JPH0682862A - Solid-state laser device excited with semiconductor laser - Google Patents

Solid-state laser device excited with semiconductor laser

Info

Publication number
JPH0682862A
JPH0682862A JP4260542A JP26054292A JPH0682862A JP H0682862 A JPH0682862 A JP H0682862A JP 4260542 A JP4260542 A JP 4260542A JP 26054292 A JP26054292 A JP 26054292A JP H0682862 A JPH0682862 A JP H0682862A
Authority
JP
Japan
Prior art keywords
layer
film
wavelength
refractive index
antireflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4260542A
Other languages
Japanese (ja)
Inventor
Hideharu Ogami
上 秀 晴 大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP4260542A priority Critical patent/JPH0682862A/en
Publication of JPH0682862A publication Critical patent/JPH0682862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To decrease residual reflections and to provide the LD excited solid- state laser device having high efficiency by providing three-layered antireflection films which have the relations between film thicknesses and refractive indices satisfying specific conditions. CONSTITUTION:The three-layered antireflection films are constituted in the order of an SiO2 layer, an Al2O3 layer and an SiO2 layer. In addition, the optical film thicknesses nLdL of the first and third layers and the optical film thickness nLdH of the second layer satisfy equations when the refractive indices of the SiO2 and the Al2O3 layer respectively at about 1.06mum wavelength are designated as nL, nH and the physical film thicknesses thereof as dL, dH. More particularly preferably the average grain size of the Al2O3 layer of the second layer is <=10nm, where ns denotes the refractive index near 1.06mum wavelength of the SHG element, deltaL, deltaH respectively denote the phase differences between the SiO2 layers of the first and third layers and the Al2O3 layer of the second layer; deltaO denotes the oscillation wavelength 1.06mum of the basic wave.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、第2高調波発生素子を
用いた半導体レーザ励起固体レーザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser pumped solid-state laser device using a second harmonic generation element.

【0002】[0002]

【従来の技術】第2高調波発生素子を用いた半導体レー
ザ(以下「LD」と示す。)、固体レーザ装置は、高密
度記録媒体である光ディスク等の記録および再生に利用
できると考えられている。
2. Description of the Related Art A semiconductor laser (hereinafter referred to as "LD") using a second harmonic wave generating element and a solid-state laser device are considered to be usable for recording and reproducing on an optical disc which is a high density recording medium. There is.

【0003】図1は、固体レーザ素子は、発振波長が
1.06μm付近であるNdドープYVO4、Ndドー
プYAG等のNdドープ固体レーザ結晶から作成される
代表的な端面励起型LD励起固体レーザ装置の概略図お
よびLDからの励起光、基本波、第2高調波(以下「S
H波」と示す。)の光路である。LD励起固体レーザ装
置は、LD1、集光レンズ2、固体レーザ素子3、第2
高調波発生(以下「SHG」と示す。)素子4、出力鏡
5および固体レーザ素子のLD側の光学薄膜6とその反
対側の光学薄膜7、SHG素子の固体レーザ素子側の光
学薄膜8とその反対側の光学薄膜9、出力鏡のSHG素
子側の光学薄膜10から構成される。なお、Ndドープ
YAGに代表される固体レーザ素子から発振するレーザ
が直線偏光でない場合は、ブリュースタ板等の偏光制御
素子が固体レーザ素子とSHG素子との間に配置される
場合がある。
FIG. 1 shows a solid-state laser device, which is a typical edge-pumped LD-pumped solid-state laser made from an Nd-doped solid-state laser crystal such as Nd-doped YVO 4 and Nd-doped YAG whose oscillation wavelength is around 1.06 μm. A schematic diagram of the apparatus and pumping light from the LD, fundamental wave, second harmonic (hereinafter referred to as “S
"H wave". ) Is the optical path. The LD pumped solid-state laser device includes an LD 1, a condenser lens 2, a solid-state laser element 3, and a second
A harmonic generation (hereinafter referred to as "SHG") element 4, an output mirror 5, an optical thin film 6 on the LD side of the solid-state laser element and an optical thin film 7 on the opposite side, and an optical thin film 8 on the solid-state laser element side of the SHG element. It is composed of an optical thin film 9 on the opposite side and an optical thin film 10 on the SHG element side of the output mirror. When the laser oscillated from the solid-state laser element typified by Nd-doped YAG is not linearly polarized, a polarization control element such as a Brewster plate may be arranged between the solid-state laser element and the SHG element.

【0004】集光レンズ2により、集光されたLD1の
励起光(波長0.809μm)は、固体レーザ素子3を
励起し、そこで発生した基本波は、固体レーザ素子3の
集光レンズ2側の光学薄膜6と出力鏡5の固体レーザ素
子3側の光学薄膜10の間を共振し増幅される。この光
学薄膜6と光学薄膜10で構成されるファブリペロー干
渉計をレーザ共振器と言うが、基本波はこのレーザ共振
器内に閉じこめられ増幅を繰り返し、SHG素子4を通
過した基本波の一部はSH波に変換され、SH波のみが
出力鏡5より出射する。
The excitation light (wavelength 0.809 μm) condensed by the condenser lens 2 excites the solid-state laser element 3, and the fundamental wave generated there is on the condenser lens 2 side of the solid-state laser element 3. The optical thin film 6 and the optical thin film 10 on the solid-state laser element 3 side of the output mirror 5 resonate and are amplified. The Fabry-Perot interferometer composed of the optical thin film 6 and the optical thin film 10 is called a laser resonator. The fundamental wave is confined in the laser resonator and repeatedly amplified, and a part of the fundamental wave that has passed through the SHG element 4. Are converted into SH waves, and only the SH waves are emitted from the output mirror 5.

【0005】ところで、レーザ共振器内に、たとえば、
固体レーザ素子3による吸収や端面での反射、光学薄膜
6,7,8,9,10による吸収や散乱など、基本波に
対する損失があると、基本波のレーザ発振効率を極端に
低下させる原因になり、したがって、SH波出力も大幅
に低下する。そこで、固体レーザ素子およびSHG素子
には、基本波の反射を防ぎ共振器内のレーザ光の損失を
小さくするために反射防止膜を施していた。
By the way, in the laser resonator, for example,
Loss to the fundamental wave, such as absorption by the solid-state laser element 3, reflection at the end face, absorption and scattering by the optical thin films 6, 7, 8, 9, 10 may cause the laser oscillation efficiency of the fundamental wave to be extremely reduced. Therefore, the SH wave output is also significantly reduced. Therefore, the solid-state laser element and the SHG element are provided with an antireflection film in order to prevent reflection of the fundamental wave and reduce the loss of laser light in the resonator.

【0006】従来より、基本波として波長1.06μm
のレーザ光を用い、波長1.06μm付近の屈折率が
2.10〜2.50の物をSHG素子として用いる場
合、波長1.06μm付近における屈折率が1.44の
SiO2膜あるいは1.60のAl23膜の光学的膜厚
0.25λ0(λ0は基本波の発振波長1.06μm)の
単層反射防止膜を施している。と言うのは、波長1.0
6μm付近における屈折率が2.23のLiNbO3
光学的膜厚0.25λ0の単層反射防止膜を設ける場
合、残留反射を零にするために必要とされる該単層反射
防止膜の理論屈折率nFは、n0,nSをそれぞれ空気
(n0≒1),SHG素子の波長1.06μm付近にお
ける屈折率としたときに、反射防止条件式(6)により求
めることができ、1.49となるが、一般的な光学薄膜
の中に1.49の屈折率を有する光学薄膜は存在しな
い。そのため、屈折率か1.49に近いSiO2あるい
はAl23を用いた単層反射防止膜が採用されていた。
このSHG素子の単層反射防止膜により、SHG素子の
レーザ入出射端面の反射率が極端に低下したため、レー
ザ共振器内の基本波は、共振しながらレーザエネルギー
を増幅することができた。
Conventionally, the wavelength of the fundamental wave is 1.06 μm.
When a laser beam having a refractive index of 2.10 to 2.50 in the vicinity of a wavelength of 1.06 μm is used as an SHG element using the laser beam of 1., a SiO 2 film having a refractive index of 1.44 in the vicinity of a wavelength of 1.06 μm or 1. The Al 2 O 3 film No. 60 has a single-layer antireflection film with an optical film thickness of 0.25λ 00 is the oscillation wavelength of the fundamental wave of 1.06 μm). Is a wavelength of 1.0
When a single-layer antireflection film having an optical film thickness of 0.25λ 0 is provided on LiNbO 3 having a refractive index of 2.23 in the vicinity of 6 μm, the single-layer antireflection film required for reducing residual reflection to zero. The theoretical refractive index n F can be obtained by the antireflection conditional expression (6), where n 0 and n S are the air (n 0 ≈1) and the refractive index near the wavelength of 1.06 μm of the SHG element, respectively. , 1.49, but there is no optical thin film having a refractive index of 1.49 among general optical thin films. Therefore, a single-layer antireflection film using SiO 2 or Al 2 O 3 having a refractive index close to 1.49 has been adopted.
The single-layer antireflection film of the SHG element drastically reduced the reflectance of the laser entrance / exit end face of the SHG element, so that the fundamental wave in the laser resonator could amplify the laser energy while resonating.

【0007】 nF=(n0S1/2 (6)N F = (n 0 n S ) 1/2 (6)

【0008】[0008]

【発明が解決しようとする課題】従来の技術として前述
したSHG素子の単層反射防止膜では、SHG素子のレ
ーザ入出射端面に、反射防止膜を施したにもかかわらず
反射防止膜の屈折率条件が完全でないためにわずかに反
射が残る残留反射があり、LD励起固体レーザ装置の高
効率化の妨げになっていた。すなわち、従来の単層反射
防止膜の残留反射率Rは、n0,nS,nFをそれぞれ空
気(n0≒1),SHG素子,単層反射防止膜の波長
1.06μm付近における屈折率としたときに式(7)に
より求めることができ、屈折率が2.23のLiNbO
3にSiO2膜あるいはAl23膜の反射防止膜を施した
場合の残留反射率は、それぞれ0.13%、0.47%
である。この残留反射はレーザ共振器内の基本波のレー
ザエネルギーの損失になり、レーザ発振効率を低下させ
ていた。
In the single-layer antireflection film of the SHG element described above as the prior art, the refractive index of the antireflection film is provided on the laser entrance / exit end surface of the SHG element, even though the antireflection film is applied. Since the conditions are not perfect, there is a slight residual reflection, which is an obstacle to improving the efficiency of the LD pumped solid-state laser device. That is, the residual reflectance R of the conventional single-layer antireflection film is obtained by refracting n 0 , n S , and n F in the air (n 0 ≈1), the SHG element, and the single-layer antireflection film in the vicinity of the wavelength of 1.06 μm. The index of refraction is LiNbO having a refractive index of 2.23, which can be obtained by the formula (7).
Residual reflectance when an antireflection film of SiO 2 film or an Al 2 O 3 film 3 is 0.13%, respectively, 0.47%
Is. This residual reflection results in a loss of the laser energy of the fundamental wave in the laser resonator, which lowers the laser oscillation efficiency.

【0009】 R=(n0S−nF 22/(n0S+nF 22 (7)R = (n 0 n S −n F 2 ) 2 / (n 0 n S + n F 2 ) 2 (7)

【0010】本発明は、上記観点よりなされたものであ
り、半導体レーザと、集光レンズと、Ndドープ固体レ
ーザ結晶から成る固体レーザ素子と、波長1.06μm
付近における屈折率が2.10〜2.50のSHG素子
と、出力鏡とから基本的に構成される半導体レーザ励起
固体レーザ装置において、さらに高効率化を可能とする
3層反射防止膜と、該反射防止膜を設けたSHG素子
と、該素子を用いたLD励起固体レーザ装置の提供を目
的とする。
The present invention has been made from the above viewpoint, and includes a semiconductor laser, a condenser lens, a solid-state laser element made of an Nd-doped solid-state laser crystal, and a wavelength of 1.06 μm.
In a semiconductor laser pumped solid-state laser device basically composed of an SHG element having a refractive index in the vicinity of 2.10 to 2.50 and an output mirror, a three-layer antireflection film capable of further improving efficiency, An object is to provide an SHG element provided with the antireflection film and an LD pumped solid-state laser device using the element.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する本発
明の3層反射防止膜はSiO2層、Al23層、SiO2
層の順に構成され、かつ、それぞれの膜の波長1.06
μm付近におけるSiO2とAl23との屈折率をnL
H とし、物理的膜厚をdL、dH とした時に、第1及
び第3層の光学的膜厚nLLと、第2層の光学的膜厚n
HH とが、下記式(8)〜(12)を満足するものであり、好
ましくは第2層のAl23の平均グレインサイズ(粒
径)が10nm以下となっているものである。そして、
本発明のSHG素子は、そのレーザ入出射端面に本発明
の3層反射防止膜を設けたものであり、さらに本発明の
LD励起固体レーザ装置は、本発明のSHG素子を用い
たLD励起固体レーザ装置である。
A three-layer antireflection film of the present invention for solving the above-mentioned problems is a SiO 2 layer, an Al 2 O 3 layer, and a SiO 2 layer.
The layers are arranged in order, and the wavelength of each film is 1.06.
The refractive index of SiO 2 and Al 2 O 3 near μm is n L ,
n H and the physical film thicknesses d L and d H , the optical film thicknesses n L d L of the first and third layers and the optical film thickness n of the second layer
H d H is one that satisfies the following formulas (8) to (12), and preferably the average grain size (grain size) of Al 2 O 3 in the second layer is 10 nm or less. . And
The SHG element of the present invention is provided with the three-layer antireflection film of the present invention on the laser entrance / exit end face thereof, and the LD pumped solid-state laser device of the present invention is an LD pumped solid state using the SHG element of the present invention. It is a laser device.

【0012】 [0012]

【0013】 [0013]

【0014】 [0014]

【0015】 [0015]

【0016】 [0016]

【0017】但し、nS はSHG素子の波長1.06μ
m付近における屈折率を示し、δL、δH はそれぞれ第
1層及び第3層のSiO2層と、第2層のAl23層の
位相差を示し、λ0 は基本波の発振波長1.06μmを
示す。
However, n S is the wavelength of the SHG element 1.06 μ
The refractive index near m, δ L and δ H indicate the phase difference between the first and third SiO 2 layers and the second Al 2 O 3 layer, respectively, and λ 0 is the oscillation of the fundamental wave. The wavelength is 1.06 μm.

【0018】[0018]

【作用】反射防止膜は、基本波に対して低損失でなけれ
ばならない。もし、この反射防止膜に損失があるとレー
ザの発振効率を低下させる原因となるからである。反射
防止膜のレーザ共振器内の基本波に対する損失の原因に
は、吸収、散乱そして反射がある。吸収と散乱について
は、各層を構成する膜材質の物性に直接関係するもので
あるが、反射防止膜として用いる材質には耐湿性が求め
られているため、耐湿性に優れた酸化物系の誘電体光学
薄膜とする必要があり、この観点より膜材質としてSi
2、Al23、ZrO2、HfO2、Ta25、TiO2
の適否を検討した。
The antireflection film must have a low loss with respect to the fundamental wave. This is because if there is a loss in this antireflection film, it will cause a decrease in laser oscillation efficiency. The causes of the loss of the antireflection film with respect to the fundamental wave in the laser resonator are absorption, scattering and reflection. Absorption and scattering are directly related to the physical properties of the film materials that make up each layer, but since the material used as an antireflection film is required to have moisture resistance, oxide-based dielectrics with excellent moisture resistance are required. It is necessary to use a body optical thin film. From this viewpoint, Si is used as the film material.
O 2 , Al 2 O 3 , ZrO 2 , HfO 2 , Ta 2 O 5 , TiO 2
The suitability of was examined.

【0019】1) 低吸収材料の選定 波長1.06μmにおける光学薄膜の吸収は、光学薄膜
にレーザを照射し、その温度上昇特性を解析することか
ら光学薄膜の吸収を求める特開平3−223659記載
のレーザカロリーメータ法を適用して測定した。表1に
示す測定結果から、SiO2膜とAl23膜の吸収が小
さいことがわかる。
1) Selection of low absorption material For absorption of an optical thin film at a wavelength of 1.06 μm, the absorption of the optical thin film is determined by irradiating the optical thin film with a laser and analyzing the temperature rise characteristic thereof. Was measured by applying the laser calorimeter method. From the measurement results shown in Table 1, it is understood that the absorption of the SiO 2 film and the Al 2 O 3 film is small.

【0020】 表 1 ─────────────────────────────────── 膜材質 SiO2 Al23 ZrO2 HfO2 Ta25 TiO2 ─────────────────────────────────── 吸収(ppm) <10 <10 20 15 30 40 ───────────────────────────────────Table 1 ─────────────────────────────────── Film material SiO 2 Al 2 O 3 ZrO 2 HfO 2 Ta 2 O 5 TiO 2 ─────────────────────────────────── Absorption (ppm) <10 < 10 20 15 30 40 ────────────────────────────────────

【0021】2) 低散乱材料の選定 散乱をTISとし、表面粗さをσとすると、両者の間に
は式(13)に示される関係がある。 TIS=(4πσ/λTIS2 (13) ここで、λTIS は測定レーザ波長である。
2) Selection of Low Scattering Material If scattering is TIS and surface roughness is σ, there is a relationship shown in equation (13) between them. TIS = (4πσ / λ TIS ) 2 (13) where λ TIS is the measurement laser wavelength.

【0022】式13が示すように、散乱は表面粗さの自
乗に比例するので、散乱を小さくするためには表面粗さ
を小さくしなければならない。光学薄膜の場合、表面粗
さを小さくすることは、グレインサイズを小さくするこ
とに相当する。このことより、本発明において、光学薄
膜の散乱については波長1.06μmのレーザ光の散乱
を直接測定せずに走査型電子顕微鏡を用いて、光学薄膜
のグレインサイズを測定し、評価した。測定結果を表2
に示した。そして、表2よりSiO2膜とAl2 3膜の
グレインサイズが小さいことがわかった。 1) の結果と
合せれば、SHG素子の多層反射防止膜を構成する各層
の膜材質は、SiO2膜とAl23膜の組合せが最適と
言える。
As shown in equation 13, scattering is a function of surface roughness.
Since it is proportional to the power, the surface roughness is required to reduce the scattering.
Must be small. Surface roughness for optical thin films
Decreasing the grain size reduces the grain size.
Is equivalent to. Therefore, in the present invention, the optical thin
Regarding the scattering of the film, the scattering of the laser light with a wavelength of 1.06 μm
Optical thin film using a scanning electron microscope without directly measuring
The grain size was measured and evaluated. Table 2 shows the measurement results
It was shown to. And from Table 2, SiO2Membrane and Al2O 3 membranes
It turned out that the grain size was small. The result of 1)
If combined, each layer constituting the multilayer antireflection film of the SHG element
Film material is SiO2Membrane and Al2O3The best combination of membranes
I can say.

【0023】 表 2 ─────────────────────────────────── 膜材質 SiO2 Al23 ZrO2 HfO2 Ta25 TiO2 ─────────────────────────────────── グレイン 5 10 25 20 20 10 サイズ(nm) 〜15 〜20 〜30 〜30 〜30 〜30 ───────────────────────────────────Table 2 ─────────────────────────────────── Film material SiO 2 Al 2 O 3 ZrO 2 HfO 2 Ta 2 O 5 TiO 2 ─────────────────────────────────── Grain 5 10 25 20 20 20 10 Size (nm) -15-20-20-30-30-30-30 ─────────────────────────────────── ─

【0024】3) 2層反射防止膜の可能性 吸収と散乱によるレーザ共振器内の基本波に対する損失
を小さくするために、多層反射防止膜の全体の膜厚を薄
くすれば良いことは明かである。しかし、膜厚と反射率
と材料の屈折率とは一定の関係があり、単に薄くしても
反射率を低減するという目的は達成できない。そこで、
SiO2膜(屈折率:1.44)とAl23膜(屈折
率:1.60)とを組合せ、反射率を最小とし得る膜厚
に付いて検討した。
3) Possibility of a two-layer antireflection film It is clear that the total thickness of the multilayer antireflection film may be reduced in order to reduce the loss of the fundamental wave in the laser resonator due to absorption and scattering. is there. However, there is a fixed relationship between the film thickness, the reflectance, and the refractive index of the material, and the purpose of reducing the reflectance cannot be achieved even if the thickness is simply reduced. Therefore,
The SiO 2 film (refractive index: 1.44) and the Al 2 O 3 film (refractive index: 1.60) were combined to study the film thickness that can minimize the reflectance.

【0025】空気側から第1層目の材質の屈折率をn1
とし、物理的膜厚をd1とし、第2層目の材質の屈折率
をn2とし、物理的膜厚をd2とした時、光学的膜厚n1
1、n2d2がそれぞれ0.25λ0の2層反射防止膜で
は式(14)、あるいは式(15)を満足しなければならない。
The refractive index of the material of the first layer is n 1 from the air side.
And the physical film thickness is d 1 , the refractive index of the material of the second layer is n 2 , and the physical film thickness is d 2 , the optical film thickness n 1
In a two-layer antireflection film in which d 1 and n 2d 2 are 0.25λ 0 , respectively, the formula (14) or the formula (15) must be satisfied.

【0026】 n1 2S=n2 20 (14)N 1 2 n S = n 2 2 n 0 (14)

【0027】 n12=n0S (15) 但し、n0、nSは、それぞれ空気(n0≒1)、SHG
素子の波長1.06μm付近における屈折率である。
N 1 n 2 = n 0 n S (15) where n 0 and n S are air (n 0 ≈1) and SHG, respectively.
It is the refractive index in the vicinity of the wavelength of the element of 1.06 μm.

【0028】式(14)、あるいは式(15)のn1,n2にSi
2膜とAl23膜の屈折率を代入すると、式14も式
15は成立しない。よって、SiO2膜とAl23膜と
を用いる限り、第1層目の光学的膜厚n11が0.25
λ0、第2層目の光学的膜厚n22が0.25λ0となる
の2層反射防止膜は設計不可能である。
Si is used as n 1 and n 2 in the equation (14) or the equation (15).
Substituting the refractive indexes of the O 2 film and the Al 2 O 3 film, the expressions 14 and 15 are not satisfied. Therefore, as long as the SiO 2 film and the Al 2 O 3 film are used, the optical film thickness n 1 d 1 of the first layer is 0.25.
lambda 0, 2-layer antireflection film optical thickness n 2 d 2 of the second layer is 0.25 [lambda 0 is impossible design.

【0029】次に、空気側から第1層、第2層とした時
の各層の光学的膜厚が何れも0.25λ0ではない2層
膜が反射防止膜として機能するためには、第1層目の屈
折率n1と第2層目の屈折率n2は式(16)を満足しなけれ
ばならない。式(16)の屈折率n2にAl23膜の屈折率
を代入すると、屈折率n1は1.07以下となり、第1
層膜の材質としてSiO2を用いることはできないこと
がわかる。よって、第1,2層膜の各光学的膜厚が0.
25λ0でない2層膜反射防止膜も設計不可能である。
Next, in order for the two-layer film in which the optical thickness of each layer is not 0.25λ 0 when the first layer and the second layer are arranged from the air side to function as an antireflection film, The refractive index n 1 of the first layer and the refractive index n 2 of the second layer must satisfy the expression (16). Substituting the refractive index of the Al 2 O 3 film for the refractive index n 2 of the equation (16), the refractive index n 1 becomes 1.07 or less,
It can be seen that SiO 2 cannot be used as the material of the layer film. Therefore, the optical thickness of each of the first and second layer films is 0.
A two-layer antireflection film that is not 25λ 0 cannot be designed.

【0030】 n1≦(n0/nS0.52 (16)N 1 ≦ (n 0 / n S ) 0.5 n 2 (16)

【0031】4) 3層反射防止膜 種々検討した結果、本発明者は3層反射防止膜としてS
iO2とAl23とを用いることにより本発明の目的を
達成できる反射防止膜の作成が可能であることがわかっ
た。以下これについて説明する。
4) Three-layer antireflection film As a result of various investigations, the present inventor found that the three-layer antireflection film was S.
It was found that the use of iO 2 and Al 2 O 3 makes it possible to form an antireflection film that can achieve the object of the present invention. This will be described below.

【0032】すなわち、第1層と第3層とが同じ材質で
同じ厚さの3層反射防止膜を想定した光学計算によれ
ば、SHG素子と第1及び第3層と第2層との波長1.
06μm付近における屈折率をそれぞれnS、nL、nH
とし、第1及び第3層と第2層との位相差をそれぞれδ
L、δH とし、第1及び第3層と第2層との物理的膜厚
をそれぞれdL、dH とし、λ0を基本波の発振波長1.
06μmとしたとき、下記式(17)〜(21)を満足する第1
及び第3層の光学的膜厚nLLと第2層の光学的膜厚n
HHとが有理解として存在するならば、その解を光学的
膜厚とする3層反射防止膜が本発明の目的を達成するも
のとなる。
That is, according to an optical calculation assuming that the first layer and the third layer are made of the same material and have the same thickness, a three-layer antireflection film, the SHG element and the first and third layers and the second layer are Wavelength 1.
The refractive indexes near 06 μm are n S , n L , and n H , respectively.
And the phase difference between the first and third layers and the second layer is δ respectively.
L and δ H , the physical film thicknesses of the first and third layers and the second layer are d L and d H , respectively, and λ 0 is the oscillation wavelength of the fundamental wave 1.
When set to 06 μm, the first that satisfies the following formulas (17) to (21)
And the optical thickness n L d L of the third layer and the optical thickness n of the second layer
If H d H is present as an understanding, a three-layer antireflection film having the solution as an optical thickness achieves the object of the present invention.

【0033】 [0033]

【0034】 [0034]

【0035】 [0035]

【0036】 [0036]

【0037】 但し、nS はSHG素子の波長1.06μm付近におけ
る屈折率を示し、δL、δH はそれぞれ第1層及び第3
層のSiO2層と、第2層のAl23層の位相差を示
し、λ0 は基本波の発振波長1.06μmを示す。
[0037] Here, n S represents the refractive index of the SHG element near the wavelength of 1.06 μm, and δ L and δ H are the first layer and the third layer, respectively.
The phase difference between the SiO 2 layer of the second layer and the Al 2 O 3 layer of the second layer is shown, and λ 0 shows the oscillation wavelength of the fundamental wave of 1.06 μm.

【0038】本発明において、例えば第1,3層がSi
2で、第2層がAl23のLiNbO3製SHG素子用
3層反射防止膜の各層の光学的膜厚を求めると、LiN
bO3の屈折率nSは2.23と前記各値より、空気側か
ら第1層目のSiO2の光学的膜厚nLLは0.097
λ0、第2層目のAl23の光学的膜厚nHHは0.0
56λ0、第3層目のSiO2の光学的膜厚nLLは0.
097λ0となる。よって、各層の光学的膜厚が上記対
応する値となる3層反射防止膜が本発明の3層反射防止
膜の1例となる。
In the present invention, for example, the first and third layers are made of Si.
In O 2, the second layer determining the optical film thickness of each layer of the three-layer anti-reflection film LiNbO 3 made SHG element of Al 2 O 3, LiN
The refractive index n S of bO 3 is 2.23, and from the above values, the optical film thickness n L d L of SiO 2 of the first layer from the air side is 0.097.
λ 0 , Al 2 O 3 optical film thickness n H d H of the second layer is 0.0
56λ 0 , the optical film thickness n L d L of SiO 2 of the third layer is 0.
It becomes 097λ 0 . Therefore, a three-layer antireflection film in which the optical film thickness of each layer has the corresponding value described above is an example of the three-layer antireflection film of the present invention.

【0039】また、式(17)〜(21)のnLをAl23の屈
折率、dLをAl23の物理的膜厚とし、nHをSiO2
の屈折率、dHをSiO2の物理的膜厚に置き換えて計算
した場合、空気側から第1層目のAl23の光学的膜厚
LLは0.068λ0、第2層目のSiO2の光学的膜
厚nHHは0.114λ0、第3層目のAl23の光学
的膜厚nLLは0.068λ0の膜構成となり、上記の
3層反射防止膜と同様本発明の3層反射防止膜となり得
る。しかし、第1層目にはより硬度が高く、耐湿性に優
れたSiO2を用いることが必要であり、よってこの観
点よりこの構成の膜は本発明の3層反射防止膜とはなり
得ない。また、3層反射防止膜のレーザ共振器内の基本
波に対する損失を低減するために、第2層目のAl23
層のグレインサイズを10nm以下とすることが好まし
い。
Further, equation (17) to the refractive index of n L of Al 2 O 3 (21), the d L is the physical thickness of the Al 2 O 3, the n H SiO 2
When the refractive index, d H, is calculated by replacing the physical film thickness of SiO 2 with the physical film thickness of SiO 2 , the optical film thickness n L d L of Al 2 O 3 of the first layer from the air side is 0.068λ 0 , The optical film thickness n H d H of SiO 2 of the layer is 0.114λ 0 , and the optical film thickness n L d L of Al 2 O 3 of the third layer is 0.068λ 0 . Like the three-layer antireflection film, it can be the three-layer antireflection film of the present invention. However, it is necessary to use SiO 2 having higher hardness and excellent moisture resistance for the first layer. Therefore, from this viewpoint, the film having this structure cannot be the three-layer antireflection film of the present invention. . Further, in order to reduce the loss of the fundamental wave in the laser resonator of the three-layer antireflection film, the second layer of Al 2 O 3 is used.
The grain size of the layer is preferably 10 nm or less.

【0040】次に本発明の第2次高調波発生素子は、上
記の様な構成の本発明の3層反射防止膜をそのレーザ入
出射端面に設けたものである。この3層反射防止膜を設
けるに際し適用できる方法としては、真空蒸着法、スパ
ッタリング法等があり、特にこだわるものではないが、
第2層のAl23膜のグレインサイズを小さくするため
には酸素のイオンアシスト蒸着法を用いることが好まし
い。因みに、基板加熱温度を300℃とする一般的な電
子ビーム蒸着法によりAl23膜を作成すれば、グレイ
ンサイズは10〜20nmであるが、イオン化ガスとし
て酸素を用い、加速電圧を100Vとし、加速電流を1
0mAとしてイオンアシスト蒸着法によりAl2O3膜を
作成すれば、グレインサイズを5〜10nmとなる。な
お、第1及び第3層目のSiO2膜ついては、イオンア
シストを適用してもグレインサイズは変化しないが、膜
形成の都合上イオンアシスト法を適用しても支障はな
い。この際、イオン加速電圧が500V程度より高くな
るとSiO2膜がわずかに着色することがあるので注意
を要する。最後に、本発明のLD励起固体レーザ装置
は、本発明のSHG素子を用いたLD励起固体レーザ装
置であり、それ以上説明を要しない。
Next, the second harmonic generating element of the present invention has the three-layer antireflection film of the present invention having the above-described structure provided on the laser entrance / exit end face thereof. As a method that can be applied when the three-layer antireflection film is provided, there are a vacuum vapor deposition method, a sputtering method, and the like, which are not particularly particular,
In order to reduce the grain size of the Al 2 O 3 film of the second layer, it is preferable to use the ion assisted vapor deposition method of oxygen. By the way, if an Al 2 O 3 film is formed by a general electron beam evaporation method in which the substrate heating temperature is 300 ° C., the grain size is 10 to 20 nm, but oxygen is used as the ionizing gas, and the acceleration voltage is 100 V. , Acceleration current 1
If an Al2O3 film is formed by the ion assisted vapor deposition method with 0 mA, the grain size becomes 5 to 10 nm. Regarding the first and third layers of SiO 2 film, the grain size does not change even if ion assist is applied, but there is no problem even if the ion assist method is applied for the convenience of film formation. At this time, it should be noted that the SiO 2 film may be slightly colored when the ion acceleration voltage is higher than about 500V. Finally, the LD-pumped solid-state laser device of the present invention is an LD-pumped solid-state laser device using the SHG element of the present invention and requires no further explanation.

【0041】[0041]

【実施例】次に本発明の実施例について述べる。 (実施例1)以下に本発明の実施例を詳細に説明する。
具体的には、LD励起固体レーザ装置に用いている屈折
率nSが2.23のLiNbO3のSHG素子の3層反射
防止膜について説明する。
EXAMPLES Next, examples of the present invention will be described. Example 1 An example of the present invention will be described in detail below.
Specifically, the three-layer antireflection film of the SHG element of LiNbO 3 having a refractive index n S of 2.23 used in the LD pumped solid-state laser device will be described.

【0042】はじめに、各層の光学的膜厚を求める。
(17)〜(21)式のnL、nHにそれぞれSiO2
の屈折率1.44、Al23膜の屈折率1.60を代入
して計算すると、第1層目と第3層目(SiO2膜)の
光学的膜厚nLLと、第2層目(Al23膜)の光学的
膜厚nHHとはそれぞれ0.097λ0,0.056λ0
となる。
First, the optical film thickness of each layer is obtained.
Substituting the refractive index of 1.44 of the SiO 2 film and the refractive index of 1.60 of the Al 2 O 3 film into n L and n H of the equations (17) to (21), respectively, the first layer and the second layer are calculated. The optical film thickness n L d L of the third layer (SiO 2 film) and the optical film thickness n H d H of the second layer (Al 2 O 3 film) are 0.097λ 0 and 0.056λ 0 , respectively.
Becomes

【0043】次に、3層反射防止膜の作成方法を述べ
る。SHG素子を洗剤,有機溶剤等を用いて超音波洗浄
を行った。反射防止膜の作成にはイオンアシスト蒸着装
置を用い、試料をセットした後、300℃ に加熱しな
がら、1×10-6Torrまで排気し、イオン化ガスと
して酸素を用い、蒸着速度0.5nm/secで所定の
厚さのSiO2膜を形成した。次いで、酸素ガスを1×
10-4Torrまで導入し、イオン化ガスとして酸素を
用い、加速電圧を100Vとし、加速電流を10mAと
する、所謂イオンアシスト法を用いて0.3nm/se
cの蒸着速度で所定の厚さのAl23膜を形成した。そ
して、再度1×10-6Torrまで排気し、イオン化ガ
スとして酸素ガスを用い、蒸着速度0.5nm/sec
で所定の厚さのSiO2膜を形成した。なお、各層の光
学的膜厚の制御には光学的干渉モニターを用いた。
Next, a method of forming the three-layer antireflection film will be described. The SHG element was ultrasonically cleaned using a detergent, an organic solvent and the like. An ion-assisted vapor deposition apparatus was used to form the antireflection film. After setting the sample, the sample was heated to 300 ° C. and evacuated to 1 × 10 −6 Torr, oxygen was used as the ionized gas, and the vapor deposition rate was 0.5 nm / An SiO 2 film having a predetermined thickness was formed in sec. Then add 1x oxygen gas
0.3 nm / se by using a so-called ion assist method in which oxygen is introduced as an ionized gas, acceleration voltage is 100 V, and acceleration current is 10 mA by introducing up to 10 −4 Torr.
An Al 2 O 3 film having a predetermined thickness was formed at the vapor deposition rate of c. Then, the gas was exhausted again to 1 × 10 −6 Torr, oxygen gas was used as the ionization gas, and the deposition rate was 0.5 nm / sec.
Then, a SiO 2 film having a predetermined thickness was formed. An optical interference monitor was used to control the optical film thickness of each layer.

【0044】図2に、この反射防止膜の概略図を示す。
図3に、この3層反射防止膜の分光反射特性を示す。比
較にために、従来のSiO2の単層反射防止膜を施した
LiNbO3製SHG素子とAl23の単層反射防止膜
を施したLiNbO3製SHG素子も作成し、上記本発
明の3層反射防止膜付LiNbO3のSHG素子ととも
に500mWLD励起Nd:YVO4レーザに配置して
それぞれのSH波出力を測定し、その結果を表3に示し
た。表3に示すSH波出力の測定結果から、本発明の3
層反射防止膜付LiNbO3のSHG素子を用いたLD
励起固体レーザ装置は、従来の単層反射防止膜付LiN
bO3のSHG素子を用いたLD励起固体レーザ装置よ
り1.5倍以上のSH波出力得ることができた。
FIG. 2 shows a schematic view of this antireflection film.
FIG. 3 shows the spectral reflection characteristics of this three-layer antireflection film. For the comparison, also creates LiNbO 3 made SHG element subjected to single-layer anti-reflection film of a conventional LiNbO 3 made SHG device was subjected to SiO 2 single layer anti-reflective film Al 2 O 3, of the present invention 3-layer 500mWLD excited with SHG element of the antireflection film-LiNbO 3 Nd: YVO4 disposed in a laser to measure the respective SH wave output, the results are shown in Table 3. From the measurement results of SH wave output shown in Table 3, the results of 3 of the present invention were obtained.
LD using LiNbO 3 SHG element with anti-reflection coating
The pumping solid-state laser device is a conventional LiN with a single-layer antireflection film.
and LD pumped solid-state laser apparatus than can be obtained SH wave output 1.5 times or more using the SHG element bO 3.

【0045】 表 3 ─────────────────────────────────── 膜の種類 本発明の3層反射防止膜 単層反射防止膜 SiO2/Al23/SiO2 SiO2 Al23 ─────────────────────────────────── SH波出力 25 15 6 (mW) ───────────────────────────────────Table 3 ─────────────────────────────────── Film type Three-layer antireflection of the present invention Film Single-layer antireflection film SiO 2 / Al 2 O 3 / SiO 2 SiO 2 Al 2 O 3 ──────────────────────────── ─────── SH wave output 25 15 6 (mW) ────────────────────────────────── ─

【0046】[0046]

【発明の効果】本発明の3層反射防止膜は残留反射をさ
らに低減できるため、波長1.06μm付近における屈
折率が2.10〜2.50のSHG素子に該3層反射防
止膜を設けて作成したSHG素子を用いて構成したLD
励起固体レーザ装置を用いれば、より効率よく高出力の
SH波を得ることができる。
Since the three-layer antireflection film of the present invention can further reduce the residual reflection, the three-layer antireflection film is provided on the SHG element having a refractive index of 2.10 to 2.50 at a wavelength of about 1.06 μm. LD constructed using SHG element created by
If the pumped solid-state laser device is used, high-output SH waves can be obtained more efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】 代表的なLD励起固体レーザ装置の概略図で
ある。
FIG. 1 is a schematic diagram of a typical LD-pumped solid-state laser device.

【図2】 本発明のSHG素子に施した3層反射防止膜
の概略図である。
FIG. 2 is a schematic view of a three-layer antireflection film applied to the SHG element of the present invention.

【図3】 本発明のSHG素子に施した3層反射防止膜
の分光反射特性である。
FIG. 3 is a spectral reflection characteristic of a three-layer antireflection film applied to the SHG element of the present invention.

【符号の説明】[Explanation of symbols]

1−−−LD、2−−−集光レンズ、3−−−固体レー
ザ素子、4−−−SHG素子、5−−−出力鏡、6−−
−光学薄膜、7−−−光学薄膜、8−−−光学薄膜、9
−−−光学薄膜、10−−−光学薄膜、11−−−光学
薄膜、12−−−光学薄膜、13−−−SiO2膜、1
4−−−Al2O3膜、15−−−SiO2膜、16−−
−SHG素子
1 --- LD, 2 --- condensing lens, 3 --- solid-state laser device, 4 --- SHG device, 5 --- output mirror, 6 ----
-Optical thin film, 7 --- Optical thin film, 8 --- Optical thin film, 9
--- Optical thin film, 10 --- Optical thin film, 11 --- Optical thin film, 12 --- Optical thin film, 13 --- SiO2 film, 1
4 --- Al2O3 film, 15 --- SiO2 film, 16 ---
-SHG element

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体レーザと、集光レンズと、Nd
ドープ固体レーザ結晶から成る固体レーザ素子と、波長
1.06μm付近における屈折率が2.10〜2.50
の第2高調波発生素子と、出力鏡とから基本的に構成さ
れる半導体レーザ励起固体レーザ装置において、SiO
2層、Al23層、SiO2層の順に構成され、かつ、そ
れぞれの膜の波長1.06μm付近におけるSiO2
Al23との屈折率をnL、nH とし、物理的膜厚を
L、dH とした時に、第1及び第3層の光学的膜厚nL
Lと、第2層の光学的膜厚nHH とが、下記式 (1)
〜(2)を満足するものであることを特徴とする第2高調
波発生素子用3層反射防止膜。 但し、nS は第2高調波発生素子の波長1.06μm付
近における屈折率を示し、δL、δH はそれぞれ第1及
び第3層目のSiO2層と第2層目のAl23層との位
相差を示し、λ0は基本波の発振波長1.06μmを示
す。
1. A semiconductor laser, a condenser lens, and Nd
A solid-state laser device composed of a doped solid-state laser crystal and having a refractive index of 2.10 to 2.50 in the vicinity of a wavelength of 1.06 μm.
In a semiconductor laser pumped solid-state laser device basically composed of a second harmonic generation element of
Two layers, an Al 2 O 3 layer and a SiO 2 layer are formed in this order, and the refractive index of SiO 2 and Al 2 O 3 near the wavelength of 1.06 μm of each film is n L , n H When the film thickness is d L and d H , the optical film thickness n L of the first and third layers
d L and the optical thickness n H d H of the second layer are expressed by the following formula (1)
A three-layer antireflection film for a second harmonic generation element, characterized by satisfying (2) to (2). Here, n S represents the refractive index in the vicinity of the wavelength of 1.06 μm of the second harmonic generation element, and δ L and δ H are the first and third layers of SiO 2 layer and the second layer of Al 2 O, respectively. The phase difference from the three layers is shown, and λ 0 shows the oscillation wavelength of the fundamental wave of 1.06 μm.
【請求項2】 請求項1記載の3層反射防止膜におい
て、第2層のAl2O3の平均グレインサイズ(粒径)が
10nm以下となっていることを特徴とする第2高調波
発生素子用3層反射防止膜。
2. The three-layer antireflection film according to claim 1, wherein the average grain size (grain size) of Al 2 O 3 in the second layer is 10 nm or less. Three-layer antireflection film.
【請求項3】 請求項1〜2記載の第2高調波発生素
子用3層反射防止膜を、屈折率が2.10〜2.50の
第2高調波発生素子のレーザ入出射端面に設けたもので
あることを特徴とする第2高調波発生素子。
3. The three-layer antireflection film for a second harmonic wave generating element according to claim 1 or 2 is provided on a laser entrance / exit end face of a second harmonic wave generating element having a refractive index of 2.10 to 2.50. A second harmonic generation element, characterized in that
【請求項4】 請求項3記載の第2高調波発生素子を
用いたことを特徴とするLD励起固体レーザ装置。
4. An LD-pumped solid-state laser device using the second harmonic generation element according to claim 3.
JP4260542A 1992-09-04 1992-09-04 Solid-state laser device excited with semiconductor laser Pending JPH0682862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4260542A JPH0682862A (en) 1992-09-04 1992-09-04 Solid-state laser device excited with semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4260542A JPH0682862A (en) 1992-09-04 1992-09-04 Solid-state laser device excited with semiconductor laser

Publications (1)

Publication Number Publication Date
JPH0682862A true JPH0682862A (en) 1994-03-25

Family

ID=17349411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4260542A Pending JPH0682862A (en) 1992-09-04 1992-09-04 Solid-state laser device excited with semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0682862A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7714343B2 (en) 2007-09-18 2010-05-11 Hitachi Cable, Ltd. Light emitting device
EP1849193B1 (en) * 2005-01-24 2011-09-14 Cree, Inc. LED with current confinement structure and surface roughening
US8421085B2 (en) 2010-03-11 2013-04-16 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
WO2013146382A1 (en) * 2012-03-30 2013-10-03 Hoya株式会社 Method for manufacturing eyeglass lens
JPWO2014051150A1 (en) * 2012-09-28 2016-08-25 Hoya株式会社 Eyeglass lenses

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1849193B1 (en) * 2005-01-24 2011-09-14 Cree, Inc. LED with current confinement structure and surface roughening
US7714343B2 (en) 2007-09-18 2010-05-11 Hitachi Cable, Ltd. Light emitting device
US8421085B2 (en) 2010-03-11 2013-04-16 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
WO2013146382A1 (en) * 2012-03-30 2013-10-03 Hoya株式会社 Method for manufacturing eyeglass lens
JPWO2013146382A1 (en) * 2012-03-30 2015-12-10 Hoya株式会社 Manufacturing method of spectacle lens
US9651802B2 (en) 2012-03-30 2017-05-16 Hoya Corporation Method of manufacturing eyeglass lens
JPWO2014051150A1 (en) * 2012-09-28 2016-08-25 Hoya株式会社 Eyeglass lenses
JPWO2014051151A1 (en) * 2012-09-28 2016-08-25 Hoya株式会社 Eyeglass lenses
AU2013320854B2 (en) * 2012-09-28 2017-11-23 Hoya Corporation Spectacle lens
AU2013320853B2 (en) * 2012-09-28 2017-11-23 Hoya Corporation Spectacle lens
US9927557B2 (en) 2012-09-28 2018-03-27 Hoya Corporation Eyeglass lens
US10054715B2 (en) 2012-09-28 2018-08-21 Hoya Corporation Eyeglass lens having improved heat resistance and scratch resistance

Similar Documents

Publication Publication Date Title
US5513039A (en) Ultraviolet resistive coated mirror and method of fabrication
JPS6037631B2 (en) Argon ion laser device
EP0626596B1 (en) Ultraviolet resistive antireflective coating
JP2008515174A (en) Multiple reflection delay line member for laser light, and resonator and short pulse laser device including such delay line member
US20120236894A1 (en) Wavelength conversion device, solid-state laser apparatus, and laser system
US9030733B2 (en) Spatially relaying radiation components
US5608577A (en) Optical mirror and optical device using the same
JPH0682862A (en) Solid-state laser device excited with semiconductor laser
US5741595A (en) Ultraviolet optical part having coat of ultraviolet optical thin film, and wavelength-changing device and ultraviolet light source unit having coat of ultraviolet optical thin film
JPH08146218A (en) Polarizing beam splitter
JP3735975B2 (en) Wavelength conversion element
JPH104232A (en) Etalon and single longitudinal mode laser
JPH07154033A (en) Semiconductor laser pumped second harmonic generating solid state laser
JP2012168498A (en) Wavelength conversion element, solid-state laser device, and laser system
JPH0697545A (en) Solid laser equipment
JPH06188500A (en) Ld excited second-harmonic generating solid-state laser device and manufacture thereof
JPH0750441A (en) Ld excitation second harmonic generating solid-state laser equipment
JP5112033B2 (en) Brewster window and laser oscillator
JPH04333834A (en) Antireflection film consisting of multilayered dielectric films
JPH05196814A (en) Polarizing beam splitter
JPH04196376A (en) Laser excitation solid-state laser device
JP2000323771A (en) Solid-state laser system
JPS60187082A (en) Semiconductor laser element and manufacture thereof
KR100284759B1 (en) Second harmonic generator
JP2000347232A (en) Optical element and optical system for wavelength conversion