JPH0654786B2 - Heterojunction semiconductor device - Google Patents

Heterojunction semiconductor device

Info

Publication number
JPH0654786B2
JPH0654786B2 JP28089184A JP28089184A JPH0654786B2 JP H0654786 B2 JPH0654786 B2 JP H0654786B2 JP 28089184 A JP28089184 A JP 28089184A JP 28089184 A JP28089184 A JP 28089184A JP H0654786 B2 JPH0654786 B2 JP H0654786B2
Authority
JP
Japan
Prior art keywords
inp
layer
type
asysb
heterojunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28089184A
Other languages
Japanese (ja)
Other versions
JPS61156773A (en
Inventor
秀樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP28089184A priority Critical patent/JPH0654786B2/en
Publication of JPS61156773A publication Critical patent/JPS61156773A/en
Publication of JPH0654786B2 publication Critical patent/JPH0654786B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はヘテロ接合半導体デバイスに関し、特にInP/A
lGaAsSb系のヘテロ接合を用いた半導体デバイスに関す
る。
The present invention relates to a heterojunction semiconductor device, and more particularly to InP / A
The present invention relates to a semiconductor device using an GaAsSb-based heterojunction.

(従来の技術とその問題点) 2つの異種半導体の接合(ヘテロ接合)は、導電帯の底
の不連続性によりヘテロ界面の低い導電帯側に電子蓄積
層を形成したりキャリアを閉じ込める作用があり、高速
デバイスや半導体レーザ等に利用されている。ヘテロ接
合の特性は接合する2種の半導体のエネルギ・バンド構
造(エネルギ・バンド・ギャップ、電子親和度)により
著しく異なる。
(Prior art and its problems) The junction (heterojunction) of two different semiconductors has the function of forming an electron storage layer or confining carriers on the side of the conduction band having a low hetero interface due to the discontinuity of the bottom of the conduction band. It is used in high-speed devices and semiconductor lasers. The characteristics of the heterojunction differ significantly depending on the energy band structure (energy band gap, electron affinity) of the two semiconductors to be joined.

従来高速デバイスに用いられてきた代表的なヘテロ接合
はGaAs/AlGaAs系であり、GaAs MESFET以上の高速動作
を与えるが、動作層のGaAs内でキャリアがΓ谷(主バン
ド)からL谷(サブバンド)へ遷移しやすいため約3KV
/cm以上の電界で負性微分移動度を伴う谷間散乱が起こ
り、バリスティックデバイスや高移動度能動デバイスを
実現する上で問題があった。
A typical heterojunction conventionally used for high-speed devices is a GaAs / AlGaAs system, which provides higher speed operation than GaAs MESFETs, but carriers in the GaAs of the operating layer are from the Γ valley (main band) to the L valley (subband). 3KV because it easily transitions to the band)
There was a problem in realizing ballistic devices and high-mobility active devices because valley scattering with negative differential mobility occurs in an electric field of / cm or more.

(発明が解決しようとする問題点) したがって本発明の目的はGaAs/AlGaAs系およびInGaAs
系ヘテロ接合デバイスの問題点を解決した高速デバイス
を提供することにあり、この目的は本発明においてInP
とAlxGa1-xAsySb1-y(y=0.044x+0.52)とのヘテロ接合を
用いた半導体デバイスによって解決される。
(Problems to be Solved by the Invention) Accordingly, the object of the present invention is to provide a GaAs / AlGaAs system and InGaAs.
An object of the present invention is to provide a high-speed device that solves the problems of the heterojunction-based device.
It is solved by a semiconductor device using a heterojunction of Al x Ga 1-x AsySb 1-y (y = 0.044x + 0.52).

(問題点を解決するための手段) 本発明はGaAsの代わりにInPを用いる。第2図に示すよ
うに、GaAsとInPのエネルギバンド構造は類似するが、I
nPのΔEΓLは0.53eVとGaAsのそれの0.31eVに比べてか
なり大きい。このことから、負性抵抗が現われるInPの
しきい電界はGaAsに比べて約3倍大きい。また、第3図
に示すように、電子の速度の電界強度依存性はInPの方
がGaAsに比べてそのピーク電子速度は大きいことがわか
る。さてInPを動作層、すなわち実際にキャリアが走行
する層として用いるためには、InPと接合する他方の半
導体が電子親和度はInPより小さいが禁制帯幅はInPより
大きくかつInPに格子整合したものでなければならな
い。
(Means for Solving Problems) The present invention uses InP instead of GaAs. As shown in Fig. 2, the energy band structures of GaAs and InP are similar, but I
The ΔE ΓL of nP is 0.53 eV, which is considerably larger than the 0.31 eV of GaAs. From this fact, the threshold electric field of InP where negative resistance appears is about three times larger than that of GaAs. Further, as shown in FIG. 3, it can be seen that the dependence of the electron velocity on the electric field strength is larger in InP than in GaAs in terms of peak electron velocity. In order to use InP as an operating layer, that is, a layer in which carriers actually travel, the other semiconductor that joins with InP has an electron affinity smaller than InP but a band gap larger than InP and lattice-matched to InP. Must.

本発明による4元混晶AlxGa1-xAsySb1-y(y=0.044x+0.5
2)はこれらの条件を満足した材料である。
Quaternary mixed crystal according to the present invention Al x Ga 1-x AsySb 1-y (y = 0.044x + 0.5
2) is a material that satisfies these conditions.

(実施例) 以下添付図面を参照して本発明の具体的な実施例を述べ
る。
(Examples) Specific examples of the present invention will be described below with reference to the accompanying drawings.

第1図には本発明による変調ドーピングショットキゲー
ト電界効果トランジスタ(MESFET)の実施例の断面構造を
示す。第1図において、半絶縁性InP基板11上に、ア
ンドープInP層12、0〜200ÅのアンドープAlxGa1-xAs
ySb1-y(y=0.044x+0.52)(x≒0.48)層13、Siドー
プによる厚さ500〜1000Åの1×10181/cm3のn+型AlxGa
1-xAsySb1-y(y=0.044x+0.52)層14を例えば分子線エ
ピタキシャル法により順次成長させ、このn+型AlxGa1-x
AsySb1-y層14上にAlのショットキゲート電極15とゲ
ート電極15の両側にAuGeNiのオーミック電極16、1
7とを設けた構造である。第4図に示すように、InPとA
lxGa1-xAsySb1-y(y=0.044x+0.52)との導電帯の底の不
連続性のためにヘテロ界面のInP側に電子の蓄積が起こ
る。すなわち、InPの電子親和度が大きいためn+型AlxGa
1-xAsySb1-y(y=0.044x+0.52)層内のドナーにより供給
された電子がInP側に引きつけられて電子蓄積層が形成
される。
FIG. 1 shows a sectional structure of an embodiment of a modulation-doped Schottky gate field effect transistor (MESFET) according to the present invention. In FIG. 1, on a semi-insulating InP substrate 11, an undoped InP layer 12, 0-200 Å undoped Al x Ga 1-x As.
ySb 1-y (y = 0.044x + 0.52) (x≈0.48) layer 13, 1 × 10 181 / cm 3 n + type Al x Ga of Si doped with a thickness of 500 to 1000 Å
The 1-x AsySb 1-y (y = 0.044x + 0.52) layer 14 is sequentially grown by, for example, a molecular beam epitaxial method, and the n + -type Al x Ga 1-x
Al Schottky gate electrode 15 on the AsySb 1-y layer 14 and AuGeNi ohmic electrodes 16 on both sides of the gate electrode 15;
7 is provided. As shown in Fig. 4, InP and A
Accumulation of electrons occurs on the InP side of the heterointerface due to the discontinuity at the bottom of the conduction band with l x Ga 1-x AsySb 1-y (y = 0.044x + 0.52). That is, since nP has a large electron affinity, n + -type Al x Ga
Electrons supplied by the donor in the 1-x AsySb 1-y (y = 0.044x + 0.52) layer are attracted to the InP side to form an electron storage layer.

この電子蓄積層がソースドレイン間の電気伝導に寄与す
るわけであるが、InP層には不純物をドープしていない
ためにイオン化不純物散乱が少なくなり、特にイオン化
不純物散乱が支配的になる低温でこの効果は大きく高電
子移動度が得られる。これと同様の原理、即ちキャリヤ
が発生するドープ領域と実際にキャリヤが動き回るアン
ドープ領域とを空間的に分離したFETとしては、従来
GaAs/AlGaAsヘテロ接合を用いたものが知られている。
しかしアンドープGaAs動作層においてキャリヤが有効質
量の小さいΓ谷から有効質量の大きいL谷へ遷移してし
まうため負性微分移動度が現われる。またIn0.52Al0.48
As/In0.53Ga0.47Asヘテロ界面を用いたFETが最近提
案されているが、InGaAsにおいてもGaAsと同様に負性抵
抗が現われるしきい電界が3〜4KV/cmと低く、低電界
移動度の特徴が高電界で有効に利用され得ない。また、
In0.53Ga0.47As混晶中での合金錯乱の影響もデバイス応
用上問題がある。本発明によるFETでは動作層にInP
を用いているために合金錯乱の問題はなく、また前述の
ようにInPはGaAsに比べてしきい電界が高くかつピーク
電子速度が大きいため印加電圧が高くとれ高出力および
高速動作が可能である。
This electron storage layer contributes to the electrical conduction between the source and the drain, but since the InP layer is not doped with impurities, the ionized impurity scattering is reduced, especially at low temperatures where the ionized impurity scattering becomes dominant. The effect is large and high electron mobility can be obtained. The same principle as this, that is, as a FET in which a doped region in which carriers are generated and an undoped region in which carriers actually move around are spatially separated,
Those using a GaAs / AlGaAs heterojunction are known.
However, in the undoped GaAs operating layer, a negative differential mobility appears because the carriers transit from the Γ valley having a small effective mass to the L valley having a large effective mass. In 0.52 Al 0.48
As / In 0.53 Ga 0.47 As FETs using a hetero interface have been recently proposed, but in InGaAs, the threshold electric field where negative resistance appears as in GaAs is as low as 3 to 4 KV / cm, and low electric field mobility is obtained. Features cannot be used effectively at high electric fields. Also,
In 0.53 Ga 0.47 As The influence of alloy confusion in mixed crystals is also problematic for device application. In the FET according to the present invention, InP is used as the operating layer.
Since there is no problem of alloy confusion due to the use of InP, InP has a higher threshold electric field and a higher peak electron velocity than GaAs as described above, so that the applied voltage can be high and high output and high speed operation are possible. .

第5図には本発明による実空間遷移型半導体素子の実施
例の断面構造を示す。第5図において、半絶縁性InP
基板21上にAlxGa1-xAsySb1-y(y=0.044x+0.52)層22
とInP層23とを交互に積層成長させる。この実施例で
はダブルヘテロ接合を繰り返した多重積層構造である
が、単一ヘテロ接合の単一積層構造でもよい。24、2
5はヘテロ界面の略垂直に設けられたオーミック電極で
ある。前述と同様に各ヘテロ界面のInP側に電子蓄積層
が形成される。オーミック電極24、25間に電界を印
加すると、InP中の電子は加速されてホットエレクトロ
ンとなるが、InP中の上の谷(L谷)に遷移する前にAlx
Ga1-xAsySb1-y層中に散乱される。AlxGa1-xAsySb1-y
では電子の移動度はInP中よりも小さいために負性微分
抵抗が生じる。電子の遷移時間は横方向の長さで決まる
ため、ガンダイオードより高周波での動作が期待でき
る。従来この型の半導体素子として、GaAs−AlGaAsヘテ
ロ界面を用いたものが知られている。ところがGaAsでは
Γ谷とL谷間のエネルギ差ΔEΓLが0.31eVと比較的小
さいため、ホットエレクトロンがAlxGa1-xAs中に散乱す
る前にL谷に遷移しやすい。したがって、負性微分抵抗
は得られてもそれはガン効果によるものであり、純粋な
実空間遷移による負性微分抵抗という現象は実現し難か
った。これに比べ本発明によるInP/AlxGa1-xAsySb
1-y(y=0.044x+0.52)ヘテロ接合を用いたものではInPの
ΔEΓLが0.53eVと大きいため、InP中のホットエレク
トロンがAlxGa1-xAsySb1-yに散乱する前にL谷へ遷移す
るという現象が起こりにくく、高電界で純粋な実空間遷
移による負性微分抵抗が得られる。なお変調ドーピング
法によりアンドープInP層23とn+型AlxGa1-xAsySb
1-y(y=0.044x+0.52)層22とに形成してInP中の電子移
動度を高めてもよい。
FIG. 5 shows a sectional structure of an embodiment of the real space transition type semiconductor device according to the present invention. In FIG. 5, semi-insulating InP
Al x Ga 1-x AsySb 1-y (y = 0.044x + 0.52) layer 22 on the substrate 21
And InP layer 23 are alternately grown. In this embodiment, a double-heterojunction is repeated to form a multi-layered structure, but a single heterojunction single-layered structure may be used. 24, 2
Reference numeral 5 is an ohmic electrode provided substantially perpendicular to the hetero interface. Similar to the above, an electron storage layer is formed on the InP side of each hetero interface. When an electric field is applied between the ohmic electrodes 24 and 25, the electrons in InP are accelerated and become hot electrons, but before the transition to the upper valley (L valley) in InP, Al x
Scattered in Ga 1-x AsySb 1-y layer. Since the mobility of electrons in Al x Ga 1-x AsySb 1-y is smaller than that in InP, negative differential resistance occurs. Since the transition time of electrons is determined by the lateral length, it can be expected to operate at a higher frequency than the Gunn diode. Conventionally, as this type of semiconductor element, one using a GaAs-AlGaAs hetero interface is known. However, in GaAs, since the energy difference ΔE ΓL between the Γ valley and the L valley is relatively small at 0.31 eV, hot electrons are likely to transit to the L valley before being scattered in Al x Ga 1-x As. Therefore, even if a negative differential resistance is obtained, it is due to the Gunn effect, and it is difficult to realize the phenomenon of negative differential resistance due to pure real space transition. In comparison to this, InP / Al x Ga 1-x AsySb according to the present invention
For 1-y (y = 0.044x + 0.52) InP of Delta] E GanmaL than those using a heterojunction is as large as 0.53 eV, before hot electrons in the InP is scattered in Al x Ga 1-x AsySb 1 -y The phenomenon of transition to the L valley is unlikely to occur, and a negative differential resistance due to pure real space transition can be obtained at a high electric field. The undoped InP layer 23 and the n + -type Al x Ga 1-x AsySb were formed by the modulation doping method.
It may be formed on the 1-y (y = 0.044x + 0.52) layer 22 to increase the electron mobility in InP.

第6図には本発明によるバイポーラヘテロ接合トランジ
スタの実施例を示す。第6図において、n+型InP基板
(n=2×1018 1/cm3)31上に0.5μm厚のn-型InPコ
レクタ層(1×1016 1/cm3)32、500Å厚のp+型(1
×1019 1/cm3)InPベース層33、0.2μm厚のn型(2
×1017 1/cm3)AlxGa1-xAsySb1-y(y=0.044x+0.52)エミ
ッタ層34、0.2μm厚のn+型(1×1019 1/cm3)InPキ
ャップ層35を備えた構造である。この構造のトランジ
スタは、ベース、コレクタの動作層で大きな電流密度が
得られ、gmが大きいこと、ファンアウト依存性が小さい
とこ、動作振幅が小さいことなどの利点がある。またベ
ース層の厚さをサブ・ミクロンまで縮小できるとバリス
ティック動作又は電子速度のオーバーシュート効果が可
能である。
FIG. 6 shows an embodiment of the bipolar heterojunction transistor according to the present invention. In FIG. 6, a 0.5 μm thick n -type InP collector layer (1 × 10 16 1 / cm 3 ) 32, 500 Å-thick on an n + -type InP substrate (n = 2 × 10 18 1 / cm 3 ). p + type (1
× 10 19 1 / cm 3 ) InP base layer 33, 0.2 μm thick n-type (2
× 10 17 1 / cm 3 ) Al x Ga 1-x AsySb 1-y (y = 0.044x + 0.52) emitter layer 34, 0.2 μm thick n + type (1 × 10 19 1 / cm 3 ) InP cap layer It is a structure provided with 35. The transistor of this structure has advantages that a large current density can be obtained in the base and collector operating layers, gm is large, fanout dependency is small, and operating amplitude is small. Further, if the thickness of the base layer can be reduced to sub-micron, a ballistic operation or an electron velocity overshoot effect is possible.

従来知られているGaAs/AlxGa1-xAs系のバイポーラ・ヘ
テロ接合トランジスタではベース層にGaAsを用いている
ため前述したようにΓ谷とL谷間のエネルギー差ΔE
ΓLが比較的小さく、帯間フォノン散乱が生起しやす
い。これに比べ本発明によるトランジスタでInPを動作
層として用いておりΔEΓLが大きいので、ベース領域
で帯間フォノン散乱されずにバリステイック動作または
電子速度のオーバーシュート動作が起こりやすい。この
ため超高速のトランジスタが実現できる。
In the conventionally known GaAs / Al x Ga 1-x As based bipolar heterojunction transistor, since GaAs is used for the base layer, the energy difference ΔE between the Γ valley and the L valley is as described above.
ΓL is relatively small, and inter-band phonon scattering is likely to occur. On the other hand, since InP is used as the operation layer in the transistor according to the present invention and ΔE ΓL is large, a varistic operation or an electron velocity overshoot operation is likely to occur without interband phonon scattering in the base region. Therefore, an ultra-high speed transistor can be realized.

(発明の効果) 以上のように、本発明によるInP/AlxGa1-xAsySb1-y(y
=0.044x+0.52)ヘテロ接合を用いた種々のデバイスは、
従来のデバイスに比べて動作速度が高いため、現在FE
T、IC、ガンダイオード等が用いられているあらゆる
分野に用いることができ、その産業上の利用価値は極め
て大きく特に高速処理が必要な分野、例えば計算機のCP
U、メモリ、画像処理等での利用が期待できる。またInP
を用いるとしきい電界が高いことから動作電圧を高くと
れ、高出力マイクロデバイスとしても本発明のヘテロ接
合は応用可能である。
(Effects of the Invention) As described above, InP / Al x Ga 1-x AsySb 1-y (y
= 0.044x + 0.52) Various devices using heterojunction
Since the operation speed is higher than that of conventional devices, it is currently FE
It can be used in all fields where T, IC, Gunn diode, etc. are used, and its industrial utility value is extremely large, especially in fields requiring high-speed processing, such as computer CP.
Expected to be used in U, memory, image processing, etc. Also InP
Since a high threshold electric field is used, a high operating voltage can be obtained, and the heterojunction of the present invention can be applied as a high output microdevice.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明によるInP/AlxGa1-xAsySb1-y(y=0.0
44x+0.52)の界面を用いた変調ドープ電界効果トランジ
スタの断面図である。 第2図(a)、(b)はそれぞれGaAs、InPのエネルギバンド
構造図である。 第3図は、GaAs、InPの電子速度の電界強度依存性を示
す図である。 第4図は、InP/AlxGa1-xAsySb1-y(y=0.044x+0.52)ヘ
テロ界面でのエネルギバンド図である。 第5図は、本発明によるInP/AlxGa1-xAsySb1-y(y=0.0
44x+0.52)ヘテロ界面を用いた実空間遷移型半導体素子
の断面構造図である。 第6図は、ベース層にInP、エミッタ層にAlxGa1-xAsySb
1-y(y=0.044x+0.52)を用いた本発明によるバイポーラ
・ヘテロ接合トランジスタの断面構造図である。 11は、半絶縁性InP基板 12は、アンドープInP層 13は、50Å〜100Åのアンドープ AlxGa1-xAsySb1-y(y=0.044x+0.52)層 14は、500Å〜1000ÅのSiドープ(1×1018 1/c
m3)n+型AlxGa1-xAsySb1-y(y=0.044x+0.52)層 15は、Alのゲート電極 16、17は、AuGeNiオーミック電極 21は、半絶縁性InP基板 22は、AlxGa1-xAsySb1-y(y=0.044x+0.52)層 23は、InP層 24、25は、オーミック電極 31は、n+型InP基板(n=2×1018 1/cm3) 32は、0.5μm厚n-型InPコレクタ層(1×1016 1/c
m3) 33は、500Å厚P+型InPベース層(1×1019 1/cm3) 34は、0.2μm厚のn型AlxGa1-xAsySb1-y(y=0.044x+
0.52)のエミッタ層(2×1017 1/cm3) 35は、0.2μm厚のn+型InPキャップ層(1×1019 1/c
m3
FIG. 1 shows InP / Al x Ga 1-x AsySb 1-y (y = 0.0 according to the present invention.
FIG. 4 is a cross-sectional view of a modulation-doped field effect transistor using an interface of 44x + 0.52). 2 (a) and 2 (b) are energy band structure diagrams of GaAs and InP, respectively. FIG. 3 is a diagram showing the electric field strength dependence of the electron velocity of GaAs and InP. FIG. 4 is an energy band diagram at the InP / Al x Ga 1-x AsySb 1-y (y = 0.044x + 0.52) hetero interface. FIG. 5 shows InP / Al x Ga 1-x AsySb 1-y (y = 0.0 according to the present invention.
44x + 0.52) is a cross-sectional structural diagram of a real-space transition type semiconductor device using a hetero interface. Figure 6 shows InP for the base layer and Al x Ga 1-x AsySb for the emitter layer.
FIG. 3 is a cross-sectional structural diagram of a bipolar heterojunction transistor according to the present invention using 1-y (y = 0.044x + 0.52). 11 is a semi-insulating InP substrate 12 is an undoped InP layer 13 is an undoped Al x Ga 1-x AsySb 1-y (y = 0.044x + 0.52) layer of 50 Å to 100 Å 14 is Si-doped of 500 Å to 1000 Å (1 x 10 18 1 / c
m 3 ) n + type Al x Ga 1-x AsySb 1-y (y = 0.044x + 0.52) layer 15 is an Al gate electrode 16 and 17, AuGeNi ohmic electrode 21 is a semi-insulating InP substrate 22 , Al x Ga 1-x AsySb 1-y (y = 0.044x + 0.52) layer 23 is an InP layer 24, 25 is an ohmic electrode 31 is an n + type InP substrate (n = 2 × 10 18 1 / cm 2 3 ) 32 is a 0.5 μm thick n-type InP collector layer (1 × 10 16 1 / c
m 3 ) 33 is a 500Å thick P + type InP base layer (1 × 10 19 1 / cm 3 ) 34 is a 0.2 μm thick n-type Al x Ga 1-x AsySb 1-y (y = 0.044x +
0.52) emitter layer (2 × 10 17 1 / cm 3 ) 35 is a 0.2 μm thick n + type InP cap layer (1 × 10 19 1 / c 3 ).
m 3 )

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/73 29/812 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 29/73 29/812

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】InPとAlGa1-xAsSb1-y(y
=0.044x+0.52)とのヘテロ接合を用いた半
導体デバイス。
1. A InP and Al x Ga 1-x As y Sb 1-y (y
= 0.044x + 0.52) and a semiconductor device using a heterojunction.
【請求項2】半絶縁性InP基板上のアンドープInP
層と、該InP層上のn+型AlGa1-xAsSb1-y
(y=0.044x+0.52)層とを備え、前記n+
AlGa1-xAsSb1-y層の離隔した2領域にソー
スおよびドレイン用のオーミック電極をそれぞれ設け,
これら電極間にゲート用ショットキ電極を設けた電界効
果トランジスタ。
2. Undoped InP on a semi-insulating InP substrate
A layer, on said InP layer n + -type Al x Ga 1-x As y Sb 1-y
(Y = 0.044x + 0.52) layer, and ohmic electrodes for a source and a drain are respectively provided in two separated regions of the n + -type Al x Ga 1-x As y Sb 1-y layer,
A field effect transistor in which a Schottky electrode for a gate is provided between these electrodes.
【請求項3】半絶縁性InP基板上にAlGa1-x
Sb1-y(y=0.044x+0.52)とInP
との単一または多重の積層を有し,該積層の両側面にオ
ーミック電極を設けた半導体素子。
3. Al x Ga 1-x A on a semi-insulating InP substrate.
s y Sb 1-y (y = 0.044x + 0.52) and InP
A semiconductor device having a single or multiple stacked layers of and ohmic electrodes provided on both side surfaces of the stacked layers.
【請求項4】n+型InP基板上にn-型InPコレクタ
層、p+型InPベース層、該ベース層上にn型Al
1-xAsSb1-y(y=0.044x+0.52)エ
ミッタ層を備えたことを特徴とするバイポーラヘテロ接
合トランジスタ。
4. An n -type InP collector layer, a p + -type InP base layer, and an n-type Al x G on the n + -type InP substrate.
A bipolar heterojunction transistor comprising an a 1-x As y Sb 1-y (y = 0.044x + 0.52) emitter layer.
JP28089184A 1984-12-27 1984-12-27 Heterojunction semiconductor device Expired - Lifetime JPH0654786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28089184A JPH0654786B2 (en) 1984-12-27 1984-12-27 Heterojunction semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28089184A JPH0654786B2 (en) 1984-12-27 1984-12-27 Heterojunction semiconductor device

Publications (2)

Publication Number Publication Date
JPS61156773A JPS61156773A (en) 1986-07-16
JPH0654786B2 true JPH0654786B2 (en) 1994-07-20

Family

ID=17631379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28089184A Expired - Lifetime JPH0654786B2 (en) 1984-12-27 1984-12-27 Heterojunction semiconductor device

Country Status (1)

Country Link
JP (1) JPH0654786B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2703892B2 (en) * 1986-12-08 1998-01-26 日本電気株式会社 Field effect element
JP2680812B2 (en) * 1987-01-30 1997-11-19 日本電気株式会社 Semiconductor device
JP2539268B2 (en) * 1989-07-12 1996-10-02 富士通株式会社 Semiconductor device
US5164800A (en) * 1990-08-30 1992-11-17 Sumitomo Electric Industries, Ltd. Semiconductor device
JP3046098B2 (en) * 1991-07-03 2000-05-29 富士通株式会社 Heterojunction semiconductor device
JPH09129865A (en) * 1995-11-06 1997-05-16 Mitsubishi Electric Corp Semiconductor device
JP4598224B2 (en) * 2000-03-30 2010-12-15 シャープ株式会社 Heterojunction bipolar gun effect four-terminal device

Also Published As

Publication number Publication date
JPS61156773A (en) 1986-07-16

Similar Documents

Publication Publication Date Title
US5705827A (en) Tunnel transistor and method of manufacturing same
US4914489A (en) Constant current semiconductor device
JP3194941B2 (en) Semiconductor device
JPH088350B2 (en) Semiconductor device
JPH05110086A (en) Tunnel transistor
JPH0354854B2 (en)
JPH0654786B2 (en) Heterojunction semiconductor device
JPH0312769B2 (en)
EP0136108B1 (en) Heterojunction semiconductor device
US4600932A (en) Enhanced mobility buried channel transistor structure
US4903091A (en) Heterojunction transistor having bipolar characteristics
JP3141838B2 (en) Field effect transistor
JPH0563005A (en) Field effect transistor
EP0322773B1 (en) Semiconductor device with semimetal
US5751029A (en) Field-effect semiconductor device having heterojunction
JP2796113B2 (en) Semiconductor device
JPH0543178B2 (en)
JP2503639B2 (en) Semiconductor device
JPH05175494A (en) Tunnel transistor
JP2792295B2 (en) Tunnel transistor
JP2567730B2 (en) Heterojunction field effect transistor
JPH0620142B2 (en) Semiconductor device
JPS59227161A (en) Bipolar transistor
JPH01251661A (en) High speed transistor
JP2917530B2 (en) Semiconductor device