JPH0661516A - Manufacture of solar battery - Google Patents
Manufacture of solar batteryInfo
- Publication number
- JPH0661516A JPH0661516A JP4210058A JP21005892A JPH0661516A JP H0661516 A JPH0661516 A JP H0661516A JP 4210058 A JP4210058 A JP 4210058A JP 21005892 A JP21005892 A JP 21005892A JP H0661516 A JPH0661516 A JP H0661516A
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- layer
- substrate
- type
- junction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は単結晶基板を用いた太陽
電池の製造方法に係り、特に光電変換効率が高く、大量
生産に適した簡便な太陽電池の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a solar cell using a single crystal substrate, and more particularly to a method of manufacturing a solar cell which has high photoelectric conversion efficiency and is suitable for mass production.
【0002】[0002]
【従来の技術】一般に、この種の太陽電池は、図3及び
図4に示すように、薄膜型太陽電池及びバルク型太陽電
池の2つの型に分類される。ここで、図3(a)及び図
4(a)は断面図、図3(b)及び図4(b)はバンド
ダイアグラムを示す。2. Description of the Related Art Generally, this type of solar cell is classified into two types, a thin film type solar cell and a bulk type solar cell, as shown in FIGS. Here, FIGS. 3A and 4A are cross-sectional views, and FIGS. 3B and 4B are band diagrams.
【0003】薄膜型太陽電池は、動作層となるpn接合
がエピタキシャル成長法により形成されたものであり、
例えば、p+ 型InP基板10の表面にp+ 型InP層
20,p型InP層30,n+ 型InP層40が順次エ
ピタキシャル成長されている。A thin-film solar cell is one in which a pn junction to be an operating layer is formed by an epitaxial growth method,
For example, p + -type InP layer 20, p-type InP layer 30, n + -type InP layer 40 are successively epitaxially grown on the surface of the p + -type InP substrate 10.
【0004】一方、バルク型太陽電池は、pn接合をバ
ルク結晶内に形成するものであり、外部から不純物を拡
散法により、例えばp+ 型InP基板50内に導入し、
その表面部にn+ 層51が形成されている。これによれ
ば、拡散装置が安価で一回に処理できるウエハの枚数を
多くすることができるため、量産性が高く製造コストが
安くなる。On the other hand, a bulk type solar cell is one in which a pn junction is formed in a bulk crystal, and impurities are introduced from the outside into the p + type InP substrate 50 by a diffusion method,
An n + layer 51 is formed on the surface portion. According to this, since the diffusion device is inexpensive and the number of wafers that can be processed at one time can be increased, mass productivity is high and manufacturing cost is low.
【0005】薄膜型太陽電池では、各層のキャリア濃度
が一定であり、 p-p+ 界面にポテンシャル障壁φpが形
成されている。n+ 型InP層40で吸収された短波長
側の太陽光は電子とホールを発生し、n+ 型InP層4
0で少数キャリアーとなるホールはpn接合に向かって
拡散する。同じく、p型InP層30で吸収された長波
長側の太陽光は電子とホールを発生し、p型InP層3
0で少数キャリアーとなる電子はpn接合に向かって拡
散する。よって、太陽電池の特性を表す短絡電流Iscは
上記各層で発生した少数キャリアーをいかに効率よくp
n接合で分離できるかによって決まる。つまり、短絡電
流の大小を決める大きな要因はpn接合に到達できるか
否かに関係する少数キャリアーの拡散長(ライフタイ
ム)である。In the thin film solar cell, the carrier concentration of each layer is constant, and a potential barrier φp is formed at the pp + interface. The sunlight on the short wavelength side absorbed by the n + type InP layer 40 generates electrons and holes, and the n + type InP layer 4
Holes that become minority carriers at 0 diffuse toward the pn junction. Similarly, sunlight on the long wavelength side absorbed by the p-type InP layer 30 generates electrons and holes, and the p-type InP layer 3
Electrons that become minority carriers at 0 diffuse toward the pn junction. Therefore, the short-circuit current Isc, which represents the characteristics of the solar cell, can efficiently convert the minority carriers generated in the above layers to p
It depends on whether they can be separated by an n-junction. That is, the major factor that determines the magnitude of the short-circuit current is the minority carrier diffusion length (lifetime), which is related to whether or not the pn junction can be reached.
【0006】短絡電流Iscに関係のある太陽電池の分光
感度について次のことが予測される。尚、n+ -pバルク
型太陽電池とn+ -p-p+ 薄膜型太陽電池で、n+ 層、p
層のキャリアー濃度、厚さはほぼ同じとしているので、
膜中の不純物に由来する少数のキャリアーのライフタイ
ムは同程度である。n+ -p-p+ 薄膜型太陽電池ではp型
InP層30の下にp+ 型InP層20があるため、p
型InP層30で発生した電子は逆方向への拡散をポテ
ンシャル障壁φpで抑制されることにより、見かけ上の
拡散長が増加し、pn接合に到達する電子が増加するこ
とになる。従って、n+ -P-P+ 薄膜型太陽電池ではp型
InP層30で吸収された光による長波長側の分光感度
が大きくなる。Regarding the spectral sensitivity of the solar cell, which is related to the short circuit current Isc, the following is expected. For n + -p bulk type solar cell and n + -pp + thin film type solar cell, n + layer, p
Since the carrier concentration and thickness of the layer are almost the same,
The minority carriers derived from impurities in the film have similar lifetimes. In the n + -pp + thin-film solar cell, the p + -type InP layer 20 is below the p-type InP layer 30.
The diffusion of electrons generated in the InP layer 30 in the opposite direction is suppressed by the potential barrier φp, so that the apparent diffusion length increases and the number of electrons reaching the pn junction increases. Therefore, in the n + -PP + thin film solar cell, the spectral sensitivity on the long wavelength side due to the light absorbed by the p-type InP layer 30 becomes large.
【0007】一方、n+ -pバルク型太陽電池の場合、p
+ 型Inp基板50内にポテンシャル障壁がないため、
長波長側の分光感度は薄膜型ほど高くないが、n+ 層5
1がグレーディッド層となっているため、その内蔵電界
により見かけ上の拡散長が増加し、n+ 層51で発生し
たホールは効率よくpn接合に達することができる。従
って、n+ -pバルク型太陽電池の短波長側の分光感度は
n+ 型InP層40にキャリアー濃度の傾斜が形成され
ていないn+ -p-p+ 薄膜型太陽電池より大きくなる。On the other hand, in the case of an n + -p bulk type solar cell, p
Since there is no potential barrier in the + type Inp substrate 50,
The spectral sensitivity on the long wavelength side is not as high as that of the thin film type, but the n + layer 5
Since 1 is a graded layer, an apparent diffusion length is increased by the built-in electric field, and holes generated in the n + layer 51 can efficiently reach the pn junction. Therefore, the spectral sensitivity on the short wavelength side of the n + -p bulk type solar cell is higher than that of the n + -pp + thin film type solar cell in which the carrier concentration gradient is not formed in the n + -type InP layer 40.
【0008】次に、太陽電池のもう一つの特性を表す開
放電圧Vocを比較する。太陽電池の開放電圧はpn接合
のビルトインポテンシャルVbiと密接に関係する。Vbi
は、次式(1)で表される。Next, the open circuit voltage Voc representing another characteristic of the solar cell will be compared. The open circuit voltage of the solar cell is closely related to the built-in potential Vbi of the pn junction. Vbi
Is expressed by the following equation (1).
【0009】 Vbi=KT/qIn(Na・Nb/ni2 ) …(1) ここで、Kはボルツマン定数、Tは温度、qは電気素
量、Naはp層のキャリアー濃度、Nbはn層のキャリ
アー濃度、niは真性キャリアー濃度(InPの場合は
1.8×106 cm-3)である。Vbi = KT / qIn (Na.Nb / ni 2 ) ... (1) where K is Boltzmann's constant, T is temperature, q is elementary charge, Na is carrier concentration of p layer, and Nb is n layer. , Ni is the intrinsic carrier concentration (1.8 × 10 6 cm −3 in the case of InP).
【0010】従って、Vbiはpn接合を挾むp層、n層
のキャリアー濃度が高くなれば大きくなることが分か
る。Therefore, it is understood that Vbi increases as the carrier concentration of the p layer and the n layer sandwiching the pn junction increases.
【0011】一方、VocはVbiだけでなく、pn接合の
逆方向飽和電流Jo、短絡電流Jsc(単位面積当たり)
と次式(2)の関係がある。On the other hand, Voc is not only Vbi but also the reverse saturation current Jo and short-circuit current Jsc (per unit area) of the pn junction.
And the following equation (2).
【0012】 Voc=n・KT/q・In(Jsc/Jo) …(2) ここで、nはpn接合の理想係数であり、pn接合に流
れる電流に関して、拡散電流が支配的な場合の1から再
結合電流が支配的な場合の2の間の中間値をとる。ま
た、nとJoは独立の変数ではなく、pn接合の特性が
よくなればJoは小さくなり、nは理想値1に近づく。
上式(2)において、Joの減少によるVocの増加はn
の増加による効果よりも大きいので、Vocを大きくする
ためには、Jscを大きくするとともに、Joを小さくし
なければならない。Voc = nKT / qIn (Jsc / Jo) (2) where n is an ideal coefficient of the pn junction, and 1 when the diffusion current is dominant in the current flowing through the pn junction. To an intermediate value between 2 when the recombination current is dominant. Further, n and Jo are not independent variables, and if the characteristics of the pn junction are improved, Jo will be smaller and n will be closer to the ideal value 1.
In the above formula (2), the increase of Voc due to the decrease of Jo is n
Since it is larger than the effect of increasing Voc, it is necessary to increase Jsc and decrease Jo in order to increase Voc.
【0013】次に、InP太陽電池を例にとってVbiと
Vocを比較する。p層のキャリアー濃度をNa=5×1
016cm-3、n+ 層のキャリアー濃度をNb=5×1018
cm-3として、上式(1)を用いて計算すると、Vbiは
1.25Vとなる。一方、n+-pバルク型Inp太陽電
池の実測Vocは0.82Vであり、n+ -p-p+ 薄膜型I
np太陽電池の実測Vocは0.87Vである。つまり、
pn接合を挾むp層、n+ 層のキャリアー濃度で決まる
Vbiは同じにも関わらず、上式(2)で表される要因に
より、Vocはn+ -pバルク型とn+ -p-p+ 薄膜型で0.
05Vも差ができてしまう。この原因は上述したよう
に、n+ -pバルク型とn+ -p-p+ 薄膜型で逆方向飽和電
流Joが大きく異なるからである。即ち、n+ -p-p+ 薄
膜型ではp型Inp層30の下にポテンシャル障壁φp
を有するp+ 型InP層20が形成されているため、J
oが小さくなり、従ってVocが上式(2)によりn+ -P
バルク型に比べて大きくなる。Next, Vbi and Voc will be compared using an InP solar cell as an example. The carrier concentration of the p layer is Na = 5 × 1
0 16 cm −3 , the carrier concentration of the n + layer is Nb = 5 × 10 18
Assuming that cm −3 is calculated using the above equation (1), Vbi is 1.25V. On the other hand, the measured Voc of the n + -p bulk Inp solar cell is 0.82 V, and the n + -pp + thin film type I
The measured Voc of the np solar cell is 0.87V. That is,
Although Vbi determined by the carrier concentration of the p layer and the n + layer sandwiching the pn junction is the same, Voc is n + -p bulk type and n + -pp + due to the factor expressed by the above equation (2). Thin film type.
There will be a difference of 05V. This is because the reverse saturation current Jo is significantly different between the n + -p bulk type and the n + -pp + thin film type, as described above. That is, in the n + -pp + thin film type, the potential barrier φp is formed under the p-type Inp layer 30.
Since the p + -type InP layer 20 having
Therefore, Voc becomes n + -P according to the above equation (2).
It is larger than the bulk type.
【0014】最後に、太陽電池の曲線因子FFを比較す
る。FFは太陽電池の直列抵抗とpn接合の理想係数n
によって決まり、直列抵抗が小さくなるほど、またn値
が小さくなるほど、FFは大きくなり、太陽電池の光電
変換効率が向上する。太陽電池の直列抵抗は表面電極の
形状、表面/裏面電極の接触抵抗n+ 層の厚さ、基板の
抵抗等の種々の要因により決まるが、現在議論している
n+ -pバルク型太陽電池とn+ -p-p+ 薄膜型太陽電池で
は基板の抵抗以外はすべて同じとしているので、n+ -p
-p+ 薄膜型太陽電池の直列抵抗が小さくなる。また、p
n接合の理想係数nに関しても、上述したようにn+ -p
-p+ 薄膜型太陽電池の逆方向飽和電流Joがn+ -pバル
ク型太陽電池より小さいので、より小さいn値をとる。
従って、直列抵抗、n値とも小さい値を持つn+ -p-p+
薄膜型太陽電池の方がn+ -pバルク型太陽電池に比べて
FFが大きくなっていた。Finally, the fill factor FF of the solar cell is compared. FF is the series resistance of the solar cell and the ideal coefficient n of the pn junction.
As the series resistance becomes smaller and the n value becomes smaller, the FF becomes larger and the photoelectric conversion efficiency of the solar cell is improved. The series resistance of a solar cell depends on various factors such as the shape of the front electrode, the contact resistance of the front / back electrodes n + layer thickness, the resistance of the substrate, etc. The n + -p bulk solar cell currently being discussed. And n + -pp + thin-film solar cells are the same except for the substrate resistance, so n + -p
-p + The series resistance of thin-film solar cells is reduced. Also, p
As for the ideal coefficient n of the n-junction, as described above, n + -p
Since the reverse saturation current Jo of the -p + thin film solar cell is smaller than that of the n + -p bulk solar cell, a smaller n value is taken.
Therefore, n + -pp + with a small series resistance and n value
The thin film solar cell had a larger FF than the n + -p bulk solar cell.
【0015】[0015]
【発明が解決しようとする課題】しかしながら、上述し
た従来の薄膜型太陽電池においては、エピタキシャル成
長装置が高価であったり、一回に処理できるウエハの枚
数に制限があるため、量産性が低く、製造コストが高く
なるという問題点があった。However, in the above-described conventional thin-film solar cell, the epitaxial growth apparatus is expensive, and the number of wafers that can be processed at one time is limited, so that the mass productivity is low and the manufacturing is difficult. There is a problem that the cost becomes high.
【0016】また、バルク型太陽電池は、単純なn+ -P
構造しか取れないため、光電変換効率が薄膜型太陽電池
に比べて低くなるという問題点があった。The bulk type solar cell is a simple n + -P
Since only the structure can be taken, there is a problem that the photoelectric conversion efficiency becomes lower than that of the thin film solar cell.
【0017】本発明の目的は、上述した問題点に鑑み、
高い光電変換効率を有し、コスト低減ができる太陽電池
の製造方法を提供するものである。The object of the present invention is to solve the above problems.
It is intended to provide a method of manufacturing a solar cell having high photoelectric conversion efficiency and capable of reducing cost.
【0018】[0018]
【課題を解決するための手段】本発明は上述した目的を
達成するため、第1導電型不純物を含有する半導体基板
を熱処理して上記半導体基板の表面部の不純物濃度を低
下させる工程と、上記半導体基板の表面部に第2導電型
不純物を拡散してpn接合を形成する工程と、上記半導
体基板の表面に第1の電極を形成すると共に、上記半導
体基板の裏面に第2の電極を形成する工程とを含むもの
である。In order to achieve the above-mentioned object, the present invention comprises a step of heat-treating a semiconductor substrate containing an impurity of the first conductivity type to reduce the impurity concentration of the surface portion of the semiconductor substrate, Forming a pn junction by diffusing a second conductivity type impurity on the front surface of the semiconductor substrate; forming a first electrode on the front surface of the semiconductor substrate; and forming a second electrode on the back surface of the semiconductor substrate. And the step of performing.
【0019】[0019]
【作用】本発明においては、熱処理して半導体基板の不
純物濃度を低下させた後、半導体基板に不純物を拡散し
てpn接合を形成するので、光電変換効率が向上すると
共に、量産性が高くなり、製造コストが低減する。In the present invention, after heat treatment is performed to reduce the impurity concentration of the semiconductor substrate, impurities are diffused into the semiconductor substrate to form a pn junction, so that the photoelectric conversion efficiency is improved and the mass productivity is increased. , The manufacturing cost is reduced.
【0020】[0020]
【実施例】以下、本発明の太陽電池の製造方法に係わる
一実施例を図1及び図2に基づいて説明する。EXAMPLE An example of the method for manufacturing a solar cell according to the present invention will be described below with reference to FIGS.
【0021】先ず、InP基板は厚さが0.4mmで、亜
鉛(Zn)をドーピングすることによりキャリアー濃度
が5×1018cm-3程度となっている(図1a)。このp
+ 型InP基板をあらかじめ熱処理することにより、表
面から〜5μmにわたってキャリアー濃度が基板内部よ
り表面に向かって徐々に減少し、表面において5×10
16cm-3程度となるようなドーピングプロファイルを形成
する(図1b)。First, the InP substrate has a thickness of 0.4 mm and has a carrier concentration of about 5 × 10 18 cm −3 by doping with zinc (Zn) (FIG. 1a). This p
By heat-treating the + -type InP substrate in advance, the carrier concentration gradually decreases from the inside of the substrate toward the surface over 5 μm from the surface, and 5 × 10 5
A doping profile of about 16 cm -3 is formed (Fig. 1b).
【0022】InP基板上にPSG(phosphosilicagat
e)等の絶縁膜を形成し、適当な温度で熱処理する。これ
により、基板内の不純物が絶縁膜中に取り込まれ、表面
に向かって徐々にキャリアー濃度が減少する層が形成さ
れる。この際、熱処理によるInP表面の分解を防ぐこ
とが、高効率の太陽電池を製作する上で重要である。上
記の例では、絶縁膜中にリンを含んでいるPSGを用い
て、熱分解を抑止している。熱処理の温度と時間を適当
に選ぶことによりドーピングプロファイルの制御が可能
であり、上記の例では所望のプロファイルを得るため9
00℃、1時間の熱処理を行う。PSG (phosphosilicagat) on InP substrate
An insulating film such as e) is formed and heat-treated at an appropriate temperature. As a result, impurities in the substrate are taken into the insulating film, and a layer in which the carrier concentration gradually decreases toward the surface is formed. At this time, it is important to prevent decomposition of the InP surface due to heat treatment in order to manufacture a highly efficient solar cell. In the above example, PSG containing phosphorus in the insulating film is used to suppress thermal decomposition. The doping profile can be controlled by appropriately selecting the heat treatment temperature and time. In the above example, in order to obtain the desired profile,
Heat treatment is performed at 00 ° C. for 1 hour.
【0023】そして、熱処理に用いたPSGを緩衝HF
で除去した後、気相でイオウ(S)を670℃において
3時間拡散させることにより、上記の基板表面に表面キ
ャリアー濃度が5×1018cm-3以上である厚さ0.3μ
m程度のn+ 層を形成する。このn+ 層は拡散法により
形成するので、キャリアー濃度が基板表面より内部に向
かって徐々に減少するグレーディッド層となっている。
このイオウ拡散においても、InP表面の熱分解を防ぐ
ことが重要であり、そのため拡散はリン蒸気圧の印加さ
れた封管中で行う。また、先に形成した基板表面のプロ
ファイルがイオウ拡散中に変化しないように、拡散温度
を熱処理温度の900℃よりかなり低い温度である67
0℃とする(図1c)。Then, the PSG used for the heat treatment is buffered with HF.
After the removal by the method described above, the sulfur (S) is diffused in the gas phase at 670 ° C. for 3 hours to obtain a surface carrier concentration of 5 × 10 18 cm −3 or more on the substrate surface of 0.3 μm.
An n + layer of about m is formed. Since this n + layer is formed by the diffusion method, it is a graded layer in which the carrier concentration gradually decreases from the substrate surface toward the inside.
Also in this sulfur diffusion, it is important to prevent thermal decomposition of the InP surface, and therefore diffusion is performed in a sealed tube to which phosphorus vapor pressure is applied. Also, the diffusion temperature is considerably lower than the heat treatment temperature of 900 ° C. 67 so that the profile of the substrate surface formed previously does not change during sulfur diffusion.
The temperature is 0 ° C. (FIG. 1c).
【0024】上記の方法により、InPバルク結晶内に
表面から順にn+ 層、p層、p+ 層となる構造を作成し
た後、第20回IEEE太陽電池専門家国際会議予稿集
(Conference Record of 20th IEEE Photovoltaic Spec
ialists Conference,1988,Las Vegas)の886ページに
記述されている方法により、表裏電極及び反射防止膜等
を形成し、バルク型ダブルグレーディッド太陽電池を完
成する。By the above method, a structure of n + layer, p layer and p + layer is formed in the InP bulk crystal in order from the surface, and then the 20th IEEE Solar Cell Expert International Conference Proceedings (Conference Record of). 20th IEEE Photovoltaic Spec
ialists Conference, 1988, Las Vegas) by the method described on page 886, the front and back electrodes and the antireflection film are formed to complete the bulk type double graded solar cell.
【0025】図2にかかる太陽電池のバンドダイアグラ
ムを示す。n+ 層、p層がともにグレーディッド層とな
り、かつグレーディッドp層内に緩やかなポテンシャル
障壁φpが形成されている。A band diagram of the solar cell according to FIG. 2 is shown. Both the n + layer and the p layer are graded layers, and a gradual potential barrier φp is formed in the graded p layer.
【0026】このバルク型ダブルグレーディッド太陽電
池のIscは、n+ 層の関与する短波長の光に対してはn
+ -P型太陽電池と同程度の分光感度を有し、p層の関与
する長波長の光に対しては、グレーディッドとなったp
層のため、n+ -p-p+ 薄膜型太陽電池より大きい分光感
度を有している。また、Vocはポテンシャル障壁φpが
形成されているため、逆方向飽和電流Joが小さくな
り、n+ -p-p+ 薄膜型太陽電池と同程度の大きいVocを
有する。FFに関しても、p+ 基板の使用と小さなn値
によりn+ -p-p+ 薄膜型太陽電池と同程度の特性を有す
る。従って、上述の方法によりバルク型太陽電池でn+
-p-p+ 薄膜型太陽電池と同程度か、あるいはそれ以上の
光電変換効率(17〜19%)の太陽電池の製造が可能
となる。The Isc of this bulk type double graded solar cell is n for light of a short wavelength related to the n + layer.
It has the same spectral sensitivity as + -P type solar cells and is graded p for long-wavelength light with p-layer.
Because of the layers, it has a greater spectral sensitivity than n + -pp + thin film solar cells. In addition, since Voc has the potential barrier φp formed, the reverse saturation current Jo is small, and Voc has a large Voc which is comparable to that of the n + -pp + thin film solar cell. The FF has the same characteristics as the n + -pp + thin film solar cell due to the use of the p + substrate and the small n value. Therefore, in the bulk solar cell, n +
-pp + It becomes possible to manufacture a solar cell having a photoelectric conversion efficiency (17 to 19%) that is equal to or higher than that of a thin film solar cell.
【0027】さらに、InP太陽電池に関しては、In
P太陽電池の特長である耐放射線性について、基板の抵
抗ができるだけ小さい方、つまりキャリアー濃度の高い
基板を用いた方がより優れていることが、ジャパニーズ
ジャーナルオブアプライトフィジクス 第23巻3号1
984年(Japanese Journal of Applied Physics Vol.
23 no.3 1984) pp.302−307等の論文により明
らかにされている。Further, regarding InP solar cells, In
Regarding the radiation resistance, which is a feature of P solar cells, it is better that the substrate resistance is as small as possible, that is, it is better to use a substrate having a high carrier concentration. Japanese Journal of Upright Physics Vol.
984 (Japanese Journal of Applied Physics Vol.
23 no. 3 1984) pp. It is clarified by the articles such as 302-307.
【0028】尚、太陽電池の基板として直接遷移型材料
であるInP、GaAs等を用いる場合、これらの材料
の光吸収係数が大きいため、本発明を適用し効果を上げ
るためには、上記基板内部より表面に向かって徐々にキ
ャリアー濃度が減少するドーピングプロファイルを太陽
光が入射する面より10μm以内に形成することが望ま
しい。When InP, GaAs or the like, which is a direct transition type material, is used as the substrate of the solar cell, the light absorption coefficient of these materials is large. It is desirable to form a doping profile in which the carrier concentration gradually decreases toward the surface within 10 μm from the surface on which sunlight is incident.
【0029】[0029]
【発明の効果】以上説明したように本発明によれば、従
来のn+ -pバルク型太陽電池の光電変換効率より高い光
電変換効率が達成できると共に、n+ -p-p+ 薄膜型太陽
電池と同等か、それ以上の光電変換効率が実現できる。
また、大量生産に適した拡散法と熱処理法を用いたこと
により、従来のn+ -p-p+ 薄膜型太陽電池に比べ大幅に
コストが低減できる。As described above, according to the present invention, a photoelectric conversion efficiency higher than that of a conventional n + -p bulk type solar cell can be achieved, and at the same time, an n + -pp + thin film type solar cell can be obtained. Equivalent or higher photoelectric conversion efficiency can be realized.
Further, by using the diffusion method and the heat treatment method suitable for mass production, the cost can be significantly reduced as compared with the conventional n + -pp + thin film solar cell.
【図1】本発明方法を説明する図である。FIG. 1 is a diagram illustrating a method of the present invention.
【図2】本発明の太陽電池のバンドダイヤグラムであ
る。FIG. 2 is a band diagram of the solar cell of the present invention.
【図3】従来の薄膜型太陽電池の断面図及びバンドダイ
ヤグラムである。FIG. 3 is a cross-sectional view and band diagram of a conventional thin film solar cell.
【図4】従来のバルク型太陽電池の断面図及びバンドダ
イヤグラムである。FIG. 4 is a cross-sectional view and band diagram of a conventional bulk solar cell.
10 p+ 型InP基板 20 p+ 型InP層 30 p型InP層 40 n+ 型InP層 50 p+ 型InP基板 51 n+ 層10 p + type InP substrate 20 p + type InP layer 30 p type InP layer 40 n + type InP layer 50 p + type InP substrate 51 n + layer
Claims (1)
を熱処理して上記半導体基板の表面部の不純物濃度を低
下させる工程と、上記半導体基板の表面部に第2導電型
不純物を拡散してpn接合を形成する工程と、上記半導
体基板の表面に第1の電極を形成すると共に、上記半導
体基板の裏面に第2の電極を形成する工程とを含むこと
を特徴とする太陽電池の製造方法。1. A step of heat-treating a semiconductor substrate containing a first conductivity type impurity to reduce an impurity concentration on a surface portion of the semiconductor substrate, and diffusing a second conductivity type impurity on the surface portion of the semiconductor substrate. A method of manufacturing a solar cell, comprising: forming a pn junction; and forming a first electrode on the front surface of the semiconductor substrate and forming a second electrode on the back surface of the semiconductor substrate. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4210058A JPH0661516A (en) | 1992-08-06 | 1992-08-06 | Manufacture of solar battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4210058A JPH0661516A (en) | 1992-08-06 | 1992-08-06 | Manufacture of solar battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0661516A true JPH0661516A (en) | 1994-03-04 |
Family
ID=16583122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4210058A Pending JPH0661516A (en) | 1992-08-06 | 1992-08-06 | Manufacture of solar battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0661516A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013541224A (en) * | 2010-10-28 | 2013-11-07 | ソーラー・ジャンクション・コーポレイション | Multijunction solar cell with dilute nitride subcells with graded doping |
US8962991B2 (en) | 2011-02-25 | 2015-02-24 | Solar Junction Corporation | Pseudomorphic window layer for multijunction solar cells |
US8962993B2 (en) | 2011-11-15 | 2015-02-24 | Solar Junction Corporation | High efficiency multijunction solar cells |
US9018522B2 (en) | 2010-03-29 | 2015-04-28 | Solar Junction Corporation | Lattice matchable alloy for solar cells |
US9153724B2 (en) | 2012-04-09 | 2015-10-06 | Solar Junction Corporation | Reverse heterojunctions for solar cells |
US10916675B2 (en) | 2015-10-19 | 2021-02-09 | Array Photonics, Inc. | High efficiency multijunction photovoltaic cells |
US10930808B2 (en) | 2017-07-06 | 2021-02-23 | Array Photonics, Inc. | Hybrid MOCVD/MBE epitaxial growth of high-efficiency lattice-matched multijunction solar cells |
US11211514B2 (en) | 2019-03-11 | 2021-12-28 | Array Photonics, Inc. | Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions |
US11271122B2 (en) | 2017-09-27 | 2022-03-08 | Array Photonics, Inc. | Short wavelength infrared optoelectronic devices having a dilute nitride layer |
-
1992
- 1992-08-06 JP JP4210058A patent/JPH0661516A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9018522B2 (en) | 2010-03-29 | 2015-04-28 | Solar Junction Corporation | Lattice matchable alloy for solar cells |
US9252315B2 (en) | 2010-03-29 | 2016-02-02 | Solar Junction Corporation | Lattice matchable alloy for solar cells |
US9985152B2 (en) | 2010-03-29 | 2018-05-29 | Solar Junction Corporation | Lattice matchable alloy for solar cells |
JP2013541224A (en) * | 2010-10-28 | 2013-11-07 | ソーラー・ジャンクション・コーポレイション | Multijunction solar cell with dilute nitride subcells with graded doping |
US9214580B2 (en) | 2010-10-28 | 2015-12-15 | Solar Junction Corporation | Multi-junction solar cell with dilute nitride sub-cell having graded doping |
US8962991B2 (en) | 2011-02-25 | 2015-02-24 | Solar Junction Corporation | Pseudomorphic window layer for multijunction solar cells |
US8962993B2 (en) | 2011-11-15 | 2015-02-24 | Solar Junction Corporation | High efficiency multijunction solar cells |
US9153724B2 (en) | 2012-04-09 | 2015-10-06 | Solar Junction Corporation | Reverse heterojunctions for solar cells |
US10916675B2 (en) | 2015-10-19 | 2021-02-09 | Array Photonics, Inc. | High efficiency multijunction photovoltaic cells |
US10930808B2 (en) | 2017-07-06 | 2021-02-23 | Array Photonics, Inc. | Hybrid MOCVD/MBE epitaxial growth of high-efficiency lattice-matched multijunction solar cells |
US11271122B2 (en) | 2017-09-27 | 2022-03-08 | Array Photonics, Inc. | Short wavelength infrared optoelectronic devices having a dilute nitride layer |
US11211514B2 (en) | 2019-03-11 | 2021-12-28 | Array Photonics, Inc. | Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4253882A (en) | Multiple gap photovoltaic device | |
US5641362A (en) | Structure and fabrication process for an aluminum alloy junction self-aligned back contact silicon solar cell | |
US5066340A (en) | Photovoltaic device | |
US6743974B2 (en) | Silicon solar cell with germanium backside solar cell | |
US4253881A (en) | Solar cells composed of semiconductive materials | |
US4113531A (en) | Process for fabricating polycrystalline inp-cds solar cells | |
US4227941A (en) | Shallow-homojunction solar cells | |
EP1038322A1 (en) | High-efficiency solar cell and method for fabrication | |
JPH0758354A (en) | Manufacture of thin film photo-cell device | |
US4248675A (en) | Method of forming electrical contact and antireflection layer on solar cells | |
JP3269668B2 (en) | Solar cell | |
US4477688A (en) | Photovoltaic cells employing zinc phosphide | |
KR101543767B1 (en) | Method For Forming Selective Emitter Of Solar Cell Solar Cell and Fabricating Method Thereof | |
JPH0661516A (en) | Manufacture of solar battery | |
JPS5846074B2 (en) | Method of manufacturing photovoltaic device | |
Arora et al. | Surface recombination effects on the performance of n+ p step and diffused junction silicon solar cells | |
JPH0878709A (en) | Solar battery | |
JPS6111475B2 (en) | ||
US4483063A (en) | Oxide charge induced high low junction emitter solar cell | |
Pelanchon et al. | Optimization of solar cell performance | |
JPS636882A (en) | Photocell of tandem structure | |
US4914495A (en) | Photodetector with player covered by N layer | |
Choi et al. | P/N InP homojunction solar cells by LPE and MOCVD techniques | |
US20100147380A1 (en) | Hybrid Photovoltaic Cell Using Amorphous Silicon Germanium Absorbers and Wide Bandgap Dopant Layers | |
JPS6249754B2 (en) |