JPH07117471A - Cushioning member for door of automobile - Google Patents

Cushioning member for door of automobile

Info

Publication number
JPH07117471A
JPH07117471A JP5291544A JP29154493A JPH07117471A JP H07117471 A JPH07117471 A JP H07117471A JP 5291544 A JP5291544 A JP 5291544A JP 29154493 A JP29154493 A JP 29154493A JP H07117471 A JPH07117471 A JP H07117471A
Authority
JP
Japan
Prior art keywords
density
resin
cushioning material
styrene
energy absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5291544A
Other languages
Japanese (ja)
Inventor
Itsuo Hamada
逸男 浜田
Noboru Takeda
登 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5291544A priority Critical patent/JPH07117471A/en
Publication of JPH07117471A publication Critical patent/JPH07117471A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain a cushioning member for the door of an automobile, having good productivity, light weight, excellent in shock absorbing force, and also excellent in heat resistance under the high temperature and the high humidity. CONSTITUTION:In a cushioning member to be arranged on the back surface side of a door trim base member of a vehicle side part, the cushioning member is a beads foamed body made of styrene group heat resistant resin having the Vicat softening point of 108 deg.C or more, and the compression hysteresis loss of the foamed body is 60% or more and the density is 15 to 120kg/m<3>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車用ドアの緩衝材に
関する。更に詳しくは自動車ドア内部の側突防止材に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cushioning material for automobile doors. More specifically, the present invention relates to a side collision preventing material inside a vehicle door.

【0002】[0002]

【従来の技術】自動車ドア用の緩衝材としては、例えば
特開平4−339046号公報に記載されているよう
に、ドア本体のドアインナパネル面を被覆するドアトリ
ムの背面に、注入口を該ドアトリムの外側に配設した柔
軟性を有する袋体を予め固着配置し、該ドアトリムをド
アインナパネルに装着した後、前記注入口より袋体内に
発泡材(ウレタン樹脂)を充填して発泡させることによ
り、ドアトリムとドアインナパネルとに密接して緩衝材
を形成、この緩衝材によって乗員に加わる衝撃を緩和し
て乗員保護を図るようにしたものが知られている。
2. Description of the Related Art As a cushioning material for automobile doors, for example, as described in Japanese Patent Laid-Open No. 339046/1992, an injection port is provided on the back surface of a door trim that covers a door inner panel surface of a door body. By preliminarily fixing and arranging a flexible bag body disposed on the outer side of the door trim, attaching the door trim to the door inner panel, and then filling the inside of the bag body with a foam material (urethane resin) through the injection port to foam. It is known that a cushioning material is formed in close contact with the door trim and the door inner panel, and the cushioning material is used to reduce the impact on the occupant to protect the occupant.

【0003】また特開平5−65045号公報の記載に
は、ドアトリム基材の裏面に、硬質パッドと、この硬質
パッドと前記基材の裏面の形状に従って変形し前記基材
の裏面に密着する軟質パッドとを貼り合わせた緩衝材が
知られている。また最近に至っては無架橋PPの発泡体
の使用が試みられている(化学工業日報;1993年5
月27日付)。
Further, Japanese Patent Laid-Open No. 5-65045 describes a hard pad on the back surface of a door trim base material, and a soft pad which is deformed according to the shapes of the hard pad and the back surface of the base material and adheres to the back surface of the base material. A cushioning material that is bonded to a pad is known. Recently, the use of non-crosslinked PP foams has been tried (Chemical Industry Daily; 1993, 5).
(May 27th).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前者は
緩衝材(ウレタン樹脂発泡体)を形成するにあたり、予
め袋体を用意配設し、この袋体内に発泡材を充填して発
泡させるというように、特殊の加工法を必要とするため
非常に繁雑であり生産性が悪かった。またこの充填して
発泡するという方法では所定の密度にコントロールする
ことが難しく、衝撃吸収力の品質に不安があるため、密
度を必要以上に高く設定するために、重量化してしまう
という問題点があった。更には、高温高湿下に於ける耐
熱性についても寸法変化率が大きく、問題であった。
However, in the former, when forming a cushioning material (urethane resin foam), a bag is prepared in advance and the bag is filled with the foam material to foam. However, it required a special processing method, so it was very complicated and the productivity was poor. In addition, it is difficult to control the density to a predetermined level by the method of filling and foaming, and there is a concern about the quality of the impact absorbing power. Therefore, there is a problem that the weight is increased in order to set the density higher than necessary. there were. Furthermore, the heat resistance under high temperature and high humidity has a problem that the dimensional change rate is large.

【0005】また後者のPPの発泡体については衝撃吸
収エネルギーが小さいばかりか、高温の耐熱性に問題点
があった。即ち実用的な使用条件である高温高湿の状態
に、長時間暴露した場合、寸法変化が大きくドア用緩衝
材として不適であった。そこで、本発明は特殊の加工法
を必要としない生産性のよい、かつ軽量で衝撃吸収力に
優れ、更には、高温高湿下に於ける耐熱性についても、
寸法変化率が小さい自動車ドア用緩衝材を提供すること
を目的としている。
Further, the latter PP foam not only has small impact absorption energy, but also has a problem in high temperature heat resistance. That is, when exposed to a high temperature and high humidity condition which is a practical use condition for a long time, the dimensional change was large and it was unsuitable as a cushioning material for doors. Therefore, the present invention does not require a special processing method and has good productivity, and is lightweight and excellent in shock absorbing power. Furthermore, regarding the heat resistance under high temperature and high humidity,
An object of the present invention is to provide a cushioning material for automobile doors having a small dimensional change rate.

【0006】[0006]

【課題を解決するための手段】前記課題を解決した本発
明は、車両側部のドアトリム基材の裏面側に配置される
緩衝材において、当該緩衝材がビカット軟化点108℃
以上のスチレン系耐熱樹脂よりなるビーズ発泡成形体で
あって、その成形体の圧縮ヒステリシスロスが60%以
上、かつ密度が15〜120kg/cm3 であることを
特徴とする自動車ドア用緩衝材である。
According to the present invention, which has solved the above-mentioned problems, in a cushioning material arranged on the back side of a door trim base material on a vehicle side, the cushioning material has a Vicat softening point of 108 ° C.
A cushioning material for automobile doors, which is a foamed bead molding made of the above styrene-based heat-resistant resin, wherein the molding has a compression hysteresis loss of 60% or more and a density of 15 to 120 kg / cm 3. is there.

【0007】本発明においては、緩衝材がビカット軟化
点108℃以上のスチレン系耐熱樹脂よりなるビーズ発
泡成形体であることにより、ドアトリム基材の裏面側内
に任意の形で装着出来、かつ熱変形もなく十分に使用に
耐えうるものにすることに成功した。またその成形体の
圧縮ヒステリシスロスが60%以上、かつ密度が15〜
120kg/cm3 であることにより、側面からの衝突
時、乗員に加わる衝撃を緩和して乗員保護が図れたので
ある。
In the present invention, since the cushioning material is a bead foam molding made of a styrene-based heat-resistant resin having a Vicat softening point of 108 ° C. or higher, it can be mounted in an arbitrary shape on the back side of the door trim base material and can be heated. We have succeeded in making it usable enough without any deformation. The compacted body has a compression hysteresis loss of 60% or more and a density of 15 to
By being 120 kg / cm 3 , the impact applied to the occupant at the time of a side collision can be mitigated to protect the occupant.

【0008】以下、本発明の内容を図面等を用いて更に
詳述する。図1,2において、1はドアインナパネル3
とドアアウタパネル2とからなるドア本体、4は該ドア
本体1のドアインナパネル3面を被覆するドアトリム
で、該ドアトリム4の背面に本発明のドア用緩衝材5が
固着配置してある。
The contents of the present invention will be described in more detail below with reference to the drawings. 1 and 2, 1 is a door inner panel 3
A door body 4 composed of a door outer panel 2 and a door outer panel 2 is a door trim that covers the surface of the door inner panel 3 of the door body 1, and the door cushioning material 5 of the present invention is fixedly arranged on the back surface of the door trim 4.

【0009】本発明における必須条件は、ビカット軟化
点108℃以上のスチレン系耐熱樹脂よりなるビーズ発
泡成形体であって、かつ、その成形体の圧縮ヒステリシ
スロスが60%以上、密度が15〜120kg/m3
緩衝材を用いることである。ビカット軟化点108℃以
上のスチレン系耐熱樹脂よりなるビーズ発泡成形体を用
いる理由は、ビカット軟化点が108℃より低いと、自
動車に使用する場合は、その実用的な耐熱性を満足する
ことが出来ないからである。即ち本発明のドアトリムの
ような複雑な形状のものに配設使用した場合、使用中の
寸法変化率が大きくなると、使用部位から脱落したりし
て初期の目的を達成出来なくなってしまうからである。
一般的に、この寸法変化率がほぼ±0.5%以内にして
おく必要があるといわれている。
An essential condition in the present invention is a foamed bead molding made of a styrene-based heat-resistant resin having a Vicat softening point of 108 ° C. or more, and the molding has a compression hysteresis loss of 60% or more and a density of 15 to 120 kg. / M 3 of cushioning material is used. The reason for using a foamed bead made of a styrene-based heat-resistant resin having a Vicat softening point of 108 ° C. or higher is that when the Vicat softening point is lower than 108 ° C., the practical heat resistance is satisfied when used in an automobile. Because I can't. That is, when it is arranged and used in a complicated shape such as the door trim of the present invention, if the dimensional change rate during use becomes large, it may fall off from the use site and the initial purpose may not be achieved. .
It is generally said that this dimensional change rate must be kept within approximately ± 0.5%.

【0010】また、本発明の要件はビーズ発泡成形体を
用いることにある。前記したように、従来の欠点である
発泡体の形成、加工或いは装着の繁雑さがなくなり生産
性が良くなるとともに、密度斑の少ない設計どおりの緩
衝材が簡単に得られるからである。また、本発明ドア用
緩衝材のような複雑な形状の成形体も、ビーズ成形体本
来の製法の特徴によって任意に得ることが出来るからで
ある。
The requirement of the present invention is to use a bead foam molding. This is because, as described above, the conventional drawbacks such as the complexity of foam formation, processing, or mounting are eliminated, productivity is improved, and a cushioning material with less density unevenness as designed is easily obtained. Also, a molded product having a complicated shape such as the cushioning material for doors of the present invention can be arbitrarily obtained according to the characteristics of the original manufacturing method of the bead molded product.

【0011】また、本発明はその成形体の圧縮ヒステリ
シスロスが60%以上、密度が15〜120kg/m3
の緩衝材を用いることが必須要件である。その理由は圧
縮ヒステリシスロスが60%以下では、衝突時の人体の
衝撃エネルギーを吸収する能力が不十分であるからであ
る。圧縮ヒステリシスロスが小さい緩衝材、具体的には
前記したPP等のポリオレフィン樹脂のような弾性発泡
体のようなものでは、衝突時の衝撃エネルギーが加わっ
た場合変位は起こすものの、エネルギー吸収率が小さく
回復力が強いため、即ち圧縮ヒステリシスロスが小さい
ため、緩衝材の総エネルギー吸収量が小さくなり、衝突
後車内でまたほぼ同じ力で跳ね返されてしまうというこ
とが起こり、乗員への衝撃を緩和する能力が低いのであ
る。したがって、この圧縮ヒステリシスロスの値は大き
いほど良い。
According to the present invention, the molded product has a compression hysteresis loss of 60% or more and a density of 15 to 120 kg / m 3.
It is an essential requirement to use the cushioning material. The reason is that if the compression hysteresis loss is 60% or less, the ability to absorb the impact energy of the human body at the time of collision is insufficient. A cushioning material with a small compression hysteresis loss, specifically, an elastic foam such as the above-mentioned polyolefin resin such as PP, causes a displacement when the impact energy at the time of collision is applied, but has a small energy absorption rate. Since the recovery force is strong, that is, the compression hysteresis loss is small, the total energy absorption amount of the cushioning material becomes small, and it may be bounced back with almost the same force in the vehicle after the collision, and the impact on the occupant is mitigated. The ability is low. Therefore, the larger the value of this compression hysteresis loss, the better.

【0012】更に密度が15〜120kg/m3 の緩衝
材を用いるようにすることが要件である。密度が15k
g/m3 以下だとエネルギー吸収率が極めて小さくな
り、自動車ドア用緩衝材として使用するには実用的では
ないからである。即ちエネルギー吸収率が小さいと、衝
撃時の衝撃エネルギーを吸収するための緩衝材の総エネ
ルギー吸収量を合わせる為に、緩衝材を非常に厚く配設
する必要があり、ドアトリム内に収めるには不適当な厚
さとなるためである。逆に使用する面積を大きくして衝
撃エネルギーを吸収するという案も考えられるが、人体
が有する面積に関係するためにおのずと限度があるので
ある。
Further, it is a requirement to use a cushioning material having a density of 15 to 120 kg / m 3 . Density is 15k
If it is less than g / m 3 , the energy absorption rate becomes extremely small, and it is not practical to use it as a cushioning material for automobile doors. That is, if the energy absorption rate is small, it is necessary to dispose the cushioning material very thick in order to match the total energy absorption amount of the cushioning material for absorbing impact energy at the time of impact, and it is not possible to fit it in the door trim. This is because the thickness will be appropriate. On the contrary, it is possible to consider using a larger area to absorb impact energy, but this is naturally limited because it is related to the area of the human body.

【0013】また密度が120kg/m3 以上だとエネ
ルギー吸収率は大きくなるものの、自動車ドア用緩衝材
として使用するには実用的でなくなるのである。つまり
人体が衝突時に発生する衝撃エネルギーより緩衝材全体
の総エネルギー吸収量の設定値が大きすぎるため、衝突
時の変位が小さくなり高い衝撃値が発生し、人体を保護
するための十分な緩衝性が得られないからである。これ
らのことから発泡体密度は実用的には15〜120kg
/m3 が考えられるが、好ましくは20〜80kg/m
3 である。なお、成形体の密度分布値は5%以上が好ま
しい。
When the density is 120 kg / m 3 or more, the energy absorption rate increases, but it is not practical for use as a cushioning material for automobile doors. In other words, since the set value of the total energy absorption amount of the cushioning material is too large compared to the impact energy generated when the human body collides, the displacement at the time of collision becomes small and a high impact value is generated, which is a sufficient cushioning property to protect the human body. Because I can't get it. From these, the foam density is practically 15 to 120 kg.
/ M 3 is considered, but preferably 20 to 80 kg / m
Is 3 . The density distribution value of the molded product is preferably 5% or more.

【0014】本発明でいうスチレン系耐熱樹脂とは、ス
チレン系樹脂を基材樹脂とし、当該樹脂に耐熱性の樹脂
成分を公知の方法により共重合あるいは混合したものの
総称である。スチレン系モノマーと耐熱性のモノマー系
とを公知の方法で共重合した樹脂、例えばスチレン−ア
クリロニトリル系共重合体樹脂、またはスチレンと不飽
和カルボン酸系との共重合体樹脂、例えばスチレン−メ
タクリル酸系共重合体樹脂、スチレン−アクリル酸系共
重合体樹脂、スチレン−無水マレイン酸系共重合体樹脂
等であり、耐熱性のモノマー、コモノマーとの共重合樹
脂とであればよく特に限定されるものではない。またス
チレンの代わりにイソプロピルスチレン、パラメチルス
チレン、アルファメチルスチレン、ターシャリブチルス
チレン等であってもよい。
The styrene-based heat-resistant resin referred to in the present invention is a general term for a resin in which a styrene-based resin is used as a base resin and a heat-resistant resin component is copolymerized or mixed with the resin by a known method. A resin obtained by copolymerizing a styrene monomer and a heat resistant monomer system by a known method, for example, a styrene-acrylonitrile copolymer resin, or a copolymer resin of styrene and an unsaturated carboxylic acid system, for example, styrene-methacrylic acid. System copolymer resin, styrene-acrylic acid copolymer resin, styrene-maleic anhydride copolymer resin, etc., and heat-resistant monomer, copolymer resin with a comonomer may be used as long as it is not particularly limited. Not a thing. Further, instead of styrene, isopropyl styrene, paramethyl styrene, alpha methyl styrene, tertiary butyl styrene, etc. may be used.

【0015】また単独のスチレン系樹脂と単独の耐熱性
の樹脂との2成分以上の混合樹脂も含まれる。例えばス
チレン系樹脂とポリフェニレンエーテル樹脂との混合樹
脂、またこのとき混合する耐熱性樹脂が前記したように
スチレン系耐熱性樹脂であってもよい。
Further, a mixed resin of two or more components of a single styrene resin and a single heat resistant resin is also included. For example, a mixed resin of a styrene resin and a polyphenylene ether resin, and the heat resistant resin mixed at this time may be a styrene heat resistant resin as described above.

【0016】本発明でいうポリフェニレンエーテル樹脂
とは、例えばポリ(2,6−ジメチルフェニレン−1,
4−エーテル)、ポリ(2,6−ジエチルフェニレン−
1,4−エーテル)、ポリ(2,6−ジクロルフェニレ
ン−1,4−エーテル)、ポリ(2,6−ジブロムフェ
ニレン−1,4−エーテル)、ポリ(2,メチル−6−
エチルフェニレン−1,4−エーテル)、ポリ(2,ク
ロル−6−メチルフェニレン−1,4−エーテル)、ポ
リ(2,メチル−6−イソプロピルフェニレン−1,4
−エーテル)、ポリ(2,6−ジ−n−プロピルフェニ
レン−1,4−エーテル)、ポリ(2,ブロム−6−メ
チルフェニレン−1,4−エーテル)、ポリ(2,クロ
ル−6−ブロムフェニレン−1,4−エーテル)、ポリ
(2,クロル−6−エチルフェニレン−1,4−エーテ
ル)などが挙げられる。
The polyphenylene ether resin referred to in the present invention means, for example, poly (2,6-dimethylphenylene-1,
4-ether), poly (2,6-diethylphenylene-
1,4-ether), poly (2,6-dichlorophenylene-1,4-ether), poly (2,6-dibromophenylene-1,4-ether), poly (2, methyl-6-
Ethylphenylene-1,4-ether), poly (2, chloro-6-methylphenylene-1,4-ether), poly (2, methyl-6-isopropylphenylene-1,4)
-Ether), poly (2,6-di-n-propylphenylene-1,4-ether), poly (2, bromo-6-methylphenylene-1,4-ether), poly (2, chloro-6- Bromphenylene-1,4-ether), poly (2, chloro-6-ethylphenylene-1,4-ether) and the like.

【0017】また重合度は10〜5000の範囲のもの
が実用的である。さらにスチレン系耐熱樹脂としてシン
ジオタクチックポリスチレンの単独使用、及び前記した
ようにスチレン系樹脂との混合使用も考えられる。いず
れにしても、当該スチレン系耐熱樹脂のビカット軟化点
が本発明のいう108℃以上であることが要件である。
また必要に応じ、光安定剤、帯電防止剤、着色剤、核
剤、難燃剤等も本発明の要件を満たす範囲で加えてもよ
い。
The degree of polymerization is practically in the range of 10 to 5,000. Further, it is possible to use syndiotactic polystyrene alone as the styrene-based heat-resistant resin, and to use it in combination with the styrene-based resin as described above. In any case, it is a requirement that the Vicat softening point of the styrene-based heat-resistant resin is 108 ° C. or higher according to the present invention.
Further, if necessary, a light stabilizer, an antistatic agent, a colorant, a nucleating agent, a flame retardant, etc. may be added within a range satisfying the requirements of the present invention.

【0018】また本発明でいうビーズ発泡成形体とは、
発泡剤を含浸した発泡性の樹脂粒子を得、該樹脂粒子を
予備発泡することにより一次発泡粒子を得、その後熟成
したのち、加熱成形装置により所定の金型内で融着成形
することにより得られる成形体のことである。このとき
発泡性の樹脂粒子を得る方法は、重合体含浸方といわれ
る方法、つまり重合の途中又は完了時に発泡剤を添加
し、粒状(ビーズ状)の発泡性粒子を得る方法。または
後含浸法といわれる方法、つまり予め押出機でストラン
ド状に押出した後カッティングして得られる粒子、また
は樹脂の重合によって得られる粒子に後工程で発泡剤を
含浸する方法。さらには押し出し時に発泡剤を混練含浸
してストランド状に押し出し急激に水冷した後カッティ
ングして発泡性粒子を得る、押出含浸法等である。
The bead foam molding referred to in the present invention is
Obtaining expandable resin particles impregnated with a foaming agent, obtaining primary expanded particles by pre-expanding the resin particles, and then aging and then fusion-molding in a predetermined mold by a heat molding device. It is a molded product. At this time, the method of obtaining the expandable resin particles is a method called polymer impregnation method, that is, a method of adding a foaming agent during or during the polymerization to obtain granular (bead-like) expandable particles. Alternatively, a method referred to as a post-impregnation method, that is, a method of impregnating particles obtained by extruding a strand shape in advance with an extruder and then cutting, or particles obtained by polymerizing a resin with a foaming agent in a subsequent step. Further, there is an extrusion impregnation method or the like in which a foaming agent is kneaded and impregnated at the time of extrusion, extruded in a strand shape, rapidly cooled with water, and then cut to obtain expandable particles.

【0019】次に本発明でいうビカット軟化点とはJI
S−K−7206の試験法によって規定された規格によ
り測定されたものをいう。
The Vicat softening point referred to in the present invention is JI.
Measured according to the standard defined by the test method of SK-7206.

【0020】図3は、本発明でいう圧縮ヒステリシスロ
スを説明するためのものであり、成形体の圧縮試験によ
り得られる。図において横軸Xは試験品厚みに対する圧
縮比率(%)、縦軸Yは荷重(kg)、またDは圧縮比
率75%の位置を示す。Oは圧縮開始点、Aは圧縮曲
線、点Cは圧縮比率75%における荷重を、Bは荷重を
開放していくときの荷重−変位曲線を示し、点Eは開放
時の無荷重点を示している。本発明では成形体より厚さ
80mm、8cm角の試験品を切り出し、該試験品を2
4℃の雰囲気下で速度10mm/minで圧縮率75%
まで荷重を加えた後、直ちに同速度で荷重を開放する操
作を行い、その間の圧縮率と荷重との関係を示す図3を
描き、次式により圧縮ヒステリシスロスを求めた。まず
O,A,C,D,Oのなす面積をaとし、O,A,C,
B,E,Oのなす面積をbとしたとき(b/a)×10
0をもって圧縮ヒステリシスロス(%)とした。
FIG. 3 is for explaining the compression hysteresis loss referred to in the present invention, and is obtained by the compression test of the molded body. In the figure, the horizontal axis X represents the compression ratio (%) with respect to the thickness of the test product, the vertical axis Y represents the load (kg), and D represents the position where the compression ratio is 75%. O is the compression start point, A is the compression curve, point C is the load at a compression ratio of 75%, B is the load-displacement curve when releasing the load, and point E is the no-load point when opening. ing. In the present invention, a test piece having a thickness of 80 mm and an 8 cm square is cut out from the molded body, and the test piece is cut into 2 pieces.
75% compression rate at a speed of 10 mm / min in an atmosphere of 4 ° C
Immediately after applying the load up to, the operation of releasing the load at the same speed was immediately performed, and FIG. 3 showing the relationship between the compressibility and the load during that period was drawn, and the compression hysteresis loss was determined by the following equation. First, let O be the area formed by O, A, C, D, and O, and let O, A, C,
When the area formed by B, E, and O is b, (b / a) × 10
0 was defined as the compression hysteresis loss (%).

【0021】[0021]

【実施例】以下、本発明の内容を表1の実施例、比較例
に基づき更に詳述する。まずこの実施例、比較例で用い
た試験方法、評価方法をまとめて示す。
EXAMPLES The contents of the present invention will be described in more detail below with reference to Examples and Comparative Examples in Table 1. First, the test methods and evaluation methods used in the examples and comparative examples will be summarized.

【0022】1)発泡体密度 (試験法及び試験条件)30cm角×80mm厚みの試
験成形体から、以下のように求めた。 <平均密度>前記した30cm角×80mm厚みの試験
成形体全体の重さを秤で、体積を寸法から求め、密度を
算出し平均密度とした。この値を表1に発泡体密度とし
て記載した。
1) Foam density (Test method and test conditions) The density was determined as follows from a test molded body of 30 cm square and 80 mm thickness. <Average Density> The weight of the entire test molded body of 30 cm square and 80 mm thickness described above was weighed, the volume was determined from the dimensions, and the density was calculated to be the average density. This value is shown in Table 1 as the foam density.

【0023】<表面密度>前記した試験成形体の厚み方
向の表裏表面部からそれぞれ10mmの裁断切片を採取
し、前記同様の方法により密度を算出し、表裏の平均値
を表面密度とした。 <内部密度>前記同様に厚み方向中心部の10mm厚の
裁断切片を採取し、密度を算出し、内部密度とした。 <密度分布値>前記で求めた密度より下記の計算式によ
り求めた。 分布値(%)=((表面密度−内部密度)÷平均密度)
×100
<Surface Density> 10 mm cut pieces were taken from the front and back surface portions in the thickness direction of the above-mentioned test molded body, the density was calculated by the same method as described above, and the average value of the front and back surfaces was taken as the surface density. <Internal Density> Similarly to the above, a 10 mm thick cut piece at the center portion in the thickness direction was sampled, and the density was calculated to be the internal density. <Density distribution value> The density was calculated according to the following formula from the density calculated above. Distribution value (%) = ((surface density-internal density) / average density)
× 100

【0024】2)乾熱耐熱性 (試験法及び試験条件)各種成形体からサンプリングし
た厚さ80mm、20cm角の試験片を24℃雰囲気下
で1日調整した後、試験片の各々の対辺間の寸法をノギ
スで小数点以下2桁まで計測したものの平均値を初期寸
法とし、その後80℃、5%の相対湿度に調整した恒温
恒湿機に400時間当該試験片を暴露した後、24℃の
雰囲気下に1日放置した後、前記同様に寸法を測定した
値を加熱後寸法とし、下記の計算式により寸法変化率を
求めた。 加熱寸法変化率(%)=((初期寸法−加熱後寸法)÷
初期寸法)×100 (評価判定基準) ○:加熱寸法変化率が±0.5%以内 ×:加熱寸法変化率が±0.5%以上。
2) Heat resistance against dry heat (Test method and test conditions) Test pieces of 20 mm square having a thickness of 80 mm sampled from various molded bodies were adjusted for one day in an atmosphere of 24 ° C., and then the distance between opposite sides of each test piece. Was measured with a caliper to 2 digits after the decimal point, and the average value was used as the initial dimension. After that, the test piece was exposed to a thermo-hygrostat adjusted to 80 ° C and 5% relative humidity for 400 hours, and then at 24 ° C. After left in the atmosphere for 1 day, the dimension measured in the same manner as above was used as the dimension after heating, and the dimensional change rate was calculated by the following calculation formula. Heating dimensional change rate (%) = ((initial dimension-after heating) ÷
Initial dimension) × 100 (Evaluation criteria) ○: Heating dimensional change rate is within ± 0.5% ×: Heating dimensional change rate is ± 0.5% or more.

【0025】3)加湿耐熱性 (試験法及び試験条件)前記同様に各種成形体からサン
プリングした厚さ80mm、20cm角の試験片を24
℃雰囲気下で1日調整した後、試験片の各々の対辺間の
寸法をノギスで計測したものの平均値を初期寸法とし、
その後80℃、95%の相対湿度に調整した恒温恒湿機
に48時間当該試験片を暴露した後、24℃の雰囲気下
に1日放置した後、前記同様に寸法を計測した値を加熱
後寸法とし、下記の計算式により寸法変化率を求めた。 加熱寸法変化率(%)=((初期寸法−加熱後寸法)÷
初期寸法)×100 (評価判定基準) ○:加熱寸法変化率が±0.5%以内 ×:加熱寸法変化率が±0.5%以上
3) Humidification heat resistance (Test method and test conditions) As described above, 24 test pieces each having a thickness of 80 mm and a size of 20 cm were sampled from various molded bodies.
After adjusting for 1 day in an atmosphere of ° C, the initial value is the average value of the dimensions of the opposite sides of the test piece measured with a caliper.
Then, after exposing the test piece to a thermo-hygrostat adjusted to 80 ° C. and 95% relative humidity for 48 hours, the test piece was left in an atmosphere of 24 ° C. for 1 day, and then the values measured in the same manner as above were heated. The size was determined, and the dimensional change rate was calculated by the following calculation formula. Heating dimensional change rate (%) = ((initial dimension-after heating) ÷
Initial dimension) × 100 (Evaluation criteria) ○: Heating dimensional change rate is within ± 0.5% ×: Heating dimensional change rate is ± 0.5% or more

【0026】4)エネルギー吸収率 エネルギー吸収率は前述した圧縮ヒステリシスロスの求
め方において、荷重を圧縮応力に変換した圧縮ヒステリ
シスロス線図を求め、本発明でいう圧縮ヒステリシスロ
ス領域を積分し算出した値をエネルギー吸収率とした。
すなわち圧縮応力(kg/cm2 )×圧縮歪み(cm/
cm)の積分値がエネルギー吸収率(kg・cm/cm
3 )である。 (評価判定基準) ○:エネルギー吸収率が0.8〜15kg・cm/cm
3 ×:エネルギー吸収率が0.8kg・cm/cm3 以下
または、15kg・cm/cm3 以上
4) Energy Absorption Rate The energy absorption rate was calculated by calculating the compression hysteresis loss diagram obtained by converting the load into the compression stress in the above-mentioned method of determining the compression hysteresis loss, and integrating the compression hysteresis loss region in the present invention. The value was defined as the energy absorption rate.
That is, compressive stress (kg / cm 2 ) × compressive strain (cm /
The integrated value of (cm) is the energy absorption rate (kg · cm / cm
3 ) (Evaluation criteria) ○: Energy absorption rate is 0.8 to 15 kg · cm / cm
3 ×: Energy absorption rate is 0.8 kg · cm / cm 3 or less, or 15 kg · cm / cm 3 or more

【0027】5)総エネルギー吸収量 80mm厚みの200cm2 の面積(衝突時の人体の胸
部受圧面積に相当)の緩衝材が、75%圧縮されたとき
に有している総エネルギー吸収量を表す。すなわち前記
エネルギー吸収率の値を用い下記算式により求められ
る。総エネルギー吸収量(kg・cm)=エネルギー吸
収率(kg・cm/cm3 )×200cm2 ×8(c
m)×0.75(cm/cm)である。 (評価基準) ○:総エネルギー吸収量が900〜20000kg・c
m ×:総エネルギー吸収量が900kg・cm以下また
は、20000kg・cm以上
5) Total Energy Absorption Amount of total energy absorbed by the cushioning material having an area of 200 cm 2 of 80 mm thickness (corresponding to the chest pressure receiving area of the human body at the time of collision) is compressed by 75%. . That is, it is determined by the following formula using the value of the energy absorption rate. The total amount of energy absorption (kg · cm) = rate of energy absorption (kg · cm / cm 3) × 200cm 2 × 8 (c
m) × 0.75 (cm / cm). (Evaluation Criteria) ○: Total energy absorption amount is 900 to 20000 kg · c
m x: Total energy absorption is 900 kg · cm or less or 20000 kg · cm or more

【0028】実施例1 ポリスチレン樹脂(スタイロン−666、旭化成工業社
製)100部とポリフェニレンエーテル樹脂[ポリ
(2,6−ジメチルフェニレン−1,4−エーテル)
(重合度200)旭化成工業社製]35部を、予め二軸
押出機(池貝鉄工社製、PCM45mm押出機)で溶融
混合押し出して樹脂ペレットを得た。当該樹脂ペレット
のビカット軟化点を求めたところ、表1に示すように1
29℃の値を示した。次にこの混合された樹脂ペレット
100重量部に対しイソ−ペンタン(発泡剤)を10重
量部になるように処方し、30mm押出機を使い押出含
浸法により1mm径×3mm長の未発泡の発泡性粒子を
得た。
Example 1 100 parts of polystyrene resin (Styron-666, manufactured by Asahi Kasei Corporation) and polyphenylene ether resin [poly (2,6-dimethylphenylene-1,4-ether)]
(Polymerization degree: 200) manufactured by Asahi Kasei Kogyo Co., Ltd.] 35 parts was melt-mixed and extruded in advance with a twin-screw extruder (PCM 45 mm extruder manufactured by Ikegai Tekko KK) to obtain resin pellets. The Vicat softening point of the resin pellet was calculated to be 1 as shown in Table 1.
A value of 29 ° C was shown. Next, 100 parts by weight of the mixed resin pellets was formulated with 10 parts by weight of iso-pentane (foaming agent), and an unexpanded foam of 1 mm diameter × 3 mm length was formed by extrusion impregnation method using a 30 mm extruder. Particles were obtained.

【0029】次に、前記発泡性粒子を水蒸気ゲージ圧力
0.5kg/cm2 で30秒間加熱し予備発泡粒子を得
た。該発泡粒子を1日間熟成した後、密度を測定したと
ころ45kg/m3 であった。その後、蒸気成形機によ
り、80mm厚30cm角の成形体を得た。このとき成
形時の成形融着のための水蒸気ゲージ圧力は1.8kg
/cm2 であった。得られた成形体を50℃、3時間熟
成後密度を測定したところ平均密度30kg/m3 、表
面密度32kg/m3 、内部密度28.5kg/m3
密度分布値11.7%であった。この成形体を常温で1
日熟成後、前記本発明に記述した方法により圧縮ヒステ
リシスロスを評価した。その結果は表1−(1),1−
(2)に示すように86%の値を示した。
Next, the expandable particles were heated at a steam gauge pressure of 0.5 kg / cm 2 for 30 seconds to obtain pre-expanded particles. After aging the expanded beads for 1 day, the density was measured and found to be 45 kg / m 3 . Then, a 80 mm-thick 30 cm square molded body was obtained using a steam molding machine. At this time, the steam gauge pressure for molding fusion during molding is 1.8 kg.
Was / cm 2 . The obtained molded body was aged at 50 ° C. for 3 hours, and its density was measured. The average density was 30 kg / m 3 , the surface density was 32 kg / m 3 , the internal density was 28.5 kg / m 3 ,
The density distribution value was 11.7%. 1 at room temperature
After aging for days, the compression hysteresis loss was evaluated by the method described in the present invention. The results are shown in Table 1- (1), 1-
As shown in (2), the value was 86%.

【0030】また、本発明に記述した方法により耐熱性
を評価したところ、80℃乾熱耐熱性において0.29
%、80℃加湿耐熱性において0.22%を示し、実用
耐熱性を十分に満足するものであった。更に圧縮エネル
ギー吸収率を測定評価したところ、1.8kg・cm/
cm3 を示し、総エネルギー吸収量が2160kg・c
mとなり、本発明のドア用緩衝材として実用に耐え得る
ものであった。この実施例1で得られた発泡性粒子を用
い、図1のようなドア用緩衝材を成型し装着したとこ
ろ、簡単にしかも確実に密着して取り付けることが出
来、衝撃吸収能力に優れ実用上何ら問題ないものであっ
た。
When the heat resistance was evaluated by the method described in the present invention, it was 0.29 at 80 ° C. dry heat resistance.
%, The heat resistance to humidification at 80 ° C. was 0.22%, which was sufficiently satisfactory for practical heat resistance. Further, when the compression energy absorption rate was measured and evaluated, 1.8 kg · cm /
shows cm 3, the total amount of energy absorption is 2160kg · c
m, which was practically usable as the door cushioning material of the present invention. When the expandable particles obtained in Example 1 were used to mold and mount a cushioning material for doors as shown in FIG. 1, they could be easily and surely attached in close contact with each other, and the shock absorbing ability was excellent. There was no problem.

【0031】実施例2〜3 実施例1の発泡性粒子を用い、実施例1に準じてそれぞ
れ平均密度115kg/m3 及び18kg/m3 の成形
体を得た。それぞれの密度分布値は11.4%、11.
1%であった。これらの成形体を常温で1日熟成後、前
記同様に圧縮ヒステリシスロスを評価した。その結果は
表1−(1),1−(2)に示すように94%、65%
の値を示した。これらの結果から密度が高いと、高い圧
縮ヒステリシスロスを示すことが分かる。逆に密度が低
いと、概ね低い圧縮ヒステリシスロスを示すことが分か
る。また同様に耐熱性を評価したところ、表1−
(1),1−(2)に示すような値を示した。密度が低
いほうの成形体がやや大きい寸法変化率を示すもののま
だ実用耐熱性を十分に満足するものであった。
Examples 2 to 3 Using the expandable particles of Example 1, molded articles having average densities of 115 kg / m 3 and 18 kg / m 3 were obtained according to Example 1. Each density distribution value is 11.4%, 11.
It was 1%. After aging these molded bodies at room temperature for 1 day, the compression hysteresis loss was evaluated in the same manner as above. The results are 94% and 65% as shown in Tables 1- (1) and 1- (2).
The value of was shown. From these results, it can be seen that the higher the density, the higher the compression hysteresis loss. On the contrary, when the density is low, it can be seen that the compression hysteresis loss is generally low. The heat resistance was also evaluated in the same manner.
The values shown in (1) and 1- (2) are shown. Although the molded product having the lower density showed a slightly large dimensional change rate, it still satisfied practical heat resistance.

【0032】更に同様に圧縮エネルギー吸収率を測定評
価したところ、それぞれ13.2kg・cm/cm3
0.9kg・cm/cm3 を示した。また総エネルギー
吸収量はそれぞれ15840kg・cm、1080kg
・cmを示した。これらの値から分かるように密度が高
いと、高い圧縮エネルギー吸収率を示し、逆に密度が低
いと、低い圧縮エネルギー吸収率しか示さないことが分
かる。しかし、この範囲であればまだ総エネルギー吸収
量が許容範囲内にあり、本発明のドア用緩衝材として実
用に耐え得るものであることが分かる。
Further, when the compression energy absorption rate was measured and evaluated in the same manner, 13.2 kg · cm / cm 3 , respectively,
It showed 0.9 kg · cm / cm 3 . The total energy absorption is 15840 kg · cm and 1080 kg, respectively.
・ Indicated cm. As can be seen from these values, it can be seen that when the density is high, the compression energy absorption rate is high, and when the density is low, only the compression energy absorption rate is low. However, in this range, the total energy absorption amount is still within the allowable range, and it can be seen that it can be practically used as the door cushioning material of the present invention.

【0033】実施例4 基材樹脂としてスチレン−アクリロニトリル共重合樹脂
(スタイラックAS−783、旭化成工業社製;ビカッ
ト軟化点112℃)より実施例1と同様の方法により発
泡性粒子を得た。そのあと実施例1に準じて平均密度3
0kg/m3 、密度分布値11.1%の成形体を得た。
その成形体について、前記同様、圧縮ヒステリシスロ
ス、耐熱性、エネルギー吸収率、総エネルギー吸収量に
ついてそれぞれ評価したところ、表1−(1),1−
(2)のような結果を得た。ビカット軟化点が低い分、
耐熱性評価における寸法変化率がやや高いが、いずれの
値も本発明のいう実用性を満足するものであった。
Example 4 Expandable particles were obtained in the same manner as in Example 1 from a styrene-acrylonitrile copolymer resin (Styrac AS-783, manufactured by Asahi Kasei Kogyo; Vicat softening point 112 ° C.) as a base resin. Then, according to Example 1, an average density of 3
A molded body having 0 kg / m 3 and a density distribution value of 11.1% was obtained.
Similar to the above, the molded body was evaluated for compression hysteresis loss, heat resistance, energy absorption rate, and total energy absorption amount, and Table 1- (1), 1-
The result is (2). As the Vicat softening point is low,
Although the dimensional change rate in the heat resistance evaluation was rather high, all values satisfied the practicality of the present invention.

【0034】比較例1〜2 実施例1の発泡性粒子を用い、実施例1に準じてそれぞ
れ表1−(1),1−(2)に記載した密度の成形体を
得た。これらの成形体を常温で1日熟成後、前記同様に
圧縮ヒステリシスロスを測定評価した。その結果は表1
−(1),1−(2)に示すように57%、95%の値
を示した。これらの結果から比較例1のように密度が非
常に低いと、60%をきる低い圧縮ヒステリシスロスを
示し、逆に比較例2のように密度が非常に高いと、10
0%近い非常に高い圧縮ヒステリシスロスを示すことが
分かる。
Comparative Examples 1-2 Using the expandable particles of Example 1, molded articles having the densities shown in Tables 1- (1) and 1- (2) were obtained according to Example 1. After aging these molded bodies for one day at room temperature, the compression hysteresis loss was measured and evaluated in the same manner as above. The results are shown in Table 1.
As shown in-(1) and 1- (2), the values were 57% and 95%. From these results, when the density is very low as in Comparative Example 1, a low compression hysteresis loss of less than 60% is exhibited, and conversely, when the density is very high as in Comparative Example 2, 10
It can be seen that it exhibits a very high compression hysteresis loss close to 0%.

【0035】これらの成形体について実施例1同様に耐
熱性、エネルギー吸収率、総エネルギー吸収量について
それぞれ評価したところ、表1−(1),1−(2)の
ような結果を得た。その結果、比較例1は耐熱性、エネ
ルギー吸収率、総エネルギー吸収量のいずれも実用性を
満足しない値を示した。この理由はビカット軟化点が高
い樹脂組成であるにもかかわらず発泡成形体の密度が低
すぎるために、耐熱試験時において発泡体の気泡膜が薄
く剛性の低下をきたし、その結果寸法変化率が大きくな
るものと考えられる。また、低密度化することにより、
当然のことながら圧縮応力が低下しエネルギー吸収率も
実用性を満足しなくなる。また、比較例2は成形体の密
度が非常に高いために、耐熱性は寸法変化率が非常に小
さく実用的に問題ないが、エネルギー吸収率の値が非常
に高くなり、総エネルギー吸収量も、もはや実用的に十
分な衝撃吸収性を示す値ではなくなることが分かる。
Heat resistance, energy absorption rate, and total energy absorption of these molded products were evaluated in the same manner as in Example 1, and the results shown in Tables 1- (1) and 1- (2) were obtained. As a result, in Comparative Example 1, the heat resistance, the energy absorption rate, and the total energy absorption amount were values that did not satisfy the practical use. The reason for this is that the density of the foamed molded product is too low despite the fact that the resin composition has a high Vicat softening point, and therefore the foam film of the foamed product becomes thin and the rigidity decreases during the heat resistance test, resulting in a dimensional change rate. It is expected to grow. Also, by reducing the density,
As a matter of course, the compressive stress decreases and the energy absorptivity does not satisfy the practicability. In Comparative Example 2, since the density of the molded body is very high, the dimensional change rate of heat resistance is very small and there is no practical problem, but the energy absorption rate is very high and the total energy absorption is also It can be seen that the value no longer shows practically sufficient impact absorption.

【0036】比較例3 基材樹脂としてスチレン樹脂(スタイロン−666、旭
化成工業社製;ビカット軟化点101℃)より実施例1
と同様の方法により発泡性粒子を得た。そのあと実施例
1に準じて平均密度50kg/m3 の成形体を得た。そ
の成形体について、前記同様、圧縮ヒステリスロス、耐
熱性、エネルギー吸収率、総エネルギー吸収量について
それぞれ評価したところ、表1−(1),1−(2)の
ような結果を得た。ビカット軟化点が低い分、耐熱性評
価における寸法変化率が高くなり実用性を満たさないこ
とが分かった。
Comparative Example 3 A styrene resin (Styron-666, manufactured by Asahi Kasei; Vicat softening point 101 ° C.) was used as a base resin.
The expandable particles were obtained by the same method as described in. Then, according to Example 1, a molded product having an average density of 50 kg / m 3 was obtained. When the molded body was evaluated for compression hysteris loss, heat resistance, energy absorption rate, and total energy absorption, respectively, as in the above, the results shown in Tables 1- (1) and 1- (2) were obtained. It was found that the lower the Vicat softening point, the higher the dimensional change rate in the heat resistance evaluation, and the practicality was not satisfied.

【0037】参考例1 ポリイソシアヌレートの第1成分と、ポリオール、発泡
剤(フロン11)、触媒、界面活性剤からなる第二成分
とを撹拌混合し、いわゆるワンショット法で金型に注入
し実施例1と同サイズの成形体を得た。平均密度80k
g/m3 、表面密度112kg/m3 、内部密度47k
g/m3 、密度分布値81%を示すものであった。
Reference Example 1 A first component of polyisocyanurate and a second component consisting of a polyol, a foaming agent (Freon 11), a catalyst and a surfactant were mixed by stirring and poured into a mold by a so-called one-shot method. A molded body having the same size as in Example 1 was obtained. Average density 80k
g / m 3 , surface density 112 kg / m 3 , internal density 47 k
It had a g / m 3 and a density distribution value of 81%.

【0038】この成形体を常温で1日熟成後、前記本発
明に記述した方法により圧縮ヒステリシスロスを評価し
た。その結果は95%の値を示した。また、本発明に記
述した方法により耐熱性を評価したところ、80℃乾熱
耐熱性において0.51%、80℃加湿耐熱性において
2.51%(この値のみ膨張剤の変化率を示した、これ
以外の表1−(1),1−(2)記載の値は全て収縮側
の変化率である。)を示し、加湿耐熱性が著しく劣り、
実用耐熱性を満足しないことがわかった。これは発泡体
を形成しているウレタン樹脂が加水分解のため強度が低
下する現象のためと考えられた。
After this molded body was aged at room temperature for one day, the compression hysteresis loss was evaluated by the method described in the present invention. The result showed a value of 95%. Further, when the heat resistance was evaluated by the method described in the present invention, it was 0.51% in heat resistance at 80 ° C. dry heat and 2.51% in heat resistance at 80 ° C. humidification (only this value showed the rate of change of the expansion agent. , And all other values shown in Tables 1- (1) and 1- (2) are the rate of change on the shrinkage side.)
It was found that the practical heat resistance was not satisfied. This was considered to be due to the phenomenon that the strength of the urethane resin forming the foam decreased due to hydrolysis.

【0039】参考例2 基材樹脂としてエチレン−プロピレンランダム共重合体
樹脂(Tm=150℃を使用し、公知の方法により予備
発泡粒子を得、その後成形し、密度30kg/m3 の成
形体を得た。これらの成形体を常温で1日熟成後、前記
同様に圧縮ヒステリシスロスを測定評価した。その結果
51%の値を示した。またこのときの未回復量を測定し
たところ18%を示した、実施例1の成形体の未回復量
は41%であった。エネルギー吸収率は0.7kg・c
m/cm3 であった。
Reference Example 2 An ethylene-propylene random copolymer resin (Tm = 150 ° C. was used as a base resin, pre-expanded particles were obtained by a known method, and thereafter molded to obtain a molded product having a density of 30 kg / m 3. These molded bodies were aged at room temperature for 1 day, and then the compression hysteresis loss was measured and evaluated in the same manner as described above.The result showed a value of 51% .The unrecovered amount at this time was 18%. The unrecovered amount of the shown molded body of Example 1 was 41%, and the energy absorption rate was 0.7 kg · c.
It was m / cm 3 .

【0040】これらの結果から本発明実施例に比べ低い
圧縮ヒステリシスロスしか示さず、また未回復量が小さ
く弾性力が高いということが分かった。したがって、こ
のような緩衝材を本発明の用途に用いた場合、衝突時の
エネルギー吸収率が小さく回復力が強いため、緩衝材の
総エネルギー吸収量が小さくなり、衝突後車内でまたほ
ぼ同じ力で跳ね返されてしまうということが起こり、乗
員への衝撃を緩和する能力が低いのである。さらに、実
施例1同様に耐熱性を評価したところ、80℃乾熱耐熱
性が0.85%、80℃加湿耐熱性が9.11%の寸法
変化率の値を示した。この結果からも耐熱性が著しく悪
く実用に適さないことが分かった。
From these results, it was found that the compression hysteresis loss was lower than that of the examples of the present invention, and the unrestored amount was small and the elastic force was high. Therefore, when such a cushioning material is used for the purpose of the present invention, since the energy absorption rate at the time of collision is small and the recovery force is strong, the total energy absorption amount of the cushioning material is small, and the force is almost the same again in the vehicle after the collision. It may be bounced off by, and its ability to absorb impact on passengers is low. Furthermore, when the heat resistance was evaluated in the same manner as in Example 1, the dimensional change rate of 0.85% at 80 ° C. dry heat resistance and the value of 911% at 80 ° C. humidification heat resistance were shown. From these results, it was found that the heat resistance was extremely poor and it was not suitable for practical use.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】本発明により、特殊な加工工程を必要と
せず、自動車ドアトリムの基材の裏面側内に任意の形で
生産性良く装着出来、軽量で衝撃吸収能力にすぐれ、か
つ実用的な耐熱性をも十分に備えた、自動車ドアトリム
用緩衝材を提供することが出来る。
EFFECTS OF THE INVENTION The present invention does not require a special processing step and can be mounted in the back side of the base material of an automobile door trim in any shape with high productivity, is lightweight, has excellent shock absorbing ability, and is practical. It is possible to provide a cushioning material for an automobile door trim that also has sufficient heat resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図2のZ−Z線に沿う
断面図である。
FIG. 1 is a sectional view taken along line ZZ of FIG. 2 showing an embodiment of the present invention.

【図2】同実施例の自動車用ドアの車室側から見た側面
図である。
FIG. 2 is a side view of the vehicle door of the embodiment as seen from the passenger compartment side.

【図3】本発明の圧縮ヒステリシスロスを説明するため
の圧縮率と荷重との関係を示す一例図である。
FIG. 3 is an example diagram showing a relationship between a compression rate and a load for explaining a compression hysteresis loss of the present invention.

【符号の説明】[Explanation of symbols]

1 ドア本体 2 ドアアウタパネル 3 ドアインナパネル 4 ドアトリム 5 緩衝材 A 圧縮曲線 B 回復曲線 1 door body 2 door outer panel 3 door inner panel 4 door trim 5 cushioning material A compression curve B recovery curve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 車両側部のドアトリム基材の裏面側に配
置される緩衝材において、当該緩衝材がビカット軟化点
108℃以上のスチレン系耐熱樹脂よりなるビーズ発泡
成形体であって、その成形体の圧縮ヒステリシスロスが
60%以上かつ密度が15〜120kg/m3 であるこ
とを特徴とする自動車ドア用緩衝材。
1. A cushioning material arranged on the back side of a door trim base material on a vehicle side, wherein the cushioning material is a bead foam molding made of a styrene-based heat-resistant resin having a Vicat softening point of 108 ° C. or higher. A cushioning material for automobile doors, which has a compression hysteresis loss of 60% or more and a density of 15 to 120 kg / m 3 .
【請求項2】 スチレン系耐熱樹脂がポリスチレン系樹
脂とポリフェニレンエーテル樹脂との混合樹脂からなる
請求項1記載の自動車ドア用緩衝材。
2. The cushioning material for an automobile door according to claim 1, wherein the styrene-based heat-resistant resin comprises a mixed resin of a polystyrene-based resin and a polyphenylene ether resin.
【請求項3】 スチレン系耐熱樹脂がスチレン−アクリ
ロニトリル系共重合体樹脂からなる請求項1記載の自動
車ドア用緩衝材。
3. The cushioning material for an automobile door according to claim 1, wherein the styrene-based heat-resistant resin comprises a styrene-acrylonitrile-based copolymer resin.
JP5291544A 1993-10-28 1993-10-28 Cushioning member for door of automobile Withdrawn JPH07117471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5291544A JPH07117471A (en) 1993-10-28 1993-10-28 Cushioning member for door of automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5291544A JPH07117471A (en) 1993-10-28 1993-10-28 Cushioning member for door of automobile

Publications (1)

Publication Number Publication Date
JPH07117471A true JPH07117471A (en) 1995-05-09

Family

ID=17770290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5291544A Withdrawn JPH07117471A (en) 1993-10-28 1993-10-28 Cushioning member for door of automobile

Country Status (1)

Country Link
JP (1) JPH07117471A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268648A (en) * 2007-04-23 2008-11-06 Bando Chem Ind Ltd Cleaning blade for electrophotographic equipment, and its manufacturing method
JP2009269591A (en) * 2008-04-08 2009-11-19 Honda Motor Co Ltd Vehicle door structure and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268648A (en) * 2007-04-23 2008-11-06 Bando Chem Ind Ltd Cleaning blade for electrophotographic equipment, and its manufacturing method
JP2009269591A (en) * 2008-04-08 2009-11-19 Honda Motor Co Ltd Vehicle door structure and method of manufacturing the same

Similar Documents

Publication Publication Date Title
EP2164690B1 (en) Energy absorbing member
US4504534A (en) Core material for automobile bumpers
TWI824141B (en) Thermoplastic elastomer foamed particles and molded article thereof
JPH05138784A (en) Composite molding of shock absorbing propylene polymer
EP1976916B1 (en) Improved foams for vehicular energy absorbance
JP2003127796A (en) Shock absorbing floor spacer for automobile
EP1812726B1 (en) Impact-absorbing members for dynamic impact applications
CA2241657A1 (en) Composite polymeric material having high resistance to impact energy
EP1055701B1 (en) Polycarbonate resin foam and shock absorber using the same
JPS6157504B2 (en)
CA1254359A (en) Formed base material for car ceiling member
JPH07117471A (en) Cushioning member for door of automobile
JPH0716867A (en) Shock absorbing structure of interior member for automobile
JP2905037B2 (en) Laminated sheet for automotive interior materials suitable for thermoforming
EP1016511B1 (en) Molded body of thermoplastic resin having sound absorption characteristics
JP3006378B2 (en) Vehicle interior molded product and method of manufacturing the same
KR20220137936A (en) Polypropylene-based resin expanded particles, and polypropylene-based resin expanded particle molded article
JP5234169B2 (en) Thermoplastic resin foam molding and method for producing the same
JP3154887B2 (en) Styrene-based resin heat insulating material having low thermal conductivity and method for producing the same
JP5151020B2 (en) Thermoplastic resin in-mold foam molding
JPH0517059B2 (en)
JP3645599B2 (en) Manufacturing method of door panel and foam composite
JPWO2008069013A1 (en) Resin foam suitable for energy absorber
JP2518606B2 (en) Base material for automobile molding ceiling material
JPH08258073A (en) Buffer material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130