JPH0665469B2 - Manufacturing method of fine-grained diamond sintered body - Google Patents
Manufacturing method of fine-grained diamond sintered bodyInfo
- Publication number
- JPH0665469B2 JPH0665469B2 JP63324514A JP32451488A JPH0665469B2 JP H0665469 B2 JPH0665469 B2 JP H0665469B2 JP 63324514 A JP63324514 A JP 63324514A JP 32451488 A JP32451488 A JP 32451488A JP H0665469 B2 JPH0665469 B2 JP H0665469B2
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- sintered body
- fine
- powder
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、難削材料の微細加工用工具材料、仕上げ加工
面の平滑さを要求される線引ダイス用材料等に好適な微
粒ダイヤモンド焼結体の製造法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to fine grain diamond firing suitable as a tool material for fine machining of difficult-to-cut materials, a material for wire drawing dies required to have a smooth finished surface, and the like. The present invention relates to a method for producing a tie.
(従来の技術及び解決しようとする課題) ダイヤモンド単結晶は、硬度、耐摩耗性に関して現在知
られている物質の中で最も優れている物質である。しか
しながら、ダイヤモンド単結晶はその脆さ、入手可能な
大きさの制限等に欠点がある。これらの欠点を解消する
目的で、ダイヤモンド焼結体が開発され、市販されてい
る。(Prior Art and Problems to be Solved) A diamond single crystal is the most excellent substance among the currently known substances in terms of hardness and wear resistance. However, diamond single crystals have drawbacks such as brittleness and limitation of available size. For the purpose of eliminating these drawbacks, diamond sintered bodies have been developed and are commercially available.
これらの焼結体は、Al−Si系合金、セラミックス等の難
削材料の切削工具材料として優れた性質を示すことが知
られている。しかし、これらの焼結体を鋭い刃先形状に
加工することは大変難しいという問題がある。その理由
は、ダイヤミンド焼結体の粒子の大きさが数ミクロン以
上と大きいことに起因している。It is known that these sintered bodies exhibit excellent properties as cutting tool materials for difficult-to-cut materials such as Al-Si alloys and ceramics. However, it is very difficult to process these sintered bodies into a sharp cutting edge shape. The reason is that the size of the particles of the diamined sintered body is as large as several microns or more.
この問題を解決するために、従来、鋭い刃先形状に加工
可能なダイヤモンド焼結体として、微粒ダイヤモンド焼
結体が製造されている。その製造法としては以下の方法
が知られている。In order to solve this problem, conventionally, a fine-grained diamond sintered body has been manufactured as a diamond sintered body that can be processed into a sharp cutting edge shape. The following methods are known as the manufacturing method.
(イ) 相当量のWC等の炭化物をダイヤモンド粉末に添
加し、高温高圧条件下で焼結することにより、微粒ダイ
ヤモンド焼結体を得る方法(特公昭61−58432号)。こ
の方法によれば、ダイヤモンド粒子相互の完全な接合
が、WC等の炭化物により阻害されるため、ダイヤモンド
の粒成長が抑制され、1μm以下の微粒子よりなるダイ
ヤモンド焼結体が得られる。(B) A method of obtaining a fine-grained diamond sintered body by adding a considerable amount of carbide such as WC to diamond powder and sintering it under high temperature and high pressure conditions (Japanese Patent Publication No. 61-58432). According to this method, the complete bonding of the diamond particles to each other is hindered by the carbide such as WC, so that the grain growth of diamond is suppressed and a diamond sintered body composed of fine particles of 1 μm or less can be obtained.
(ロ) 爆薬を用いた衝撃圧縮法により、約90GPaと非
常に高い圧力下で平均粒径0.5μmの微粒子よりなるダ
イヤモンド焼結体を合成する方法(ニューダイヤモンド
フォーラム、第10回定例研究会(昭和63年7月)、近藤
建一)。(B) A method of synthesizing a diamond sintered body composed of fine particles with an average particle size of 0.5 μm under a very high pressure of about 90 GPa by the impact compression method using explosives (New Diamond Forum, 10th Regular Study Group ( July 1988), Kenichi Kondo).
しかし、前者の(イ)の方法による微粒ダイヤモンド焼
結体は、ダイヤモンド粒子同士の直接結合をWC等の炭化
物で阻害しているため、鋭い刃先形状に加工可能ではあ
るものの、ダイヤモンド同士の結合が存在していないの
で、その硬さ及び耐摩耗性に問題がある。However, in the fine grained diamond sintered body according to the former method (a), since direct bonding between diamond particles is inhibited by carbides such as WC, it is possible to form a sharp cutting edge shape, but the bonding between diamonds is Since it does not exist, there is a problem in its hardness and wear resistance.
また、後者の(ロ)の方法による微粒ダイヤモンド焼結
体の合成法は、約90GPaと非常に高い圧力条件下におけ
る合成法であるため、クラックのないダイヤモンド焼結
体の合成が大変難しく、また、焼結体の密度も98%程度
である。これらのことから、焼結体を鋭い刃先形状の工
具に加工することは、現状では困難であると考えられ
る。The latter method (b) is a method for synthesizing fine-grained diamond sinters under very high pressure conditions of about 90 GPa, so it is very difficult to synthesize diamond sinters without cracks. The density of the sintered body is about 98%. From these things, it is considered difficult to process the sintered body into a tool having a sharp cutting edge shape at present.
以上の問題点を解決するには更に基礎的な研究の積み重
ねが必要であろう。To solve the above problems, more basic research will be necessary.
本発明は、上記従来技術の問題点を解決するためになさ
れたものであって、ダイヤモンド粒子同士の直接結合を
有し、高硬度で耐摩耗性に優れ、平均粒径が0.5μm以
下の微粒ダイヤモンド焼結体を製造する方法を提供する
ことを目的とするものである。The present invention has been made to solve the above-mentioned problems of the prior art, and has a direct bond between diamond particles, has high hardness and excellent wear resistance, and has an average particle size of 0.5 μm or less. It is an object of the present invention to provide a method for producing a diamond sintered body.
(課題を解決するための手段) 前記目的を達成するべく、本発明者は、微粒ダイヤモン
ド焼結体の合成法について鋭意研究を重ねた結果、焼結
に先立って、出発ダイヤモンド粉末の二次粒子を、立方
晶窒化ほう素粉末と高分子物質の添加のもとで熱処理す
ることにより抑制し、しかる後に焼結することにより、
異常粒成長がなくダイヤモンド粒子同士が直接結合し、
均質且つ微粒子よりなるダイヤモンド焼結体を得ること
ができることを見い出し、本発明をなしたものである。(Means for Solving the Problems) In order to achieve the above-mentioned object, the present inventor has conducted extensive research on a method for synthesizing a fine-grained diamond sintered body, and as a result, prior to sintering, secondary particles of the starting diamond powder were Is suppressed by heat treatment under the addition of cubic boron nitride powder and a polymer substance, and then by sintering,
There is no abnormal grain growth and diamond particles are directly bonded to each other,
The present invention has been made by finding that it is possible to obtain a diamond sintered body that is homogeneous and has fine particles.
すなわち、本発明は、粒径0.5μm以下のダイヤモンド
粉末に粒径0.5μm以下の立方晶窒化ほう素粉末2.5〜10
wt%並びに有機高分子物質15〜30wt%を混合した後、窒
素気流中で加熱処理し、該粉末を合金容器に充填し或い
は合金基体と積層させた状態で、ダイヤモンド安定域の
もとで1350℃以上の温度で焼結することを特徴とする微
粒ダイヤモンド焼結体の製造法を要旨とするものであ
る。That is, the present invention relates to a diamond powder having a particle size of 0.5 μm or less and a cubic boron nitride powder having a particle size of 0.5 μm or less 2.5 to 10
wt% and organic polymer substance 15 to 30 wt% are mixed, and then heat-treated in a nitrogen stream, and the powder is filled in an alloy container or laminated with an alloy substrate, and is heated to 1350 in a diamond stable region. The gist is a method for producing a fine-grained diamond sintered body, which is characterized by sintering at a temperature of ℃ or more.
以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.
(作用) 次に、本発明者が微粒ダイヤモンド焼結体を得るために
行った基礎実験について順次説明する。(Operation) Next, a basic experiment conducted by the present inventor to obtain a fine-grained diamond sintered body will be sequentially described.
まず、微粒ダイヤモンド焼結体の合成を目的として、第
1図に示す試料構成を用い、粒径1μm以下の市販の静
的合成ダイヤモンド粉末をWC−16wt%Coの基体上に積層
し、6GPa、1400℃×30分の条件で焼結した。得られたダ
イヤモンド焼結体層の断面及び表面を光学顕微鏡にて観
察したところ、ダイヤモンド層の周辺部及びWC−Co界面
近傍には部分的にダイヤモンドの異常粒成長が認められ
た。また、ダイヤモンド層の端面中心部は未焼結であっ
た。そこで、焼結条件を種々変えて異常粒成長のないダ
イヤモンド焼結体を合成するべく、第1図と同様な試料
構成を用いて焼結した。しかし、得られたダイヤモンド
焼結体は、殆どの場合、異常粒成長部分が存在するか、
或いは異常粒成長のない場合は未焼結であった。更に、
微粒ダイヤモンド粉末が異常粒成長し易い理由を解明す
べく、研究を重ねた結果、出発ダイヤモンド粉末の二次
粒子の形成を抑制すること及び可能な限り低い温度で焼
結することが重要であることが明らかとなった。First, for the purpose of synthesizing a fine-grained diamond sintered body, using the sample configuration shown in FIG. 1, commercially available static synthetic diamond powder with a grain size of 1 μm or less was laminated on a WC-16 wt% Co substrate, and 6 GPa, Sintering was performed at 1400 ° C for 30 minutes. When the cross section and the surface of the obtained diamond sintered body layer were observed with an optical microscope, abnormal grain growth of diamond was partially observed in the peripheral portion of the diamond layer and in the vicinity of the WC-Co interface. Further, the central part of the end face of the diamond layer was unsintered. Therefore, in order to synthesize a diamond sintered body without abnormal grain growth by changing the sintering conditions variously, sintering was performed using the same sample structure as that shown in FIG. However, in most cases, the obtained diamond sintered body has an abnormal grain growth portion,
Alternatively, when there was no abnormal grain growth, it was unsintered. Furthermore,
As a result of repeated research to elucidate the reason why fine diamond powder tends to grow abnormally, it is important to suppress the formation of secondary particles in the starting diamond powder and to sinter at the lowest possible temperature. Became clear.
次に、微粒ダイヤモンド粉末の二次粒子を抑制すべく鋭
意研究した結果、微粒ダイヤモンド粉末表面に均質に添
加物を添加し、二次粒子の形成を抑制させることが効果
的であることを見い出した。すなわち、添加物の選択基
準に関し、まず、非ダイヤモンド炭素を微粒ダイヤモン
ド表面に添加し、ダイヤモンドの二次粒子の形成を抑制
することを試みた。非ダイヤモンド炭素としては、少量
の炭素を添加するという観点から、微粒子の炭素が望ま
しく、微粒炭素としてカーボンブラックを用いた。しか
し、カーボンブラックは、熱処理し、ダイヤモンド合成
触媒と混合又は積層し、ダイヤモンド合成域で高温高圧
処理しても容易にダイヤモンドに変換せず、このように
ダイヤモンドに変換しない炭素は、焼結後も非ダイヤモ
ンド炭素としてダイヤモンド焼結体中に残存するため、
低強度焼結体しか得られないので、好ましくない。この
ような観点から、非ダイヤモンド炭素に代えて有機高分
子物質をダイヤモンド粉末表面に均質に添加し、添加後
焼結することにより、ダイヤモンド粉末表面に均質に炭
素を添加する方法を見い出した。Next, as a result of diligent research to suppress the secondary particles of the fine diamond powder, it was found that it is effective to uniformly add an additive to the surface of the fine diamond powder and suppress the formation of the secondary particles. . That is, regarding the selection criteria of additives, first, non-diamond carbon was added to the surface of fine-grained diamond to try to suppress the formation of secondary particles of diamond. As the non-diamond carbon, fine carbon is desirable from the viewpoint of adding a small amount of carbon, and carbon black was used as fine carbon. However, carbon black is not easily converted into diamond even when it is heat treated, mixed or laminated with a diamond synthesis catalyst, and subjected to high temperature and high pressure treatment in the diamond synthesis region. Since it remains in the diamond sintered body as non-diamond carbon,
It is not preferable because only a low-strength sintered body can be obtained. From this point of view, a method has been found in which an organic polymer substance is uniformly added to the diamond powder surface in place of non-diamond carbon, and the addition is followed by sintering to uniformly add carbon to the diamond powder surface.
具体的には、まず、ベンゼン溶媒10ccにポリエチレング
リコール(以下、「P.E.G.」と略称する。平均分子量40
00)0.4gを溶かし、粒径1μm以下の微粒ダイヤモンド
粉末2gを超音波により分散させた。P.E.G.としては平均
分子量が更に小さい200程度のものを用いてもよい。分
散後、大気中で自然乾燥し、乾燥後、窒素気流中で500
℃、900℃に各2時間加熱処理し、P.E.G.を炭化した。
加熱処理後の試料をSEM観察した結果、ダイヤモンド粒
子表面に均質に微細な炭素が析出していた。このP.E.G.
添加ダイヤモンド粉末をボロンカーバイド乳鉢で粉砕
し、第1図と同様な試料構成を用い、6GPa、1400℃×30
分の条件で焼結した。得られたダイヤモンド焼結体には
異常粒成長は全く認められず、粒径1μm以下の微粒ダ
イヤモンド焼結体であった。このような微粒ダイヤモン
ド焼結体が得られる理由としては、出発ダイヤモンド粉
末の二次粒子の形成を抑制したこと、及びダイヤモンド
中の添加炭素によりWC−Co層からダイヤモンドへのCoが
均質移動したためと考えられる。Specifically, first, polyethylene glycol (hereinafter abbreviated as “PEG”) in 10 cc of benzene solvent is used.
00) 0.4 g was melted and 2 g of fine diamond powder having a particle size of 1 μm or less was dispersed by ultrasonic waves. As PEG, those having a smaller average molecular weight of about 200 may be used. After dispersion, air dry in the air, and after drying, 500 in a nitrogen stream.
The PEG was carbonized by heating each at 2 ° C and 900 ° C for 2 hours.
As a result of SEM observation of the sample after the heat treatment, fine carbon was homogeneously deposited on the surface of the diamond particles. This PEG
The added diamond powder was crushed in a boron carbide mortar, and the sample structure was the same as that shown in Fig. 1, 6GPa, 1400 ℃ × 30
Sintered under the condition of minutes. Abnormal grain growth was not observed at all in the obtained diamond sintered body, and it was a fine-grained diamond sintered body having a grain size of 1 μm or less. The reason for obtaining such a fine-grained diamond sintered body is that the formation of secondary particles of the starting diamond powder was suppressed, and that Co from the WC-Co layer to the diamond was homogeneously moved by the added carbon in the diamond. Conceivable.
しかし、粒径0.5μm以下のダイヤモンド粉末を用いた
以外は、前記実験と同様にして焼結したところ、部分的
に焼結しているだけで、殆ど未焼結であった。同一焼結
条件であるにも拘らず、粒径の小さいダイヤモンド粉末
が焼結しにくいのは、微粒粉末ほどWC−Co層からダイヤ
モンド層へのCo移動が難しくなるためと考えられる。焼
結温度を1430℃に高め、他の条件は全く同じにして焼結
体を合成したが、ダイヤモンド層の周辺部及びWC−Co界
面近傍に数多くの異常粒成長が認められた。焼結温度、
焼結時間及び昇温速度を変えて焼結体の合成を試みた
が、異常粒成長のないダイヤモンド焼結体は合成するこ
とができなかった。However, when sintering was performed in the same manner as the above-mentioned experiment except that diamond powder having a particle size of 0.5 μm or less was used, it was found that it was only partially sintered and was almost unsintered. Despite the same sintering conditions, it is considered that the reason why the diamond powder having a small grain size is difficult to sinter is because the finer grain powder is more difficult to transfer Co from the WC-Co layer to the diamond layer. Although the sintering temperature was raised to 1430 ° C and the other conditions were exactly the same, a sintered body was synthesized, but many abnormal grain growths were observed in the peripheral portion of the diamond layer and in the vicinity of the WC-Co interface. Sintering temperature,
Attempts were made to synthesize a sintered body by changing the sintering time and the heating rate, but a diamond sintered body without abnormal grain growth could not be synthesized.
これらの実験結果から、0.5μm以下の微粒ダイヤモン
ド焼結体を合成するためには、P.E.G.等の有機高分子物
質の他に、異常粒成長を抑制する物質を添加しなけれ
ば、ダイヤモンドの異常粒成長を抑制することは大変難
しいことが明らかになった。From these experimental results, in order to synthesize a fine diamond sintered body of 0.5 μm or less, it is necessary to add a substance that suppresses abnormal grain growth in addition to organic polymer substances such as PEG It has proved very difficult to control growth.
その場合、ダイヤモンド焼結体の硬さ及び耐摩耗性を著
しく損なわないためには、硬質物質を少量添加すること
が望ましいという観点から、このような硬質物質を見い
出すべく数多くの実験を重ね、研究した結果、微粒の立
方晶窒化ほう素(CBN)の少量を添加することにより、
ダイヤモンドの異常粒成長を抑制できることを見い出し
たのである。但し、微粒のダイヤモンド粉末に微粒のCB
N粉末のみを添加したものを出発物質に用いても、均質
な微粒ダイヤモンド焼結体を合成することは難しく、併
せてP.E.G.等の有機高分子物質を添加して、ダイヤモン
ド粉末表面に微細な炭素を形成させることが必須であ
る。この炭素がダイヤモンド合成触媒であるCo、Ni、Fe
等のダイヤモンド層への均質移動に効果的である。In that case, in order to prevent the hardness and wear resistance of the diamond sintered body from being significantly impaired, it is desirable to add a small amount of a hard substance. As a result, by adding a small amount of fine grained cubic boron nitride (CBN),
They have found that abnormal grain growth of diamond can be suppressed. However, if fine diamond powder is added to fine CB
Even if only N powder is used as a starting material, it is difficult to synthesize a homogenous fine-grained diamond sintered body, and at the same time, an organic polymer substance such as PEG is added to form a fine carbon powder on the diamond powder surface. Is essential. This carbon is a diamond synthesis catalyst, Co, Ni, Fe
It is effective for the homogeneous transfer of the same to the diamond layer.
因みに、上記の方法に従って、2gの0.5μm以下のダイ
ヤモンド粉末に100mgの0.5μm以下のCBN粉末及び0.5g
のP.E.G.を添加し、ベンゼン溶媒中で振動ミルを用いて
湿式混合した。溶媒としては、ベンゼン以外にトルエ
ン、シクロヘキサンを用いることもできる。混合後、自
然乾燥し、500℃、900℃で各2時間、窒素気流中で加熱
処理した。その後、粉砕し、第1図と同様の試料構成を
用い、6GPa、1430℃×30分の条件で焼結した。得られた
焼結体は、いかなる異常粒成長も認められず、均質且つ
微細粒子よりなるダイヤモンド焼結体であった。第3図
にこの焼結体の破面のSEM写真を示すように、この焼結
体は、粒径0.5μm以下の微粒子よりなるダイヤモンド
焼結体である。焼結体のヴィカース硬さを荷重2kgの条
件で測定した結果、約60GPaの硬さを有する高硬度であ
った。また、焼結体中のB、Nの分布を走査型オージェ
電子分光法(SAM)により調べた結果、CBNはダイヤモン
ド焼結体中に均質に分散していることが明らかとなっ
た。この均質に分布しているCBNがダイヤモンドの異常
粒成長を抑制していると考えられる。By the way, according to the above method, 100 mg of CBN powder of 0.5 μm or less and 0.5 g of diamond powder of 0.5 μm or less of 2 g
PEG was added and wet mixed in a benzene solvent using a vibrating mill. As the solvent, besides benzene, toluene or cyclohexane can be used. After mixing, they were naturally dried and heat-treated at 500 ° C. and 900 ° C. for 2 hours each in a nitrogen stream. Then, it was crushed and sintered under the conditions of 6 GPa, 1430 ° C. × 30 minutes, using the same sample constitution as in FIG. The obtained sintered body was a diamond sintered body having no abnormal grain growth and having uniform and fine particles. As shown in the SEM photograph of the fractured surface of this sintered body in FIG. 3, this sintered body is a diamond sintered body composed of fine particles having a grain size of 0.5 μm or less. As a result of measuring the Vickers hardness of the sintered body under the condition of a load of 2 kg, it was found to be a high hardness having a hardness of about 60 GPa. Moreover, as a result of examining the distribution of B and N in the sintered body by scanning Auger electron spectroscopy (SAM), it was revealed that CBN was uniformly dispersed in the diamond sintered body. It is considered that this homogeneously distributed CBN suppresses the abnormal grain growth of diamond.
以上、本発明を見い出すに至った基礎実験の結果の説明
より、本発明の条件は明らかであるが、以下に総合して
本発明条件の限定理由について説明する。Although the conditions of the present invention are clear from the description of the results of the basic experiments that have led to the discovery of the present invention, the reasons for limiting the conditions of the present invention will be described below comprehensively.
出発ダイヤモンド粉末は、微粒子のダイヤモンドよりな
る焼結体を得るために、粒径が0.5μm以下のものであ
る必要がある。これにCBN及び有機高分子物質を添加混
合する。The starting diamond powder needs to have a particle size of 0.5 μm or less in order to obtain a sintered body made of fine particles of diamond. CBN and an organic polymer are added to and mixed with this.
CBNは、同様に粒径が0.5μm以下のもので、2.5〜10wt
%の微量を添加する。2.5wt%未満ではCBNを均質に分散
させてダイヤモンド粒子の異常粒成長を抑制する効果が
期待できず、また10wt%を超えて多量に添加するとダイ
ヤモンド粒子間の直接結合を著しく阻害するため、好ま
しくない。Similarly, CBN has a particle size of 0.5 μm or less, and is 2.5-10 wt.
% Trace amount is added. If it is less than 2.5 wt%, the effect of suppressing the abnormal grain growth of diamond particles by uniformly dispersing CBN cannot be expected, and if it is added in excess of 10 wt%, the direct bond between diamond particles is significantly hindered. Absent.
また、有機高分子物質としては、ポリエチレングリコー
ル(P.E.G.)が望ましいが、その他の有機高分子物質で
もよく、平均分子量が200〜4000程度のものが望まし
い。その添加量は15〜30wt%とする。15wt%未満ではダ
イヤモンド粉末の二次粒子の形成を抑制できず、30wt%
を超えて多量に添加するとダイヤモンドの異常粒成長を
助長するため、好ましくない。The organic polymer substance is preferably polyethylene glycol (PEG), but other organic polymer substances may be used, and those having an average molecular weight of about 200 to 4000 are desirable. The amount added is 15 to 30 wt%. If it is less than 15 wt%, the formation of secondary particles of diamond powder cannot be suppressed, and 30 wt%
If it is added in a large amount over the range, it promotes abnormal grain growth of diamond, which is not preferable.
これらの混合粉末は、窒素気流中で加熱処理する。加熱
温度は特に制限されないが、500〜900℃の範囲が望まし
い。これにより、ダイヤモンド粉末表面に均質に炭素、
CBNを添加することが可能となる。These mixed powders are heat-treated in a nitrogen stream. The heating temperature is not particularly limited, but a range of 500 to 900 ° C is desirable. As a result, carbon is uniformly distributed on the diamond powder surface,
It becomes possible to add CBN.
次いで、これらの粉末を適当な合金容器に充填するか、
或いは合金基体と積層する。これらの合金容器及び合金
基体としては、5wt%以上のFe、Ni、Coの1種又は2種
以上を含む金属合金又は炭化物分散合金が望ましい。こ
れらのFe、Ni、Co等はダイヤモンド合成触媒として働く
もので、前記炭素は、これらの触媒のダイヤモンド層へ
の均質移動に効果的である。Then fill these powders in a suitable alloy container, or
Alternatively, it is laminated with an alloy substrate. As the alloy container and the alloy base, a metal alloy or a carbide dispersion alloy containing 5 wt% or more of one or more of Fe, Ni and Co is desirable. These Fe, Ni, Co, etc. act as a diamond synthesis catalyst, and the carbon is effective for the homogeneous transfer of these catalysts to the diamond layer.
焼結は、ダイヤモンド安定域のもとで、1350℃以上の温
度で行う。1350℃未満では焼結が期待できない。しか
し、1480℃の如く高温ではダイヤモンド粒子の異常粒成
長を招くので1480℃未満が好ましい。ダイヤモンド安定
域とは、ダイヤモンドが黒鉛に比較し熱力学的に安定な
圧力、温度の条件を云うが、6GPa程度の圧力下で焼結す
ることができる。他の焼結条件は特に制限されない。Sintering is performed at a temperature of 1350 ° C or higher in the diamond stable region. Sintering cannot be expected below 1350 ° C. However, since the abnormal grain growth of diamond particles is caused at a high temperature such as 1480 ° C, it is preferably lower than 1480 ° C. The diamond stable region is a condition of pressure and temperature at which diamond is thermodynamically stable as compared with graphite, but it can be sintered under a pressure of about 6 GPa. Other sintering conditions are not particularly limited.
なお、焼結体合成の試料構成の一例を第1図にを示す。
これは、黒鉛ヒーター10の中に熱処理済ダイヤモンド混
合粉末5をWC−Co基体4と積層した試料構成で、高圧下
で焼結する構成のものである。勿論、このような試料構
成に限定されないことは云うまでもない。An example of sample composition for synthesizing a sintered body is shown in FIG.
This is a sample configuration in which a heat-treated diamond mixed powder 5 is laminated on a WC-Co substrate 4 in a graphite heater 10 and is sintered under high pressure. Of course, it goes without saying that the sample configuration is not limited to this.
(実施例) 次に本発明の実施例を示す。(Example) Next, the Example of this invention is shown.
実施例1 粒径0.5μm以下のダイヤモンド粉末2gに粒径0.5μm以
下のCBN粉末50mg及びP.E.G.0.4gを添加し、ベンゼン8cc
を用い、ポリアセタールをライニングしたポットを使用
して湿式混合した。混合後、自然乾燥し、窒素気流中で
500℃、900℃で各2時間、加熱処理した。次いで、粉砕
し、WC−16wt%Coの基体上にこの粉末を積層し、6GPa、
1430℃×30分の条件で焼結した。得られたダイヤモンド
焼結体の粒子径は0.5μmであった。その硬さはヴィカ
ース硬さで62GPaであった。Example 1 To 2 g of diamond powder having a particle size of 0.5 μm or less, 50 mg of CBN powder having a particle size of 0.5 μm or less and 0.4 g of PEG were added, and 8 cc of benzene was added.
Was wet-mixed using a polyacetal-lined pot. After mixing, air dry and in a nitrogen stream
Heat treatment was performed at 500 ° C. and 900 ° C. for 2 hours each. Then, crushed, laminated this powder on a substrate of WC-16wt% Co, 6GPa,
Sintering was performed at 1430 ° C for 30 minutes. The particle size of the obtained diamond sintered body was 0.5 μm. The hardness was 62 GPa in Vickers hardness.
比較例 粒径0.5μm以下のダイヤモンド粉末2gに粒径0.5μm以
下のCBN粉末100mg及びP.E.G.0.4gを添加し、実施例1と
同様にして出発物質を作成した。この出発物質の粉末を
WC−16wt%Coの基体上に積層し、6GPa、1430℃×30分の
条件で焼結した。得られたダイヤモンド焼結体には、ダ
イヤモンド層の周辺部に2個の約50μmの異常粒成長粒
子が認められた。1480℃の焼結温度は、微粒ダイヤモン
ド焼結体の合成温度としては高すぎると考えられる。Comparative Example A starting material was prepared in the same manner as in Example 1 by adding 100 mg of CBN powder having a particle size of 0.5 μm or less and 0.4 g of PEG to 2 g of diamond powder having a particle size of 0.5 μm or less. This starting material powder
It was laminated on a WC-16 wt% Co substrate and sintered under the conditions of 6 GPa and 1430 ° C. for 30 minutes. In the obtained diamond sintered body, two abnormal grain growth particles of about 50 μm were observed around the diamond layer. The sintering temperature of 1480 ° C is considered to be too high as the synthesis temperature for the fine-grained diamond sintered body.
実施例2 前記比較例で用いた出発物質をFe−Ni−Co合金(Fe64wt
%、Ni31wt%、Co5wt%)の基体と積層し、6GPa、1380
℃×30分の条件で焼結した。得られたダイヤモンド焼結
体は粒径0.5μm以下の微粒子よりなり、ヴィカース硬
さ60GPaの高硬度焼結体であった。焼結温度が低いにも
拘らず均質、高硬度ダイヤモンド焼結体が得られるの
は、焼結助剤として働くFe−Ni−Co合金の融点がCoのそ
れに比べて低いためと考えられる。Example 2 The starting material used in the comparative example was a Fe-Ni-Co alloy (Fe64wt).
%, Ni31wt%, Co5wt%), laminated with 6GPa, 1380
Sintering was carried out under the condition of ℃ × 30 minutes. The obtained diamond sinter was composed of fine particles having a particle size of 0.5 μm or less, and was a high hardness sinter with a Vickers hardness of 60 GPa. It is considered that the reason why the homogeneous and high hardness diamond sintered body can be obtained despite the low sintering temperature is that the melting point of the Fe-Ni-Co alloy that acts as a sintering aid is lower than that of Co.
(発明の効果) 以上詳述したように、本発明によれば、ダイヤモンド粒
子同士の直接結合を有し、粒径が0.5μm以下の微粒ダ
イヤモンド焼結体を得ることが可能であり、高硬度で耐
摩耗性にも優れている。したがって、この焼結体は鋭い
刃先形状に加工することも可能であり、難削材料の微細
加工用工具材料、仕上げ加工面の平滑さを要求される線
引ダイス用材料等に好適である。(Effects of the Invention) As described in detail above, according to the present invention, it is possible to obtain a fine diamond sintered body having direct bonding between diamond particles and having a particle size of 0.5 μm or less, and high hardness. It also has excellent wear resistance. Therefore, this sintered body can be processed into a sharp cutting edge shape, and is suitable as a tool material for fine processing of difficult-to-cut materials, a material for wire drawing dies which requires smoothness of a finished surface, and the like.
第1図はダイヤモンド焼結体合成用の試料構成を示す断
面説明図、 第2図はダイヤモンド−P.E.G.混合物の加熱処理後の粒
子構造を示す二次電子像写真、 第3図は微粒ダイヤモンド焼結体の破面の粒子構造を示
す二次電子像写真である。 1……ステンレス板、2……スチールリング、3……塩
化ナトリウム、4……WC−Co基体、5……ダイヤモンド
粉末、6……カレントリング、7……ZrO2板、8……銅
板、9……ジルコニウムフォイル、10……黒鉛ヒータ
ー、11……塩化ナトリウム−10wt%ジルコニア。FIG. 1 is a cross-sectional explanatory view showing a sample structure for synthesizing a diamond sintered body, FIG. 2 is a secondary electron image photograph showing a particle structure of a diamond-PEG mixture after heat treatment, and FIG. It is a secondary electron image photograph which shows the particle structure of the fracture surface of a body. 1 ... Stainless steel plate, 2 ... Steel ring, 3 ... Sodium chloride, 4 ... WC-Co substrate, 5 ... Diamond powder, 6 ... Current ring, 7 ... ZrO 2 plate, 8 ... Copper plate, 9 ... Zirconium foil, 10 ... Graphite heater, 11 ... Sodium chloride-10 wt% zirconia.
Claims (3)
径0.5μm以下の立方晶窒化ほう素粉末2.5〜10wt%並び
に有機高分子物質15〜30wt%を混合した後、窒素気流中
で加熱処理し、該粉末を合金容器に充填し或いは合金基
体と積層させた状態で、ダイヤモンド安定域のもとで13
50℃以上の温度で焼結することを特徴とする微粒ダイヤ
モンド焼結体の製造法。1. A diamond powder having a particle size of 0.5 μm or less is mixed with 2.5 to 10 wt% of cubic boron nitride powder having a particle size of 0.5 μm or less and 15 to 30 wt% of an organic polymer substance, followed by heat treatment in a nitrogen stream. Then, in a state where the powder is filled in an alloy container or laminated with an alloy substrate under a diamond stable region, 13
A method for producing a fine-grained diamond sintered body, which comprises sintering at a temperature of 50 ° C or higher.
e、Ni及びCoのうちの1種又は2種以上を含む金属合金
又は炭化物分散合金である請求項1に記載の方法。2. The alloy container and the alloy substrate are 5 wt% or more of F
The method according to claim 1, which is a metal alloy or a carbide dispersion alloy containing one or more of e, Ni and Co.
で行う請求項1に記載の方法。3. The heat treatment in the nitrogen stream is 500 to 900 ° C.
The method according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63324514A JPH0665469B2 (en) | 1988-12-22 | 1988-12-22 | Manufacturing method of fine-grained diamond sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63324514A JPH0665469B2 (en) | 1988-12-22 | 1988-12-22 | Manufacturing method of fine-grained diamond sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02167666A JPH02167666A (en) | 1990-06-28 |
JPH0665469B2 true JPH0665469B2 (en) | 1994-08-24 |
Family
ID=18166649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63324514A Expired - Lifetime JPH0665469B2 (en) | 1988-12-22 | 1988-12-22 | Manufacturing method of fine-grained diamond sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0665469B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2863339B2 (en) * | 1991-04-03 | 1999-03-03 | 株式会社ノリタケカンパニーリミテド | Chamfering polishing tool for inner circumference |
JP2006315088A (en) * | 2005-05-10 | 2006-11-24 | Okamoto Machine Tool Works Ltd | Pcd pellet grinding wheel and method of grinding work made of cemented carbide using it |
-
1988
- 1988-12-22 JP JP63324514A patent/JPH0665469B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02167666A (en) | 1990-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0774527B1 (en) | Superhard composite member and method of manufacturing the same | |
JP6871173B2 (en) | Fragile ceramic bonded diamond composite particles and their manufacturing method | |
US20110020163A1 (en) | Super-Hard Enhanced Hard Metals | |
JPH07242466A (en) | Production of polycrystalline cubic boron nitride | |
KR20100065348A (en) | Ultrahard diamond composites | |
KR20050072753A (en) | Method for producing a sintered, supported polycrystalline diamond compact | |
CN102046564A (en) | Boron carbide composite materials | |
KR102358312B1 (en) | Sintered polycrystalline cubic boron nitride material | |
US5139720A (en) | Method of producing sintered ceramic material | |
JP3902404B2 (en) | Abrasive grain production method and abrasive grain produced by this method | |
JP3595036B2 (en) | Abrasive body | |
FI92925B (en) | Method of making a self-supporting body and self-supporting material | |
JPS61201751A (en) | High hardness sintered body and its manufacture | |
JPS58213679A (en) | Composite ceramic cutting tool and manufacture | |
KR102011586B1 (en) | Polycrystalline abrasive structure | |
JP2546856B2 (en) | Method of manufacturing ceramic composite object | |
JP4940239B2 (en) | Boron oxide composite material | |
US5585314A (en) | Method of making in-situ grown whisker reinforced ceramics | |
JPH0665469B2 (en) | Manufacturing method of fine-grained diamond sintered body | |
JPS61146762A (en) | Antiabrasive silicon nitride base product | |
Soloviova et al. | Spark Plasma Sintering of Cu-(LaB 6-TiB 2) Metal-Ceramic Composite and Its Physical-Mechanical Properties | |
JPH05339659A (en) | Production of sintered hard alloy having sheet-like tungsten carbide and coated sintered hard alloy | |
JPH0328388B2 (en) | ||
JP3733613B2 (en) | Diamond sintered body and manufacturing method thereof | |
JPH0488103A (en) | Complex sintered cutting tool material having excellent chipping resistance and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |