII
Digested at 37 ° C for 2 hours. This was subjected to agarose gel electrophoresis to extract the vector portion, the protein was removed by phenol extraction and the precipitate was precipitated with cold ethanol.
Was dissolved in TE buffer (10 mM Tris-HC1, pH 8.0, 1 mM EDTA). Add 50 ng of this solution to the equivalent of HV1 or HV3 duplex
10 μl containing DNA (66 mM Tris C1, pH 7.5, 5 mM MgCl 2 ,
5 mM DTT, 1 mM ATP, T4 DNA ligase 300 units)
After overnight reaction at 6 ° C, EcoRI and HindI of plasmid pUC18 were used.
A plasmid pUCHV1 in which the HV1 gene was inserted between II and II, and a plasmid pUCHV3 in which the HV3 gene was inserted were obtained.

参考例2 プラスミドpMK2及びプラスミドpMT1の調製 (a)プラスミドpMK2の調製 市販のプラスミドpKK223−3(ファルマシア社製)を制
限酵素PvuI及びNruIで切断して得たtacプロモーターを
含むフラグメントと市販のpUC18を制限酵素PvuI及びPvu
IIで切断して得た複製開始点(Ori)及びアンピシリン
耐性遺伝子を含むフラグメントとをT4リガーゼにより接
合させた。これを大腸菌JM109株に導入して培養し、ア
ンピシリン耐性によりスクリーニングして、tacプロモ
ーターとpUC18の複製開始点(Ori)とを有するベクター
を得た。このプラスミドをpMK2とした。
Reference Example 2 Preparation of plasmid pMK2 and plasmid pMT1 (a) Preparation of plasmid pMK2 Commercially available plasmid pKK223-3 (Pharmacia) was digested with restriction enzymes PvuI and NruI to obtain a fragment containing the tac promoter and commercially available pUC18. Restriction enzymes PvuI and Pvu
The replication origin (Ori) obtained by cutting with II and a fragment containing the ampicillin resistance gene were ligated with T4 ligase. This was introduced into Escherichia coli JM109 strain, cultured, and screened for ampicillin resistance to obtain a vector having the tac promoter and the replication origin (Ori) of pUC18. This plasmid was designated as pMK2.

(b)プラスミドpMT1の調製 このプラスミドpMK2 10μgを30単位のEcoRI及びEco47I
IIで消化し、tacプロモーターを含む断片を除去し、複
製開始点を含む断片をアガロースゲル電子泳動によって
回収した。一方、trpプロモーターの塩基配列をDNA合成
機で合成した。この断片と前記pMK2とをEcoRI及びEco47
IIIで消化した断片をT4DNAリガーゼにより16℃で一晩反
応させた。これを用いて大腸菌JM109株を形質転換し、t
rpプロモーターとpMK2の複製開始点(Ori)とを有する
ベクターを調製した。このプラスミドの塩基配列はサン
ガー等の方法で確認し、pMT1とした。
(B) Preparation of plasmid pMT1 10 μg of this plasmid pMK2 was added to 30 units of EcoRI and Eco47I.
After digestion with II, the fragment containing the tac promoter was removed, and the fragment containing the replication origin was recovered by agarose gel electrophoresis. On the other hand, the base sequence of the trp promoter was synthesized by a DNA synthesizer. This fragment and the pMK2 were paired with EcoRI and Eco47.
The fragment digested with III was reacted with T4 DNA ligase at 16 ° C. overnight. This was used to transform E. coli JM109 strain and
A vector having an rp promoter and an origin of replication (Ori) of pMK2 was prepared. The nucleotide sequence of this plasmid was confirmed by the method of Sanger etc. and designated as pMT1.

本発明の実施例を示し、本発明を具体的に説明する。The present invention will be specifically described by showing Examples of the present invention.

実施例1 (1)ヒルジンHV1分泌プラスミドpMTSHV1の作製 プラスミドpMTSHV1は第3図に示した方法に従って構築
した。まず、大腸菌のアルカリホスファターゼ(phoA)
のシグナルペプチドとヒルジンHV1のN末端アミノ酸Val
1−Val2に対応するDNA断片を構築するために、第2図に
示す4種のオリゴヌクレオチドを合成した。脱保護した
のち、10%ポリアクリルアミドゲル電気泳動により各オ
リゴヌクレオチドを精製した。
Example 1 (1) Preparation of hirudin HV1 secretion plasmid pMTSHV1 The plasmid pMTSHV1 was constructed according to the method shown in FIG. First, E. coli alkaline phosphatase (phoA)
Signal peptide of N-terminal amino acid Val of hirudin HV1
To construct a DNA fragment corresponding to 1 -Val 2, it was synthesized four oligonucleotides shown in Figure 2. After deprotection, each oligonucleotide was purified by 10% polyacrylamide gel electrophoresis.

2種のオリゴヌクレオチド(S2,S4)各500pmolをリン酸
化後、4種のオリゴヌクレオチド各20pmolを混合し、ア
ニールした。これにT4DNAリガーゼを含む溶液20μl
中、16℃で一晩反応させた。フェノール、クロロホルム
でタンパクを除き、冷エタノールで沈澱させ目的とする
二重鎖DNA断片を得た。この断片10分の1量と制限酵素E
coRIとAccIとで切断したpUCHV1(特願平1−207200)10
0ngとをT4DNAリガーゼにより、16℃で一晩反応させた。
これを用いて大腸菌JM109株を形質転換し、phoAシグナ
ルペプチドをコードする領域の直後にヒルジンHV1をコ
ードするDNA断片が結合した融合遺伝子を含むハイブリ
ッドプラスミドpSHV1を得た。このプラスミドpSHV1の塩
基配列はサンガー等の方法で確認した。
After phosphorylating 500 pmol of each of two kinds of oligonucleotides (S2, S4), 20 pmol of each of four kinds of oligonucleotides were mixed and annealed. 20 μl of a solution containing T 4 DNA ligase
The reaction was carried out at 16 ° C. overnight. The protein was removed with phenol and chloroform, followed by precipitation with cold ethanol to obtain the desired double-stranded DNA fragment. 1/10 amount of this fragment and restriction enzyme E
pUCHV1 (patent application 1-207200) cut with coRI and AccI 10
0 ng was reacted with T 4 DNA ligase at 16 ° C. overnight.
Using this, Escherichia coli JM109 strain was transformed to obtain a hybrid plasmid pSHV1 containing a fusion gene in which a DNA fragment encoding hirudin HV1 was linked immediately after the region encoding the phoA signal peptide. The nucleotide sequence of this plasmid pSHV1 was confirmed by the method of Sanger et al.

このpSHV1(10μg)を制限酵素EcoRI 30単位、HirdIII
30単位を用いて分解し、アガロースゲル電気泳動に供し
て、275bpの融合遺伝子断片を精製した。
Use this pSHV1 (10 μg) with 30 units of restriction enzyme EcoRI, HirdIII
It was digested with 30 units and subjected to agarose gel electrophoresis to purify the 275 bp fusion gene fragment.

このDNA断片100ngと大腸菌発現ベクターpMT1(特願平1
−212442)を制限酵素EcoRIとHindIIIとで分解したの
ち、アガロースゲル電気泳動によって精製したDNA断片1
00ngをT4DNAリガーゼにより16℃で一晩反応させた。こ
の反応液を用いて大腸菌JM109株を形質転換し、trpプロ
モーターの下流にphoAシグナルペプチドとヒルジンHV1
をコードする融合遺伝子が連結したヒルジンHV1分泌プ
ラスミドpMTSHV1を得た。このプラスミドpMTSHV1の塩基
配列はサンガー等の方法で確認した。
100 ng of this DNA fragment and E. coli expression vector pMT1 (Japanese Patent Application No.
-212442) was digested with restriction enzymes EcoRI and HindIII, and then purified by agarose gel electrophoresis.
00 ng was reacted with T 4 DNA ligase at 16 ° C. overnight. Escherichia coli JM109 strain was transformed with this reaction solution, and the phoA signal peptide and hirudin HV1 were placed downstream of the trp promoter.
A hirudin HV1 secretion plasmid pMTSHV1 ligated with a fusion gene coding for p. The nucleotide sequence of this plasmid pMTSHV1 was confirmed by a method such as Sanger.

(2)ヒルジンHV1分泌プラスミドpMKSHV1の作製 プラスミドpMKSHV1は第4図に示した方法に従って構築
した。
(2) Preparation of hirudin HV1 secretion plasmid pMKSHV1 The plasmid pMKSHV1 was constructed according to the method shown in FIG.

上記のphoAシグナルペプチドとヒルジンHV1をコードす
る融合遺伝子と大腸菌発現ベクターpMK2(特願平1−21
2442)を制限酵素EcoRIとHindIIIとで分解したDNA断片
をT4DNAリガーゼで反応させ、大腸菌JM109株を形質転換
し、tacプロモーターの下流に融合遺伝子が連結したヒ
ルジンHV1分泌プラスミドpMKSHV1を得た。このプラスミ
ドpMKSHV1の塩基配列はサンガー等の方法で確認した。
A fusion gene encoding the above-mentioned phoA signal peptide and hirudin HV1 and the E. coli expression vector pMK2 (Japanese Patent Application No. 1-21
2442) was digested with restriction enzymes EcoRI and HindIII and reacted with T 4 DNA ligase to transform Escherichia coli JM109 strain to obtain hirudin HV1 secretion plasmid pMKSHV1 in which the fusion gene was ligated to the downstream of tac promoter. The nucleotide sequence of this plasmid pMKSHV1 was confirmed by the method of Sanger, etc.

(3)ヒルジンHV1分泌プラスミドによるヒルジンの分
泌生産 上記(1)及び(2)で構築したプラスミドpMTSHV1及
びpMKSHV1により形質転換された大腸菌E.coli JM109株
を100μg/mlのアンピシリンを含む2xYT培地(バクトト
リプトン16g/l、バクトイーストエキストラクト10g/l,N
aCl5g/l)で培養した。37℃で24時間培養後、培養液1ml
を集菌した。
(3) Secretion production of hirudin by hirudin HV1 secretory plasmid Escherichia coli E. coli JM109 strain transformed with the plasmids pMTSHV1 and pMKSHV1 constructed in (1) and (2) above was used in 2xYT medium containing 100 μg / ml of ampicillin (Bacto. Tryptone 16g / l, Bacto yeast extract 10g / l, N
aCl5g / l). After culturing at 37 ℃ for 24 hours, 1 ml of culture solution
Was collected.

沈澱した細胞の各サンプルを1mlの25%シュークロー
ス、50mMTris−HCl(pH7.5)、1mM EDTAに懸濁し、室温
にて10分間処理した。6000×gにて10分間の遠心分離に
より集菌したのち、細胞を1mlの冷水に懸濁し、浸透圧
ショックをかけて、細胞のペリプラズム空間中の物質を
放出させた。6000×gにて10分間の遠心によりペリプラ
ズム画分から細胞を除去し、上清中の抗トロンビン活性
を測定することにより、ヒルジンの分泌蓄積量を測定し
た。抗トロンビン活性は、トロンビンに対する合成基質
クロモザイムTH(トシルグリシルプロリルアルギニン4
−ニトロアニリドアセテート、ベーリンガーマンハイム
社製)水解活性の阻害度を比色定量試験により測定し
た。
Each sample of the precipitated cells was suspended in 1 ml of 25% sucrose, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA and treated at room temperature for 10 minutes. After collecting the cells by centrifugation at 6000 × g for 10 minutes, the cells were suspended in 1 ml of cold water and subjected to osmotic shock to release the substance in the periplasmic space of the cells. The cells were removed from the periplasmic fraction by centrifugation at 6000 × g for 10 minutes, and the antithrombin activity in the supernatant was measured to measure the amount of hirudin secretory accumulation. Antithrombin activity is a synthetic substrate for thrombin, chromozyme TH (tosylglycylprolyl arginine 4
-Nitroanilide acetate, manufactured by Boehringer Mannheim) The degree of inhibition of hydrolytic activity was measured by a colorimetric test.

該反応は、1mlの反応容量において、100mMTris・HCl(p
H8.5)、150mM NaCl、0.1%ポリエチレングリコール600
0からなる緩衝液に0.36Uのヒト−トロンビン(シグマ社
製)を加え、標準ヒルジン又は未知のサンプルをこのト
ロンビン反応混合物に添加し、37℃で3分間プレインキ
ュベートした。
The reaction was carried out with 100 mM Tris.HCl (p
H8.5), 150 mM NaCl, 0.1% polyethylene glycol 600
0.36 U of human thrombin (manufactured by Sigma) was added to the buffer consisting of 0, standard hirudin or an unknown sample was added to this thrombin reaction mixture, and pre-incubated at 37 ° C for 3 minutes.

終濃度200μMとなるように基質クロモザイムTHを加
え、P−ニトロアニリドの遊離を波長405nmで測定し、
1分間あたりの吸収の増加を求め、抗トロンビン活性
(ATU)を測定した。
Substrate chromozyme TH was added to a final concentration of 200 μM, and the release of P-nitroanilide was measured at a wavelength of 405 nm.
The increase in absorption per minute was determined and the antithrombin activity (ATU) was measured.

その結果、プラスミドpMTSHV1を有する株では培地1mlあ
たり450ATUの抗トロンビン活性が認められた。プラスミ
ドpMKSHV1を有する株では培地1mlあたり360ATUの抗トロ
ンビン活性が認められた。また、プラスミドpMTSHV1をH
anahan等の形質転換法により、種々の大腸菌JM101,JM10
3,JM109,TG1,HB101,JA221,IF03301,C600,RR1,DH5に導入
し、分泌生産の検討を行なった結果を第1表に示した。
As a result, an antithrombin activity of 450 ATU per ml of the medium was observed in the strain having the plasmid pMTSHV1. In the strain containing the plasmid pMKSHV1, 360 ATU of antithrombin activity was observed per 1 ml of medium. In addition, the plasmid pMTSHV1
Various transformations of E. coli JM101 and JM10 were carried out by transformation methods such as anahan.
Table 1 shows the results of investigation into secretory production after introduction into 3, JM109, TG1, HB101, JA221, IF03301, C600, RR1, DH5.

宿主としてRR1を用いた場合、約2000ATU/mlのHV1が分泌
生産された。
When RR1 was used as a host, about 2000 ATU / ml of HV1 was secreted and produced.

(4)5l発酵槽中での形質転換株E.coli JM109/pMTSHV1
の発酵及び培養液へのヒルジンHV1の分泌 上記(3)に記載した方法と同様にして、5lの発酵槽に
おいて、2lの2%グルコースを含む2xYT培地中でプラス
ミドpMTSHV1で形質変換されたE.coli JM109菌株(E.col
i JM109/pMTSHV1)を、37℃、24時間通気撹拌培養を行
なったところ、培養液中に1mlあたり約5300ATUのヒルジ
ンの分泌生産が認められた。
(4) E. coli JM109 / pMTSHV1 transformant in a 5 l fermenter
Fermentation and secretion of hirudin HV1 into the culture broth in the same manner as described in (3) above, in a 5 l fermenter transformed with the plasmid pMTSHV1 in 2 l of 2xYT medium containing 2% glucose. coli JM109 strain ( E.col
i JM109 / pMTSHV1) was subjected to aeration and stirring culture at 37 ° C for 24 hours, and about 5300 ATU per ml of hirudin was secreted and produced in the culture.

(5)培養液からのヒルジンHV1の精製法 発酵の後培養液1.5lを収得し、そして遠心分離(6000×
g、10分間)して上清から細胞を分離した。上清の塩濃
度を塩分計で測定したところ、1.3%であったので、こ
れを10mMリン酸カリウム緩衝液(pH7.0)で4倍希釈
し、3.2μmフィルター(ポール社製)を通して濾過し
た。得られた濾液を10mMリン酸カリウム緩衝液(pH7.
0)で平衡化させたQAE−トヨパールカラム(4.4×7cm)
にかけた。適用後、平衡化緩衝液で洗浄後、0.2M NaCl
でヒルジンHV1を段階溶出させた。溶出液をアミコンの
ダイアフローメンブレン(YM5)を用いて濃縮し、10mM
リン酸カリウム緩衝液(pH7.0)で平衡化したセファク
リルS−100のカラムでゲル濾過した。
(5) Purification method of hirudin HV1 from the culture medium After the fermentation, 1.5 l of the culture medium was collected and centrifuged (6000 ×
cells for 10 minutes) to separate the cells from the supernatant. When the salt concentration of the supernatant was measured by a salinometer, it was 1.3%, so this was diluted 4 times with 10 mM potassium phosphate buffer (pH 7.0) and filtered through a 3.2 μm filter (manufactured by Pall). . The obtained filtrate was added with 10 mM potassium phosphate buffer (pH 7.
0) Equilibrated with QAE-Toyopearl column (4.4 x 7 cm)
I went to After application, wash with equilibration buffer and then 0.2M NaCl
Hirudin HV1 was eluted stepwise. Concentrate the eluate using Amicon Diaflow membrane (YM5) to obtain 10 mM
Gel filtration was carried out on a column of Sephacryl S-100 equilibrated with a potassium phosphate buffer (pH 7.0).

活性画分をさらに10mMリン酸カリウム緩衝液(pH7.0)
で平衡化したDEAE−トヨパールカラム(4.4×40cm)に
添加し十分洗浄後、3lの平衡化緩衝液および3lの塩化ナ
トリウム中の0.3Mの平衡化緩衝液の直線の勾配で溶離し
た。最後にウォーターズのデルタプレップ3000によるC4
逆相HPLCカラムでの精製を行なった。カラムを0.065%
(v/v)トリフルオロ酢酸及び15〜30%(v/v)アセトニ
トリルの直線グラジェントによりカラムからヒルジンを
溶出させた。
Active fraction is further added with 10 mM potassium phosphate buffer (pH 7.0)
Was added to a DEAE-Toyopearl column (4.4 x 40 cm) equilibrated with and washed thoroughly, then eluted with a linear gradient of 3 l of equilibration buffer and 3 l of 0.3 M equilibration buffer in sodium chloride. Finally, C 4 due to the Waters Delta Prep 3000
Purification was carried out on a reverse phase HPLC column. Column is 0.065%
Hirudin was eluted from the column with a linear gradient of (v / v) trifluoroacetic acid and 15-30% (v / v) acetonitrile.

精製されたヒルジンHV1のアミノ酸組成及びN末端アミ
ノ酸配列を調べたところ、アミノ酸組成値は第2表に示
すように天然型HV1の値を示し、N末端配列は第3表に
示すようにVal−Val−Tyrであり、phoAシグナルペプチ
ドが正しく切断されていることがわかった。抗トロンビ
ン活性を測定した結果、9600ATU/mgであった。
When the amino acid composition and N-terminal amino acid sequence of the purified hirudin HV1 were examined, the amino acid composition value showed the value of natural HV1 as shown in Table 2 and the N-terminal sequence was Val- as shown in Table 3. It was Val-Tyr, and it was found that the phoA signal peptide was correctly cleaved. As a result of measuring the antithrombin activity, it was 9600 ATU / mg.

(6)キメラヒルジンHV1C3分泌プラスミドpMTSHV1C3の
作製 プラスミドpMTSHV1C3は第5図に示す方法に従って構築
した。ヒルジンHV1のアミノ酸残基53位以降のアミノ酸
配列をHV3の配列に置換するために、HV1分泌プラスミド
pMTSHV1(10μg)を制限酵素KpnI30単位、HindIII30単
位を用いて分解し、アガロースゲル電気泳動に供して、
2.8KbpのDNA断片を精製した。
(6) Preparation of chimeric hirudin HV1C3 secretion plasmid pMTSHV1C3 The plasmid pMTSHV1C3 was constructed according to the method shown in FIG. To replace the amino acid sequence of amino acid residue 53 of hirudin HV1 with the sequence of HV3, HV1 secretion plasmid
pMTSHV1 (10 μg) was digested with KpnI30 units and HindIII30 units of restriction enzymes and subjected to agarose gel electrophoresis,
A 2.8 Kbp DNA fragment was purified.

またプラスミドpUCHV3(特願昭1−207200)10μgも同
様に、KpnIとHindIIIで分解し、HV3のC末端のアミノ酸
配列を有する80bpのDNA断片を精製した。
Similarly, 10 μg of plasmid pUCHV3 (Japanese Patent Application No. 1-207200) was digested with KpnI and HindIII to purify an 80 bp DNA fragment having the C-terminal amino acid sequence of HV3.

両者のDNA断片100ngをT4DNAリガーゼにより16℃で一晩
反応させ、この反応液を用いて大腸菌JM109株を形質転
換し、キメラヒルジンHV1C3分泌プラスミドpMTSHV1C3を
得た。このプラスミドpMTSHV1C3の塩基配列はサンガー
等の方法で確認した。
100 ng of both DNA fragments were reacted with T 4 DNA ligase at 16 ° C. overnight, and Escherichia coli JM109 strain was transformed with this reaction solution to obtain chimeric hirudin HV1C3 secretion plasmid pMTSHV1C3. The nucleotide sequence of this plasmid pMTSHV1C3 was confirmed by a method such as Sanger.

(7)キメラヒルジンHV1C3分泌プラスミドによるキメ
ラヒルジンの分泌生産 上記(6)で構築したプラスミドpMTSHV1C3により形質
転換された大腸菌E.coli RR−1株(E.coli RR−1/pMTS
HV1C3として微生物工業技術研究所に寄託、微工研条寄
第3130号)を100μg/mlのアンピシリンを含む2xYT培地
で培養した。37℃で24時間培養後、培養液1mlを集菌
し、細胞に浸透圧ショックを与え、ペリプラズム画分の
抗トロンビン活性を測定した。
(7) Secretory production of chimeric hirudin by chimeric hirudin HV1C3 secretion plasmid E. coli E. coli RR-1 strain transformed with the plasmid pMTSHV1C3 constructed in (6) above ( E.coli RR-1 / pMTS
HV1C3 was deposited with the Institute of Microbial Science and Technology, and Microtechnology Research Institute No. 3130) was cultured in 2xYT medium containing 100 µg / ml ampicillin. After culturing at 37 ° C. for 24 hours, 1 ml of the culture solution was collected, osmotic shock was applied to the cells, and the antithrombin activity of the periplasm fraction was measured.

その結果、培地1mlあたり3060ATUの抗トロンビン活性が
認められた。
As a result, 3060 ATU of antithrombin activity was observed per 1 ml of the medium.

(8)5l発酵槽中での形質転換株E.coli JM109/pMTSHV1
C3の発酵及び培養液へのキメラヒルジンの分泌 プラスミドpMTSHV1C3により形質転換された大腸菌E.col
i JM109株(E.coli JM109/pMTSHV1C3として微生物工業
技術研究所に寄託、微工研条寄第3104号)を5lの発酵槽
において、2lの2%グルコースを含む2xYT培地中で37
℃、24時間通気撹拌培養を行なったところ、ペリプラズ
ム中に350ATU/ml、培養液中に5700ATU/ml、あわせて605
0ATU/mlの抗トロンビン活性が認められた。
(8) E. coli JM109 / pMTSHV1 transformant in a 5 l fermenter
Fermentation of C3 and secretion of chimeric hirudin into culture medium Escherichia coli E. col transformed with plasmid pMTSHV1C3
i JM109 strain ( E.coli JM109 / pMTSHV1C3 deposited at the Institute of Microbial Science and Technology, Microtechnology Research Institute No. 3104) in a 5 l fermenter in 2 x YT medium containing 2 l of 2% glucose 37
After agitating and culturing for 24 hours at ℃, 350 ATU / ml in the periplasm, 5700 ATU / ml in the culture broth, totaling 605
An antithrombin activity of 0 ATU / ml was observed.

(9)キメラヒルジンの精製 上記(8)で得られた培養液から上記(5)に従って精
製した。精製されたキメラヒルジンHV1C3のアミノ酸組
成を調べたところ、式1に示すようにC末端アミノ酸配
列が変化していることが確認された。比活性は11,250AT
U/mgであった。第6図に精製したHV1及びHV1C3のHPLC p
rofileを示した。この条件は、VYDAC C4(0.37×25cm)
のカラムを使用し、15〜30%アセトニトリルを用いて1m
l/minの速度で30分間linear gradientを行ったものであ
る。
(9) Purification of chimeric hirudin Purified from the culture solution obtained in (8) above according to (5) above. When the amino acid composition of the purified chimeric hirudin HV1C3 was examined, it was confirmed that the C-terminal amino acid sequence was changed as shown in Formula 1. Specific activity 11,250AT
It was U / mg. Figure 6 shows the HPLC p of purified HV1 and HV1C3.
showed rofile. This condition is VYDAC C4 (0.37 × 25cm)
Column using 15-30% acetonitrile.
A linear gradient was performed at a speed of l / min for 30 minutes.

実施例2 トロンビン誘発致死反応に対するヒルジンの阻害作用 雄性マウス(20〜25g)に無麻酔下でトロンビン(10NIH
ユニット/10g)を静注し、正向反射の消失及び致死を指
標として、被験化合物の抗トロンビン作用を評価した。
尚、被験化合物は、全て生理食塩水に溶解し、トロンビ
ン投与5分前に0.05ml/10gの用量で静注した。結果を第
4表に示す。
Example 2 Inhibitory Effect of Hirudin on Thrombin-Induced Lethal Reaction Male mice (20 to 25 g) were anesthetized with thrombin (10 NIH).
Unit / 10 g) was intravenously injected, and the antithrombin effect of the test compound was evaluated using the disappearance of the righting reflex and lethality as indexes.
All test compounds were dissolved in physiological saline and intravenously injected at a dose of 0.05 ml / 10 g 5 minutes before the administration of thrombin. The results are shown in Table 4.

結果から明らかなように本発明のキメラヒルジンHV1C3
は、in vivoにおけるトロンビン誘発致死反応におい
て、ヒルジンHV1に比べて約4〜5倍の強い阻害効果を
示した。ヒルジンHV3と比べるとほぼ同程度の阻害効果
であった。
As is clear from the results, the chimeric hirudin HV1C3 of the present invention
Showed a strong inhibitory effect about 4 to 5 times higher than hirudin HV1 in the thrombin-induced lethal reaction in vivo. The inhibitory effect was similar to that of hirudin HV3.

実施例3 出血時間の延長作用 雄性マウス(20〜25g)を用いてペントバルビタール(4
0mg/kg,i.p.)麻酔下に尾静脈より被験化合物を投与
し、その5分後に化合物投与の反応側の尾静脈に21G注
射針(外径0.85ミリ)を挿入して作製した傷口の出血時
間を測定した。
Example 3 Effect of prolonging bleeding time Using male mice (20 to 25 g), pentobarbital (4
(0 mg / kg, ip) A test compound was administered through the tail vein under anesthesia, and 5 minutes after that, a bleeding time at the wound was created by inserting a 21G injection needle (outer diameter 0.85 mm) into the tail vein on the reaction side of the compound administration. Was measured.

出血時間は、15秒毎に傷口を濾紙で拭い、濾紙上に血液
斑が確認されなくなった時点とした。結果を第5表に示
す。
The bleeding time was the time when the wound was wiped with a filter paper every 15 seconds and no blood spots were observed on the filter paper. The results are shown in Table 5.

一般的に、抗血液凝固剤の副作用としては出血時間の延
長作用があげられる。ところが、本発明のキメラヒルジ
ンHV1C3は、ヒルジンHV1及びヒルジンHV3に比べて明ら
かに出血傾向が低いことが確認された。
In general, the side effect of anticoagulants includes the action of extending bleeding time. However, it was confirmed that the chimeric hirudin HV1C3 of the present invention had a significantly lower bleeding tendency than hirudin HV1 and hirudin HV3.

実施例4 キメラヒルジンHV1C3を含有する製剤 実施例1(9)で得た精製キメラヒルジンHV1C3をセフ
ァデックスG25(ファルマシア製)により脱塩し、つい
で0.22μmのフィルターにより無菌濾過した。この溶液
をバイアルに分注し凍結乾燥した。こうして得られたキ
メラヒルジンHV1C3の凍結乾燥粉末を生理食塩水で溶解
することにより、注射剤として使用することができる。
Example 4 Preparation containing chimeric hirudin HV1C3 The purified chimeric hirudin HV1C3 obtained in Example 1 (9) was desalted with Sephadex G25 (Pharmacia) and then sterile filtered with a 0.22 μm filter. This solution was dispensed into a vial and freeze-dried. The lyophilized powder of chimeric hirudin HV1C3 thus obtained can be dissolved in physiological saline to be used as an injection.

〔発明の効果〕〔The invention's effect〕

本発明のヒルジン変異体は、ヒルジンHV1にくらべて抗
トロンビン作用が強く、しかも出血傾向が低いことから
抗血液凝固剤として有用である。
The hirudin mutant of the present invention has a stronger antithrombin action than hirudin HV1 and has a lower bleeding tendency, and is therefore useful as an anticoagulant.

また、本発明のヒルジン変異体は、遺伝子工学的手法に
よって生産されるので大量に経済的に生産することがで
きる。
In addition, the hirudin mutant of the present invention can be produced economically in large quantities because it is produced by a genetic engineering technique.

【図面の簡単な説明】[Brief description of drawings]

第1図は、ヒルジンの自然変異体HV1,HV2及びHV3のアミ
ノ酸配列を示し、第2図は、本発明において使用できる
phoAシグナルベブチドの塩基配列を示す。 第3図はヒルジンHV1分泌プラスミドpMTSHV1の構築方法
の概念図を、第4図は、pMKSHV1の構築方法の概念図を
それぞれ示す。 第5図は、本発明のヒルジン変異体(HV1C3)を分泌プ
ラスミドの構築方法の概念図を示す。 第6図(a)は精製ヒルジンHV1の逆相HPLCのクロマト
グラムを、第6図(b)は本発明の精製HV1C3の逆相HPL
Cのクロマトグラムをそれぞれ示す。
FIG. 1 shows the amino acid sequences of HV1, HV2 and HV3 natural mutants of hirudin, and FIG. 2 can be used in the present invention.
The base sequence of phoA signal bebtide is shown. FIG. 3 shows a conceptual diagram of the construction method of the hirudin HV1 secretion plasmid pMTSHV1, and FIG. 4 shows a conceptual diagram of the construction method of pMKSHV1. FIG. 5 shows a conceptual diagram of a method for constructing a secretion plasmid of the hirudin mutant (HV1C3) of the present invention. FIG. 6 (a) is a reverse phase HPLC chromatogram of purified hirudin HV1, and FIG. 6 (b) is a reverse phase HPL of purified HV1C3 of the present invention.
Chromatograms of C are shown respectively.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12N 15/09 ZNA C12P 21/02 C 9282−4B //(C12P 21/02 C12R 1:19) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C12N 15/09 ZNA C12P 21/02 C 9282-4B // (C12P 21/02 C12R 1:19)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】下記のアミノ酸配列を有するヒルジン変異
1. A hirudin mutant having the following amino acid sequence:
【請求項2】(式I)のアミノ酸配列を有するポリペプ
チドをコードするDNA配列
2. A DNA sequence encoding a polypeptide having the amino acid sequence of formula (I).
【請求項3】(式I)のアミノ酸配列を有するポリペプ
チドをコードするDNA配列を含む発現ベクターを用いて
大腸菌を形質転換してなる形質転換微生物
3. A transformed microorganism obtained by transforming Escherichia coli with an expression vector containing a DNA sequence encoding a polypeptide having the amino acid sequence of formula (I).
【請求項4】請求項(3)に記載の形質転換微生物を培
養し、(式I)で示されるヒルジン変異体を発現させ、
これを回収することを特徴とする(式I)記載のヒルジ
ン変異体の製造法
4. A transformed microorganism according to claim 3 is cultured to express the hirudin mutant represented by the formula (I),
A method for producing the hirudin mutant according to (formula I), which comprises recovering this
【請求項5】(式I)記載のヒルジン変異体を有効成分
とする抗凝血剤
5. An anticoagulant comprising the hirudin mutant according to (formula I) as an active ingredient.
JP2303096A 1990-11-08 1990-11-08 Hirudin mutant, its production method and anticoagulant Expired - Fee Related JPH07119237B2 (en)

Priority Applications (23)

Application Number Priority Date Filing Date Title
JP2303096A JPH07119237B2 (en) 1990-11-08 1990-11-08 Hirudin mutant, its production method and anticoagulant
AT91919149T ATE140929T1 (en) 1990-11-08 1991-11-08 HIRUDINMUTANT, PRODUCTION THEREOF, ANTICOAGULANT, SECRETORY VECTOR, MICRO-ORGANISM TRANSFORMED BY SAID VECTOR AND PRODUCTION OF A PRODUCT BY SAID MICRO-ORGANISM
DK95202092T DK0687731T3 (en) 1990-11-08 1991-11-08 Secretion vector, transformed microorganisms containing the vector and production of products from this microorganism
PCT/JP1991/001533 WO1992008736A1 (en) 1990-11-08 1991-11-08 Hirudine mutant, production thereof, anticoagulant, secretory vector, microorganism transformed by said vector, and production of product from said microorganism
CA002072375A CA2072375C (en) 1990-11-08 1991-11-08 Hirudin analog, method of manufacturing thereof and anti-coagulant composition, and secretion vector, transformed microorganisms containing saidvector and manufacturing method of products which is produced from said microorganism
CA002255396A CA2255396A1 (en) 1990-11-08 1991-11-08 Hirudin analog, method of manufacturing thereof and anti-coagulant composition, and secretion vector, transformed microorganisms containing said vector and manufacturing method ofproducts which is produced from said microorganism
AT95202092T ATE176500T1 (en) 1990-11-08 1991-11-08 SECRETION VECTOR, TRANSFORMED MICROORGANISMS CONTAINED AND PRODUCTION OF PRODUCTS BY THE ABOVE MICROORGANISM
DE69121192T DE69121192T2 (en) 1990-11-08 1991-11-08 HIRUDINE MUTANTE, THEIR PRODUCTION, ANTICOAGULANS, SECRETORIC VECTOR, MICROORGANISM TRANSFORMED BY SAYING VECTOR AND PRODUCTION OF A PRODUCT BY SAYING THAT MICROORGANISM
EP91919149A EP0511393B1 (en) 1990-11-08 1991-11-08 Hirudine mutant, production thereof, anticoagulant, secretory vector, microorganism transformed by said vector, and production of product from said microorganism
DE69130872T DE69130872T2 (en) 1990-11-08 1991-11-08 Secretion vector, this contains transformed microorganisms and production of products by the above microorganism
ES91919149T ES2093717T3 (en) 1990-11-08 1991-11-08 MUTANT OF HIRUDINE, ITS PRODUCTION, ANTICOAGULANT, VECTOR SECRETOR, MICROORGANISM TRANSFORMED BY THE INDICATED VECTOR AND PRODUCTION OF A PRODUCT FROM SUCH MICROORGANISM.
DK91919149.4T DK0511393T3 (en) 1990-11-08 1991-11-08 Hirudin mutant, preparation thereof, anticoagulant, secretory vector, microorganism transformed by the vector and preparation of product from the microorganism
AU88466/91A AU648124B2 (en) 1990-11-08 1991-11-08 Hirudine mutant, production thereof, anticoagulant, secretory vector, microorganism transformed by said vector, and production of product from said microorganism
EP95202092A EP0687731B1 (en) 1990-11-08 1991-11-08 Secretion vector, transformed microorganisms containing said vector and manufacture of products from said microorganism
ES95202092T ES2129749T3 (en) 1990-11-08 1991-11-08 SECTION VECTOR, TRANSFORMED MICROORGANISMS CONTAINING THE INDICATED VECTOR AND PRODUCTION OF A PRODUCT FROM SUCH A MICROORGANISM.
FI922963A FI107928B (en) 1990-11-08 1992-06-26 Secretory conveyor for the production of hirudin or hirudin analogue, modified micro-organisms containing the conveyor in question and process for the preparation of hirudin or hirudin analogue
NO922671A NO303735B1 (en) 1990-11-08 1992-07-07 Method of Preparation of a Hirudin Analog, as well as DNA Sequence, Secretion Vector and Transformed Microorganisms Containing the Vector
US07/910,528 US5516656A (en) 1990-11-08 1992-07-08 Production of a new hirudin analog and anticoagulant pharmaceutical composition containing the same
AU54701/94A AU673870B2 (en) 1990-11-08 1994-01-25 Hirudin mutant, production thereof, anticoagulant, secretory vector, and production of product from said microorganism
US08/348,972 US5573929A (en) 1990-11-08 1994-11-28 Secretion vector for hirudin or hirudin analog production
GR960402781T GR3021410T3 (en) 1990-11-08 1996-10-23 Hirudine mutant, production thereof, anticoagulant, secretory vector, microorganism transformed by said vector, and production of product from said microorganism
NO982207A NO982207D0 (en) 1990-11-08 1998-05-14 Foreign protein secretion vectors, transformed microorganisms and method for producing hirudins
GR990400915T GR3029824T3 (en) 1990-11-08 1999-03-30 Secretion vector, transformed microorganisms containing said vector and manufacture of products from said microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2303096A JPH07119237B2 (en) 1990-11-08 1990-11-08 Hirudin mutant, its production method and anticoagulant

Publications (2)

Publication Number Publication Date
JPH04173798A JPH04173798A (en) 1992-06-22
JPH07119237B2 true JPH07119237B2 (en) 1995-12-20

Family

ID=17916846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2303096A Expired - Fee Related JPH07119237B2 (en) 1990-11-08 1990-11-08 Hirudin mutant, its production method and anticoagulant

Country Status (1)

Country Link
JP (1) JPH07119237B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2124330A1 (en) * 1992-09-28 1994-04-14 Akiko Sukesada Novel hirudine variant, process for producing the same, and anticoagulant containing the same as active ingredient
US5972648A (en) * 1993-09-28 1999-10-26 Japan Energy Corporation Hirudin analogs, methods of manufacture thereof and anticoagulant compositions having these as active ingredients
DE19944870A1 (en) * 1999-09-18 2001-03-29 Aventis Pharma Gmbh Signal sequences for the production of Leu-hirudin via secretion by E. coli in the culture medium

Also Published As

Publication number Publication date
JPH04173798A (en) 1992-06-22

Similar Documents

Publication Publication Date Title
KR0139629B1 (en) Mini-proinsulin, its production and use thereof
KR100393508B1 (en) New hIL-4 Mutant Proteins as Antagonists or Partial Agonists of Human Interleukin 4
US5573929A (en) Secretion vector for hirudin or hirudin analog production
JPS6253999A (en) Insulin analogue
NZ243089A (en) PROINSULIN MOLECULES Met x -A-C-B, PRODUCTION OF RECOMBINANT PROINSULINS
KR960010949B1 (en) Pancreatic secretory trypsin inhibitor and its variants produced by genetic engineering
EP0432510B1 (en) Process for the preparation of genetic vectors for the nerve growth factor expression in eukaryotic cells
JPH05306297A (en) New hybrid transforming growth factor
US5432261A (en) Motlin-like polypeptide and use thereof
US7282481B2 (en) Heparin-binding proteins modified with sugar chains, method of producing the same and pharmaceutical compositions containing same
JPS63152987A (en) Variant of hirudin, its used and production
JP3352128B2 (en) Novel synthetic isohirudin with improved stability
EP0543240A1 (en) Polypeptide, DNA fragment encoding the same, drug composition containing the same and process for producing the same
JPH07119237B2 (en) Hirudin mutant, its production method and anticoagulant
AU685835B2 (en) High molecular weight desulphatohirudin
JP2798573B2 (en) Natural polypeptide having human neutrophil elastase inhibitory activity and pharmaceutical preparation containing the same
JP3226289B2 (en) Secretory vector, microorganism transformed with the vector, and method for producing product produced from the microorganism
US5316919A (en) Method of producing 2 KD to 10 KD peptides having no L-methionine residue
JP3534434B2 (en) Signal peptide for expression of thrombomodulins
RU2106408C1 (en) Analog of hirudine, dna, vector; method to obtain analog of hirudine
JPH03240800A (en) Growth hormone-like glucoprotein
JPS6312298A (en) Beta-urogastorone derivative, production thereof, dna base sequence coding said derivative, manifestation vector containing same and microorganism containing said vector
JPH07224100A (en) Novel thrombomodulines
JPH06340697A (en) New polypeptide, its production, dna capable of coding the same polypeptide, vector composed of the same dna, host cell transformed with the same vector, antibody against the same polypeptide and pharmaceutical composition containing the same polypeptide or antibody
PT100299B (en) A HIRUDIN ANALOGUE, A METHOD FOR PRODUCING AND ANTI-COAGULANT CONTAINING IT, AND SECRECEUM'S VECTOR, MICROORGANISMS TRANSFORMED WITH THE VECTOR REFERENCE AND METHOD FOR THE PRODUCTION OF PRODUCTS FROM THE REFERENCED MICROORGANISMS

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees