JPH07106633A - Gallium nitride based compound semiconductor light emitting element - Google Patents
Gallium nitride based compound semiconductor light emitting elementInfo
- Publication number
- JPH07106633A JPH07106633A JP25317193A JP25317193A JPH07106633A JP H07106633 A JPH07106633 A JP H07106633A JP 25317193 A JP25317193 A JP 25317193A JP 25317193 A JP25317193 A JP 25317193A JP H07106633 A JPH07106633 A JP H07106633A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- layer
- light emitting
- compound semiconductor
- gallium nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01015—Phosphorus [P]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、発光ダイオード、レー
ザーダイオード等に使用される窒化ガリウム系化合物半
導体(InXAlYGa1-X-YN、0≦X≦1、0≦Y≦
1)が積層されてなる窒化ガリウム系化合物半導体発光
素子に係り、特に、p−n接合を有する窒化ガリウム系
化合物半導体発光素子の電極の構造に関する。BACKGROUND OF THE INVENTION The present invention relates to a gallium nitride compound semiconductor (In X Al Y Ga 1-XY N, 0≤X≤1, 0≤Y≤ used for a light emitting diode, a laser diode, etc.
The present invention relates to a gallium nitride-based compound semiconductor light-emitting device in which (1) is laminated, and particularly to a structure of an electrode of a gallium nitride-based compound semiconductor light-emitting device having a pn junction.
【0002】[0002]
【従来の技術】従来の窒化ガリウム系化合物半導体発光
素子は、基板上に、n型の窒化ガリウム系化合物半導体
層と、p型ドーパントがドープされた高抵抗なi型の窒
化ガリウム系化合物半導体層とが積層されたいわゆるM
IS構造のものが知られているが、最近になって高抵抗
なi型をp型とする技術(特開平2−257679号公
報、特開平3−218325号公報、特開平5−183
189号公報等)が発表され、p−n接合型の発光素子
が実現可能となってきた。2. Description of the Related Art A conventional gallium nitride-based compound semiconductor light emitting device includes an n-type gallium nitride-based compound semiconductor layer and a high-resistance i-type gallium nitride-based compound semiconductor layer doped with a p-type dopant on a substrate. So-called M in which and are stacked
An IS structure is known, but recently, a technique of changing a high resistance i-type to a p-type (Japanese Patent Laid-Open Nos. 2-257679, 3-218325, and 5-183).
No. 189, etc.) has been announced, and a pn junction type light emitting device has become feasible.
【0003】現在のところ、p−n接合型の窒化ガリウ
ム系化合物半導体発光素子は、そのp型窒化ガリウム系
化合物半導体(以下、p層という。)の製造方法が限ら
れているため、通常p層が最上層(即ち、積層終了時の
層)とされる。また、発光素子の基板には透光性、絶縁
性を有するサファイアが使用されるため、発光素子の発
光観測面側は基板側とされることが多い。しかし、基板
側を発光観測面側とするp−n接合型の発光素子は、同
一面側に形成されたp層およびn層の電極をリードフレ
ームに接続する際、1チップを2つのリードフレームに
跨って載置しなければならないので、1チップサイズが
大きくなるという欠点がある。つまり、n層の電極がp
層と接触すると電気的にショートしてしまうため、チッ
プ上の正、負それぞれの電極と2つのリードフレーム幅
と間隔を大きくする必要性から、自然とチップサイズが
大きくなる。従って1枚あたりのウエハーから取れるチ
ップ数が少なくなり、高コストになるという欠点があ
る。At present, a p-n junction type gallium nitride compound semiconductor light-emitting element is usually p-type because the manufacturing method of the p-type gallium nitride compound semiconductor (hereinafter referred to as p layer) is limited. The layer is the uppermost layer (that is, the layer at the end of lamination). Further, since sapphire having a light-transmitting property and an insulating property is used for the substrate of the light emitting element, the light emission observation surface side of the light emitting element is often the substrate side. However, in a pn junction type light emitting device in which the substrate side is the light emission observation surface side, when connecting the electrodes of the p layer and the n layer formed on the same surface side to the lead frame, one chip is divided into two lead frames. Since one chip must be mounted over the other, there is a disadvantage that the size of one chip becomes large. That is, the n-layer electrode is p
Since it is electrically short-circuited when it comes into contact with the layer, it is necessary to increase the width of each of the positive and negative electrodes on the chip, the width of the two lead frames, and the space between them, which naturally increases the chip size. Therefore, there are disadvantages that the number of chips that can be obtained from one wafer is small and the cost is high.
【0004】一方、電極側を発光観測面とする発光素子
は、1チップを1つのリードフレーム上に載置できるた
めチップサイズを小さくできる。しかも、発光観測面側
から正、負両方の電極を取り出すことができるので、生
産技術上有利であるという利点がある反面、発光観測面
側の電極により発光が阻害されることにより、基板側を
発光観測面とする発光素子に比して外部量子効率が悪い
という欠点がある。On the other hand, in the light emitting element having the electrode side as the light emission observation surface, one chip can be mounted on one lead frame, so that the chip size can be reduced. Moreover, since both the positive and negative electrodes can be taken out from the emission observation surface side, there is an advantage that it is advantageous in terms of production technology. On the other hand, the electrodes on the emission observation surface side hinder the emission, so that the substrate side can be removed. The external quantum efficiency is lower than that of the light emitting device used as the emission observation surface.
【0005】[0005]
【発明が解決しようとする課題】我々は、外部量子効率
の問題に対しては、先に、p層側を発光観測面とする発
光素子のp層に形成する電極を金属よりなる透光性の全
面電極(第一の電極)とし、その全面電極の上にボンデ
ィング用のパッド電極(第二の電極)を形成する技術を
提案した。この技術により、従来の窒化ガリウム系化合
物半導体発光素子の問題は改善されてきた。しかしなが
ら、通電中にパッド電極の金属材料によるマイグレーシ
ョンが発生し、透光性電極の透光性が失われてくるとい
う問題が生じてきた。特に、透光性電極はその膜厚を非
常に薄くして透光性を保っているため、パッド電極のマ
イグレーションが発生すると、その影響が大きく、透光
性電極のオーミック特性も悪くなる。簡単に言うと、バ
ッド電極の金属材料の一部が通電中に透光性電極中に拡
散することにより、透光性電極が変質し透光性が失われ
ると共に、p型層との透光性電極とのオーミック性が悪
くなる。In order to solve the problem of external quantum efficiency, we first proposed that the electrode formed on the p-layer of a light-emitting element having the p-layer side as an emission observation surface is made of a light-transmitting material made of metal. , And a pad electrode (second electrode) for bonding is formed on the entire surface electrode (first electrode). This technique has improved the problems of the conventional gallium nitride-based compound semiconductor light emitting device. However, there has been a problem that migration of the pad electrode due to the metal material occurs during energization, and the translucency of the translucent electrode is lost. In particular, since the light-transmissive electrode has a very thin film thickness to maintain the light-transmissive property, when migration of the pad electrode occurs, the influence thereof is great and the ohmic characteristic of the light-transmissive electrode is deteriorated. Briefly, a part of the metal material of the bad electrode diffuses into the translucent electrode during energization, so that the translucent electrode deteriorates and loses its translucency, and at the same time, the translucency with the p-type layer is lost. The ohmic contact with the conductive electrode deteriorates.
【0006】従って、本発明はこのような事情を鑑み成
されたもので、その目的とするところは、同一面側に形
成された電極側を発光観測面とした窒化ガリウム系化合
物半導体発光素子において、パッド電極のマイグレーシ
ョンによるp層の透光性電極の変質を防ぎ、オーミック
特性を維持するとともに、透光性電極の透光性を維持し
外部量子効率を低下させないことにある。Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to provide a gallium nitride-based compound semiconductor light-emitting device in which the electrode side formed on the same surface side has an emission observation surface. The purpose is to prevent the translucent electrode of the p layer from being deteriorated due to migration of the pad electrode, maintain the ohmic characteristics, and maintain the translucency of the translucent electrode so as not to reduce the external quantum efficiency.
【0007】[0007]
【課題を解決するための手段】我々は透光性電極の表面
に形成するパッド電極の材料について数々の実験を重ね
た結果、パッド電極に特定の元素を含まないAuを使用
することにより、上記問題が解決できることを見いだし
本発明を成すに至った。即ち、本発明の窒化ガリウム系
化合物半導体発光素子は、同一面側にn層の電極とp層
の電極とが形成されており、それら電極側を発光観測面
側とする窒化ガリウム系化合物半導体発光素子におい
て、前記p層の電極がp層のほぼ全面に形成された透光
性の第一の電極と、前記第一の電極の表面に形成された
ボンディング用の第二の電極とからなり、前記第二の電
極はAu単体、またはAuを含み、AlもしくはCrを
含まない合金よりなることを特徴とする。なお本願にお
いて、透光性とは窒化ガリウム系化合物半導体の発光を
透過するという意味であり、必ずしも無色透明を意味す
るものではない。As a result of repeated experiments on the material of the pad electrode formed on the surface of the translucent electrode, by using Au which does not contain a specific element in the pad electrode, The inventors have found that the problem can be solved and have completed the present invention. That is, in the gallium nitride-based compound semiconductor light-emitting device of the present invention, an n-layer electrode and a p-layer electrode are formed on the same surface side, and the gallium nitride-based compound semiconductor light emission with the electrode side as the light emission observation surface side. In the element, the electrode of the p-layer includes a light-transmissive first electrode formed on almost the entire surface of the p-layer, and a second electrode for bonding formed on the surface of the first electrode, The second electrode is made of a simple substance of Au or an alloy containing Au but not Al or Cr. In the present application, the light-transmitting property means that light emitted from the gallium nitride-based compound semiconductor is transmitted, and does not necessarily mean colorless and transparent.
【0008】[0008]
【作用】本発明の発光素子は、p層の上に形成する第一
の電極をp層のほぼ全面に形成した全面電極としている
ため、電流をp層全体に均一に広げ、p−n接合界面か
ら均一な発光を得ることができる。しかも前記第一の電
極を透光性としていることにより、電極側から発光を観
測する際に、電極によって発光を妨げることがないので
発光素子の外部量子効率が格段に向上する。さらに、本
発明の発光素子は第一電極の上にボンディング用のパッ
ト電極として第二の電極を形成している。その第二の電
極はAuを含有することにより、第一の電極と接着性が
良く、ワイヤーボンディング時に用いられる金線よりで
きるボールとも接着性がよい。またAuは素子通電中に
第一の電極へのマイグレーションが少なく、第一の電極
を変質させることが少ない。ところが、Auの中にAl
若しくはCrを含有させた合金を第二の電極とすると、
これらの金属は通電中、比較的短時間(例えば500時
間)でマイグレーションが発生して、第一の電極を変質
させてしまう。従って第二の電極をAu、またはAuを
含みAl若しくはCrを含まない合金とすることによ
り、第一の電極、およびボールとの接着性が良く、通電
中にマイグレーションを引き起こしにくい電極を実現で
きる。In the light emitting device of the present invention, since the first electrode formed on the p layer is a full surface electrode formed on almost the entire surface of the p layer, the current is uniformly spread over the entire p layer, and the pn junction is formed. Uniform light emission can be obtained from the interface. Moreover, by making the first electrode transparent, the light emission is not obstructed by the electrode when the light emission is observed from the electrode side, so that the external quantum efficiency of the light emitting element is significantly improved. Further, in the light emitting device of the present invention, the second electrode is formed as a pad electrode for bonding on the first electrode. Since the second electrode contains Au, it has good adhesiveness to the first electrode and also has good adhesiveness to a ball made of a gold wire used in wire bonding. Further, Au is less likely to migrate to the first electrode during energization of the element, and is less likely to deteriorate the quality of the first electrode. However, Al in Au
Or, if an alloy containing Cr is used as the second electrode,
These metals cause migration in a relatively short time (for example, 500 hours) during energization to deteriorate the first electrode. Therefore, when the second electrode is made of Au or an alloy containing Au and not containing Al or Cr, it is possible to realize an electrode that has good adhesiveness to the first electrode and the ball and does not easily cause migration during energization.
【0009】[0009]
【実施例】図1は本発明の一実施例に係る発光素子の構
造を示す模式断面図であり、この素子はサファイア基板
1の上にn層2とp層3とを順に積層したホモ構造の発
光素子を示しており、n層2の上にはn層2のオーミッ
ク用の電極4を形成し、p層3の上にはオーミック用の
透光性の第一の電極11を形成し、さらに第一の電極1
1の上にはボンディング用の第二の電極12を形成して
いる。FIG. 1 is a schematic cross-sectional view showing the structure of a light emitting device according to an embodiment of the present invention. This device has a homo structure in which an n layer 2 and ap layer 3 are laminated in this order on a sapphire substrate 1. The ohmic electrode of the n-layer 2 is formed on the n-layer 2, and the translucent first electrode 11 for the ohmic is formed on the p-layer 3. , The first electrode 1
A second electrode 12 for bonding is formed on the first electrode 1.
【0010】第一の電極11を透光性にするには、A
u、Pt、Al、Sn、Cr、Ti、Ni等の電極材料
を非常に薄く形成することにより実現可能である。具体
的には、蒸着、スパッタ等の技術により電極が透光性に
なるような膜厚で直接、薄膜を形成するか、または薄膜
を形成した後、アニーリングを行うことにより電極を透
光性にすることができる。つまり、第一の電極はp層3
とオーミック接触を得るための電極であり、第二の電極
と異なりAl、Crを含んでいてもよい。好ましい第一
の電極11はNiとAuとを順に積層した合金、最も好
ましくはp層側からNiおよびAuを順に積層した合金
よりなる透光性の電極である。第一の電極11を前記構
成とすることにより、p層と良好なオーミック接触を得
ることができる。図2は、p型GaN層にNiとAuと
を順にそれぞれ0.1μmの膜厚で蒸着した後、アニー
リングして電極を合金化して透光性とし、その電流電圧
特性を測定した図である。この図に示すように、Niと
Auとを順に積層してなる第一の電極11は非常に良好
なオーミック接触が得られていることがわかる。To make the first electrode 11 transparent, A
It can be realized by forming an electrode material such as u, Pt, Al, Sn, Cr, Ti, and Ni to be very thin. Specifically, a thin film is formed directly by a technique such as vapor deposition or sputtering so that the electrode becomes transparent, or a thin film is formed and then annealing is performed to make the electrode transparent. can do. That is, the first electrode is the p-layer 3
And an electrode for obtaining ohmic contact with Al, and may contain Al or Cr, unlike the second electrode. A preferable first electrode 11 is a translucent electrode made of an alloy in which Ni and Au are sequentially stacked, and most preferably an alloy in which Ni and Au are sequentially stacked from the p-layer side. By configuring the first electrode 11 as described above, good ohmic contact with the p layer can be obtained. FIG. 2 is a diagram in which Ni and Au are vapor-deposited on the p-type GaN layer in order to have a film thickness of 0.1 μm, respectively, and then annealed to alloy the electrodes so that the electrodes are translucent and the current-voltage characteristics thereof are measured. . As shown in this figure, it can be seen that the first electrode 11 formed by sequentially stacking Ni and Au has very good ohmic contact.
【0011】第一の電極11の膜厚は0.001μm〜
1μmの厚さで形成することが好ましい。0.001μ
mよりも薄いと電極抵抗が大きくなる傾向にある。逆に
1μmよりも厚いと電極が透光性になりにくく実用的で
はない。電極材料によっても多少異なるが、第一の電極
11がほぼ透明でほとんど発光を妨げることがなく、ま
た接触抵抗も低い、特に実用的な範囲としては、0.0
05μm〜0.2μmの範囲が特に好ましい。The thickness of the first electrode 11 is 0.001 μm
It is preferably formed with a thickness of 1 μm. 0.001μ
If it is thinner than m, the electrode resistance tends to increase. On the other hand, if the thickness is thicker than 1 μm, the electrode becomes less transparent and is not practical. Although slightly different depending on the electrode material, the first electrode 11 is almost transparent, hardly interferes with light emission, and has a low contact resistance.
The range of 05 μm to 0.2 μm is particularly preferable.
【0012】次に、本発明の発光素子は第一の電極11
の表面にボンディング用のパッド電極として第二の電極
12を形成している。第二の電極12はAu単体、また
はAuを含みAlもしくはCrを含まない合金とする。Next, the light emitting device of the present invention comprises a first electrode 11
The second electrode 12 is formed as a pad electrode for bonding on the surface of the. The second electrode 12 is made of Au alone or an alloy containing Au and not Al or Cr.
【0013】図1に示す構造の発光素子において、第一
の電極11をNiおよびAuを順に積層した透光性電極
とし、その透光性電極の上に数々の材料でボンディング
用の第二の電極12を形成した後、n層の電極4と第二
の電極12とにワイヤーボンドして通常の発光ダイオー
ドとして発光させ、500時間連続点灯後の第一の電極
の状態を調べた。その結果を表1に示す。表1におい
て、列側に示す電極材料は第一の電極11側の電極材
料、行側に示す電極材料はボールと接触する側の電極材
料を示す。つまり、表1の第二の電極12は、列に示す
電極材料と、行に示す電極材料とを順に積層した電極よ
りなることを示している。In the light emitting device having the structure shown in FIG. 1, the first electrode 11 is a translucent electrode in which Ni and Au are laminated in order, and a second electrode for bonding is formed on the translucent electrode with various materials. After forming the electrode 12, wire bonding was performed on the n-layer electrode 4 and the second electrode 12 to cause light emission as a normal light emitting diode, and the state of the first electrode after continuous lighting for 500 hours was examined. The results are shown in Table 1. In Table 1, the electrode material shown on the column side shows the electrode material on the first electrode 11 side, and the electrode material shown on the row side shows the electrode material on the side in contact with the ball. That is, it is shown that the second electrode 12 in Table 1 is an electrode in which the electrode material shown in the column and the electrode material shown in the row are sequentially laminated.
【0014】表1において、第二の電極12の特性は、
500時間点灯後第一の電極材料が全く変色せず透光性
を保ったままで、しかもp層3と第一の電極11とのオ
ーミック特性が変化しなかったものを○、第二の電極1
2の周囲にあたる第一の電極がやや変色しているが発光
を減衰させる程度ではなく、またオーミック特性も変化
しなかったものを△、第一の電極11の透光性が失わ
れ、オーミック特性も失われているものを×として評価
した。但し、第二の電極12とボールとの接着性が悪く
ワイヤーボンディングが困難であったものは、第一の電
極11の変色の有無にかかわらず−として示している。In Table 1, the characteristics of the second electrode 12 are as follows:
After 500 hours of lighting, the first electrode material did not discolor at all and the translucency was maintained, and the ohmic characteristics of the p layer 3 and the first electrode 11 did not change.
The color of the first electrode around 2 is slightly discolored, but it is not such that the light emission is attenuated and the ohmic characteristics are not changed, and the transparency of the first electrode 11 is lost, and the ohmic characteristics are decreased. What was lost was evaluated as x. However, those in which the adhesiveness between the second electrode 12 and the ball was poor and wire bonding was difficult were indicated by − regardless of the presence or absence of discoloration of the first electrode 11.
【0015】[0015]
【表1】 [Table 1]
【0016】表1に示したように、例えば第一の電極を
Ni−Auとした場合、その第一の電極の上に形成する
ボンディング用の第二の電極12の材料を、第一の電極
と同一材料、即ちAu−Niとすると第一の電極11は
全く変色せず透光性を保ったままである。またAu単独
でもAu−Niと同一の効果を得ることができる。一
方、Cr、Alは第一の電極11に対し、マイグレーシ
ョンが発生しやすく、これらの金属を第二の電極12に
含有させると、たとえAuを含んでいても第一の電極1
1の特性が失われてしまう。As shown in Table 1, for example, when the first electrode is Ni-Au, the material of the bonding second electrode 12 formed on the first electrode is the same as that of the first electrode. If the same material as that of Au-Ni, that is, Au-Ni, is used, the first electrode 11 does not discolor at all and remains transparent. Also, Au alone can achieve the same effect as Au-Ni. On the other hand, Cr and Al easily cause migration with respect to the first electrode 11, and when these metals are contained in the second electrode 12, even if Au is contained, the first electrode 1
The characteristic of 1 is lost.
【0017】また、他の実施例として、第一の電極11
をAu−Ti(但し、Au−Tiのオーミック特性は、
Ni−Auよりも若干劣っていた。)で形成した後、同
様にして数々の第二の電極材料を形成し、第二の電極材
料を評価した。その結果は特に表には示さないが、第二
の電極材料をAu単独とした場合、またはAu−Ti
(Au−Tiの積層順序は問わない。)とした場合には
○、Auを含むNi、In、Pt等よりなる電極の場合
は△、ところがAu−Al等、Al、Crを含有させる
と表1と同様に×の評価であった。As another embodiment, the first electrode 11
Au-Ti (however, the ohmic characteristics of Au-Ti are
It was slightly inferior to Ni-Au. ), A number of second electrode materials were similarly formed, and the second electrode materials were evaluated. The results are not shown in the table, but when the second electrode material is Au alone, or when Au-Ti is used.
(The order of stacking Au-Ti does not matter.), ○ in the case of electrodes made of Ni, In, Pt, etc. containing Au, where Au, Al, Al, Cr are included. As in the case of 1, the evaluation was x.
【0018】さらに、他の実施例として、第一の電極1
1をAu−Al(但し、Au−Alのオーミック特性
は、Ni−Auよりも若干劣っていた。)で形成した
後、同様にして数々の第二の電極材料を形成し、第二の
電極材料を評価した。その結果も特に表には示さない
が、第二の電極材料をAu単独とした場合には○、Au
を含むNi、Ti、In、Pt等よりなる電極の場合は
△、ところがAu−Alは同一材料であるにもかかわら
ず表1と同様に×の評価であり、Au−Crを含む場合
も同様に×であった。Further, as another embodiment, the first electrode 1
1 was formed of Au-Al (however, the ohmic characteristics of Au-Al were slightly inferior to those of Ni-Au), and then a number of second electrode materials were formed in the same manner to form the second electrode. The material was evaluated. The results are also not shown in the table, but when the second electrode material is Au alone, ◯, Au
In the case of an electrode made of Ni, Ti, In, Pt, etc. containing, Δ is evaluated, but Au-Al is the same as Table 1 even though Au-Al is the same material, and the same is true when Au-Cr is included. It was x.
【0019】[0019]
【発明の効果】以上説明したように、本発明の発光素子
は電極側を発光観測面とする窒化ガリウム系化合物半導
体発光素子において、オーミック接触用の第1の電極を
透光性としているため素子の外部量子効率を向上させる
ことができ、さらにその第1の電極の表面に形成するボ
ンディング用の第二の電極材料をAu単独、またはAu
を含むがAl若しくはCrを含まない合金とすることに
より、第1の電極のオーミック特性を変化させることな
く、また変色させることもないので、発光素子の信頼性
が格段に向上する。また本明細書ではホモ構造のp−n
接合型発光素子について説明したが、ホモ構造に限るも
のではなく、p−n接合を有するシングルへテロ、ダブ
ルへテロ構造の窒化ガリウム系化合物半導体発光素子に
ついても適用できることは言うまでもない。As described above, the light emitting device of the present invention is a gallium nitride-based compound semiconductor light emitting device having the electrode side as a light emission observation surface, and the first electrode for ohmic contact is transparent. Of the second electrode material for bonding formed on the surface of the first electrode of Au alone or Au.
By using an alloy containing Al but not Al or Cr, the ohmic characteristics of the first electrode are not changed and the color is not changed, so that the reliability of the light emitting element is significantly improved. Further, in the present specification, a homo-structured pn
Although the junction type light emitting device has been described, it is needless to say that the present invention is not limited to the homostructure and is also applicable to a gallium nitride compound semiconductor light emitting device having a single hetero structure or a double hetero structure having a pn junction.
【図1】 本発明の一実施例の発光素子の構造を示す模
式断面図。FIG. 1 is a schematic cross-sectional view showing the structure of a light emitting device according to an embodiment of the present invention.
【図2】 第一の電極Ni−Auの電流電圧特性を示す
図。FIG. 2 is a diagram showing a current-voltage characteristic of a first electrode Ni-Au.
1・・・・サファイア基板 2・・・・n型GaN層 3・・・・p型GaN層 4・・・・n型層の電極 11・・・・第一の電極 12・・・・第二の電極 1 ... Sapphire substrate 2 ... n-type GaN layer 3 ... p-type GaN layer 4 ... n-type layer electrode 11 ... first electrode 12 ... Second electrode
Claims (4)
形成されており、それら電極側を発光観測面側とする窒
化ガリウム系化合物半導体発光素子において、前記p層
の電極が、p層のほぼ全面に形成された透光性の第一の
電極と、前記第一の電極の表面に形成されたボンディン
グ用の第二の電極とからなり、前記第二の電極は、Au
単体、または、Auを含みAlもしくはCrを含まない
合金よりなることを特徴とする窒化ガリウム系化合物半
導体発光素子。1. In a gallium nitride-based compound semiconductor light-emitting device in which an n-layer electrode and a p-layer electrode are formed on the same surface side, and the electrode side is the emission observation surface side, the p-layer electrode is , A translucent first electrode formed on substantially the entire surface of the p-layer, and a bonding second electrode formed on the surface of the first electrode, and the second electrode is made of Au.
A gallium nitride-based compound semiconductor light emitting device comprising a single substance or an alloy containing Au and not containing Al or Cr.
一材料よりなることを特徴とする請求項1に記載の窒化
ガリウム系化合物半導体発光素子。2. The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the first electrode and the second electrode are made of the same material.
れた合金よりなることを特徴とする請求項1に記載の窒
化ガリウム系化合物半導体発光素子。3. The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the first electrode is made of an alloy in which Ni and Au are laminated.
Ni、InおよびPtよりなる群から選択された少なく
とも一種を含む合金よりなることを特徴とする請求項1
に記載の窒化ガリウム系化合物半導体発光素子。4. The second electrode comprises, in addition to Au, Ti,
2. An alloy containing at least one selected from the group consisting of Ni, In and Pt.
2. A gallium nitride-based compound semiconductor light emitting device according to.
Priority Applications (27)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25317193A JP2770720B2 (en) | 1993-10-08 | 1993-10-08 | Gallium nitride based compound semiconductor light emitting device |
DE69425186T DE69425186T3 (en) | 1993-04-28 | 1994-04-27 | A gallium nitride III-V semiconductor device semiconductor device and method for its production |
DE69433926T DE69433926T2 (en) | 1993-04-28 | 1994-04-27 | A semiconductor device of a gallium nitride III-V semiconductor compound |
EP04012118A EP1450415A3 (en) | 1993-04-28 | 1994-04-27 | Gallium nitride-based III-V group compound semiconductor device |
EP94106587A EP0622858B2 (en) | 1993-04-28 | 1994-04-27 | Gallium nitride-based III-V group compound semiconductor device and method of producing the same |
KR1019940009055A KR100286699B1 (en) | 1993-01-28 | 1994-04-27 | Gallium Nitride Group 3-5 Compound Semiconductor Light-Emitting Device and Manufacturing Method Thereof |
EP99114356A EP0952617B1 (en) | 1993-04-28 | 1994-04-27 | Gallium nitride-based III-V group compound semiconductor device |
CN94106935A CN1046375C (en) | 1993-04-28 | 1994-04-28 | Gallium nitride-based III-V group compound semiconductor device having an ohmic electrode, and method of producing the same |
CNB031458696A CN1240143C (en) | 1993-04-28 | 1994-04-28 | Gallium nitride-based III-V group compound semiconductor |
CNB03145870XA CN1262024C (en) | 1993-04-28 | 1994-04-28 | Gallium nitride-based III-V group compound semiconductor |
US08/234,001 US5563422A (en) | 1993-04-28 | 1994-04-28 | Gallium nitride-based III-V group compound semiconductor device and method of producing the same |
CNB03145867XA CN1240142C (en) | 1993-04-28 | 1994-04-28 | Gallium nitride group compound semiconductor photogenerator |
CNB031458688A CN1253948C (en) | 1993-04-28 | 1994-04-28 | Gallium nitride-based III-V group compound semiconductor |
US08/665,759 US5652434A (en) | 1993-04-28 | 1996-06-17 | Gallium nitride-based III-V group compound semiconductor |
US08/670,242 US5767581A (en) | 1993-04-28 | 1996-06-17 | Gallium nitride-based III-V group compound semiconductor |
US08/995,167 US5877558A (en) | 1993-04-28 | 1997-12-19 | Gallium nitride-based III-V group compound semiconductor |
KR1019980022092A KR100225612B1 (en) | 1993-04-28 | 1998-06-12 | Gallium nitride-based iii-v group compound semiconductor |
CNB981183115A CN1262021C (en) | 1993-04-28 | 1998-08-11 | Nitrided gallium III-V group compound semiconductor device and its mfg.method |
US09/209,826 US6093965A (en) | 1993-04-28 | 1998-12-11 | Gallium nitride-based III-V group compound semiconductor |
KR1019990032148A KR100551364B1 (en) | 1993-04-28 | 1999-08-05 | Gallium nitride-based group compound light-emitting element and its electrode forming method |
US09/448,479 US6204512B1 (en) | 1993-04-28 | 1999-11-24 | Gallium nitride-based III-V group compound semiconductor device and method of producing the same |
US09/750,912 US6507041B2 (en) | 1993-04-28 | 2001-01-02 | Gallium nitride-based III-V group compound semiconductor |
US10/292,583 US6610995B2 (en) | 1993-04-28 | 2002-11-13 | Gallium nitride-based III-V group compound semiconductor |
KR1020030035961A KR100551365B1 (en) | 1993-04-28 | 2003-06-04 | Gallium nitride-based group compound light-emitting element |
US10/609,410 US6998690B2 (en) | 1993-04-28 | 2003-07-01 | Gallium nitride based III-V group compound semiconductor device and method of producing the same |
US11/198,465 US7205220B2 (en) | 1993-04-28 | 2005-08-08 | Gallium nitride based III-V group compound semiconductor device and method of producing the same |
US11/714,890 US7375383B2 (en) | 1993-04-28 | 2007-03-07 | Gallium nitride based III-V group compound semiconductor device and method of producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25317193A JP2770720B2 (en) | 1993-10-08 | 1993-10-08 | Gallium nitride based compound semiconductor light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07106633A true JPH07106633A (en) | 1995-04-21 |
JP2770720B2 JP2770720B2 (en) | 1998-07-02 |
Family
ID=17247527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25317193A Expired - Lifetime JP2770720B2 (en) | 1993-01-28 | 1993-10-08 | Gallium nitride based compound semiconductor light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2770720B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10341039A (en) * | 1997-04-10 | 1998-12-22 | Toshiba Corp | Semiconductor light emitting element and fabrication thereof |
US6734468B2 (en) | 1996-05-31 | 2004-05-11 | Toyoda Gosei Co., Ltd. | Devices related to electrode pads for p-type group III nitride compound semiconductors |
US7358544B2 (en) | 2004-03-31 | 2008-04-15 | Nichia Corporation | Nitride semiconductor light emitting device |
US8934513B2 (en) | 1994-09-14 | 2015-01-13 | Rohm Co., Ltd. | Semiconductor light emitting device and manufacturing method therefor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62101089A (en) * | 1985-10-28 | 1987-05-11 | Seiko Epson Corp | Blue color light emitting device |
JPH05129658A (en) * | 1991-10-30 | 1993-05-25 | Toyoda Gosei Co Ltd | Gallium nitride compound semiconductor light emission device |
-
1993
- 1993-10-08 JP JP25317193A patent/JP2770720B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62101089A (en) * | 1985-10-28 | 1987-05-11 | Seiko Epson Corp | Blue color light emitting device |
JPH05129658A (en) * | 1991-10-30 | 1993-05-25 | Toyoda Gosei Co Ltd | Gallium nitride compound semiconductor light emission device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8934513B2 (en) | 1994-09-14 | 2015-01-13 | Rohm Co., Ltd. | Semiconductor light emitting device and manufacturing method therefor |
US6734468B2 (en) | 1996-05-31 | 2004-05-11 | Toyoda Gosei Co., Ltd. | Devices related to electrode pads for p-type group III nitride compound semiconductors |
US6955936B2 (en) | 1996-05-31 | 2005-10-18 | Toyoda Gosei Co., Ltd. | Methods and devices related to electrode pads for p-type Group III nitride compound semiconductors |
JPH10341039A (en) * | 1997-04-10 | 1998-12-22 | Toshiba Corp | Semiconductor light emitting element and fabrication thereof |
US7358544B2 (en) | 2004-03-31 | 2008-04-15 | Nichia Corporation | Nitride semiconductor light emitting device |
US7791098B2 (en) | 2004-03-31 | 2010-09-07 | Nichia Corporation | Nitride semiconductor light emitting device |
Also Published As
Publication number | Publication date |
---|---|
JP2770720B2 (en) | 1998-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5990500A (en) | Nitride compound semiconductor light emitting element and its manufacturing method | |
JP2803742B2 (en) | Gallium nitride-based compound semiconductor light emitting device and method for forming electrode thereof | |
KR100551365B1 (en) | Gallium nitride-based group compound light-emitting element | |
JP3009095B2 (en) | Nitride semiconductor light emitting device | |
US7385229B2 (en) | Flip-chip light emitting diode with a thermally stable multiple layer reflective p-type contact | |
US6316792B1 (en) | Compound semiconductor light emitter and a method for manufacturing the same | |
JP3333356B2 (en) | Semiconductor device | |
US20140213003A1 (en) | Gan type light emitting diode device and method of manufacturing the same | |
KR100631976B1 (en) | Group iii-nitride light emitting device | |
JP2003168823A (en) | Iii nitride based compound semiconductor light emitting element | |
EP1509956A2 (en) | High-reliability group iii-nitride light emitting diode | |
JP2697572B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
JP2005123489A (en) | Nitride semiconductor light emitting element and its manufacturing method | |
JPH0864871A (en) | Gallium nitride compound semiconductor element | |
JP3269070B2 (en) | Nitride semiconductor light emitting device | |
JPH10173224A (en) | Compound semiconductor light emitting element and its manufacture | |
JP2005167237A (en) | Flip chip type nitride light emitting device and manufacturing method therefor | |
JP2770717B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
JPH08306643A (en) | Electrode and light emitting element for iii-v group compound semiconductor | |
JP2770720B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
JP2941743B2 (en) | Compound semiconductor light emitting device and method of manufacturing the same | |
JP2000049376A (en) | Light emitting element | |
JP3663869B2 (en) | Gallium nitride compound semiconductor device | |
KR100621871B1 (en) | ?-nitride compound flip chip semiconductor light emitting diode | |
JPH1084135A (en) | N-type gallium nitride compound semiconductor electrode and formation thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080417 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090417 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090417 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090417 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090417 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090417 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100417 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100417 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110417 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110417 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120417 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120417 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130417 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130417 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130417 Year of fee payment: 15 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130417 Year of fee payment: 15 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130417 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140417 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term |