JPH064859B2 - Method for removing fine particles from coal liquefaction - Google Patents
Method for removing fine particles from coal liquefactionInfo
- Publication number
- JPH064859B2 JPH064859B2 JP57049945A JP4994582A JPH064859B2 JP H064859 B2 JPH064859 B2 JP H064859B2 JP 57049945 A JP57049945 A JP 57049945A JP 4994582 A JP4994582 A JP 4994582A JP H064859 B2 JPH064859 B2 JP H064859B2
- Authority
- JP
- Japan
- Prior art keywords
- stage
- overflow
- coal
- electrofilter
- solids
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003245 coal Substances 0.000 title claims description 47
- 238000000034 method Methods 0.000 title claims description 18
- 239000010419 fine particle Substances 0.000 title description 3
- 239000007787 solid Substances 0.000 claims description 82
- 239000002245 particle Substances 0.000 claims description 36
- 239000007788 liquid Substances 0.000 claims description 27
- 239000000047 product Substances 0.000 claims description 26
- 239000002904 solvent Substances 0.000 claims description 6
- 238000009835 boiling Methods 0.000 claims description 5
- 238000011043 electrofiltration Methods 0.000 claims description 5
- 239000000706 filtrate Substances 0.000 claims description 5
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 4
- 238000007670 refining Methods 0.000 claims description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 2
- 239000011707 mineral Substances 0.000 claims description 2
- 230000005686 electrostatic field Effects 0.000 claims 3
- 238000011001 backwashing Methods 0.000 claims 2
- 238000007599 discharging Methods 0.000 claims 1
- 230000001172 regenerating effect Effects 0.000 claims 1
- 238000000926 separation method Methods 0.000 description 9
- 239000000356 contaminant Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 2
- 239000003250 coal slurry Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011882 ultra-fine particle Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- QXJJQWWVWRCVQT-UHFFFAOYSA-K calcium;sodium;phosphate Chemical compound [Na+].[Ca+2].[O-]P([O-])([O-])=O QXJJQWWVWRCVQT-UHFFFAOYSA-K 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002864 coal component Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G32/00—Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms
- C10G32/02—Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms by electric or magnetic means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/0012—Settling tanks making use of filters, e.g. by floating layers of particulate material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/26—Separation of sediment aided by centrifugal force or centripetal force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/26—Separation of sediment aided by centrifugal force or centripetal force
- B01D21/267—Separation of sediment aided by centrifugal force or centripetal force by using a cyclone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D35/00—Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
- B01D35/06—Filters making use of electricity or magnetism
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B9/00—General arrangement of separating plant, e.g. flow sheets
- B03B9/005—General arrangement of separating plant, e.g. flow sheets specially adapted for coal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C5/00—Separating dispersed particles from liquids by electrostatic effect
- B03C5/02—Separators
- B03C5/022—Non-uniform field separators
- B03C5/024—Non-uniform field separators using high-gradient differential dielectric separation, i.e. using a dielectric matrix polarised by an external field
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04C—APPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
- B04C5/00—Apparatus in which the axial direction of the vortex is reversed
- B04C5/24—Multiple arrangement thereof
- B04C5/26—Multiple arrangement thereof for series flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04C—APPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
- B04C9/00—Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/04—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
- C10G1/045—Separation of insoluble materials
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G31/00—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
- C10G31/10—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for with the aid of centrifugal force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04C—APPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
- B04C9/00—Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
- B04C2009/002—Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks with external filters
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Water Supply & Treatment (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Liquid Carbonaceous Fuels (AREA)
Description
【発明の詳細な説明】 本発明は石炭液化生成物の処理,特に液化石炭からの微
細な粒子状固体を除去する方法に関する。The present invention relates to the treatment of coal liquefaction products, and in particular to a method of removing fine particulate solids from liquefied coal.
石炭利用の増大化は必要エネルギーの供給を増大させる
一手段として興味深い。石炭の燃焼は据えつけの大設備
で行われかつ高濃度硫黄と灰分のために環境的に好まし
くないという理由から,きれいな液体を生成するための
石炭の変換の開発研究が私企業および政府の援助のもと
になされている。Increasing coal utilization is interesting as a way to increase the supply of required energy. Development studies on the conversion of coal to produce clean liquids are supported by private enterprises and governments because the combustion of coal takes place in large stationary installations and is environmentally unfavorable due to high concentrations of sulfur and ash. It is based on.
溶媒による石炭の精製(solvent tefining of coal)の
ような石炭の直接変換法において,満足できる石炭液化
生成物を得るときにそう遇する最も困難な問題は,細か
く分かれた不溶性の炭素質粒子のような,液化工程から
生ずる液体生成物中に含まれる微細な残留粒子および/
もしくは他の含有固体微粒子をそれから除去することで
ある。原料石炭の灰分含量は,石炭源に依存するが,代
表的には約5〜12重量%の範囲である。石炭液化反応
器からの微細粒子の粒子寸法分布は明確ではないが、中
間重量の(マス・メディアン)粒子の直径が3〜15ミ
クロンであるとの資料がある。In the direct conversion of coal, such as the solvent tefining of coal, the most difficult problem to deal with when obtaining a satisfactory coal liquefaction product is the problem of finely divided insoluble carbonaceous particles. The fine residual particles contained in the liquid product resulting from the liquefaction process and /
Or to remove other contained solid particulates therefrom. The ash content of the raw coal depends on the coal source, but is typically in the range of about 5-12% by weight. Although the particle size distribution of the fine particles from the coal liquefaction reactor is not clear, it is documented that the medium weight (mass median) particles have a diameter of 3 to 15 microns.
流動媒体の分散系から微細な固体粒子を除去する手段と
しては,種々のフィルター,遠心分離機,液体サイクロ
ンなどが当該技術分野で知られている。石炭液化生成物
から固体を除く場合,遠心分離機を用いると遠心分離機
は満足のゆく清澄度を達成するために終始低速で操作さ
れなければならずそれゆえ非経済的である。反対に,回
転ドラム圧でのフィルター操作およびリーフ・フィルタ
ーでは制御がきかずしかも機械的信頼性に乏しい。Various filters, centrifuges, hydrocyclones and the like are known in the art as means for removing fine solid particles from a dispersion system of a fluid medium. When removing solids from coal liquefaction products, with a centrifuge the centrifuge must be operated at low speeds throughout to achieve a satisfactory fining and is therefore uneconomical. On the contrary, the filter operation with the rotary drum pressure and the leaf filter are not controllable and the mechanical reliability is poor.
液体サイクロンにより,約25重量%までのような高固
体濃度の液体フィードが供給され得る。Hydrocyclones can provide liquid feeds with high solids concentrations, such as up to about 25% by weight.
しかし,これらの装置では約5ミクロン以下の大きさの
固体粒子を除くのに効果的でない。However, these devices are not effective at removing solid particles of size less than about 5 microns.
流動媒体からの分散固体粒子の除去はエレクトロフィル
ターを用いることによっても達成される。このエレクト
ロフィルターは0〜10ミクロン範囲の固体粒子を除く
のに効果的である。しかし,これらのエレクトロフィル
ターは約5重量%を越える量の固体粒子を含有するフィ
ードには使用できない。当該技術分野で既知な種々のエ
レクトロフィルターのうちで代表的なものが米国特許第
3,770,605号,第3,799,857号,第3,928,158号およびそ
こに引用された特許に記述されている。Removal of dispersed solid particles from the fluidized medium is also accomplished by using an electrofilter. This electrofilter is effective in removing solid particles in the 0-10 micron range. However, these electrofilters cannot be used for feeds containing solid particles in amounts greater than about 5% by weight. A representative of the various electrofilters known in the art is US Pat.
3,770,605, 3,799,857, 3,928,158 and the patents cited therein.
本発明の全般的な目的は,液体媒質の分散系から微細な
固体粒子を除去する系と方法を提供することにある。そ
こでは,そのような固体混入物は約5〜10重量%の範
囲にありかつ0〜50ミクロンの固体粒子を含む。さら
に詳しくは,本発明は,石炭液化スラリーのフィードか
ら固体粒子を含有する灰分もしくは無機物を除去するの
に適する。このフィードは溶媒による石炭の精製におい
て用いられるものであり,そこの固体混入物は灰分およ
び未変換石炭もしくは炭素を含有する。A general object of the present invention is to provide a system and method for removing fine solid particles from a dispersion of a liquid medium. There, such solid contaminants are in the range of about 5-10% by weight and include 0-50 micron solid particles. More particularly, the present invention is suitable for removing ash or minerals containing solid particles from the coal liquefaction slurry feed. This feed is used in solvent coal refining, where solid contaminants contain ash and unconverted coal or carbon.
本発明によれば,液化石炭から含有固体混入物を除去す
るには,まず,石炭液化生成物を液体サイクロンの場合
のように遠心分離にかけてこれら固体混入物の大部分を
除去することにより行われる。残りの極微細粒子は,次
いで,電気ろ過により石炭液化生成物から除かれる。こ
の極微細粒子は,最大約5ミクロンまでの範囲を粒子と
おそらく約10ミクロンまでの粒子を多少有する。表示
のタイプの石炭液化生成物から微細固体粒子含有灰分を
除去するのに液体サイクロンとエレクトロフィルターと
を組合せると相剰効果がある。これら微細な固体粒子は
(FeO,FeS,TiO2,Al2O3,MgO,CaO,SiO2,Na2Oおよ
びK2Oのような)無機物と未変換固形石炭もしくは炭素
質物からなる。粒子はその大きさにより分布するので,
より高密度成分(FeO,FeS,TiO2,Al2O3,MgO)は優先
的に下層流に集められ,それゆえ,溢流部には低密度の
固体に富むより微細な粒子が含まれる。例をあげて説明
すると,第1表はDotiki鉱山のKentucky #9石炭から生
ずる微細な固体粒子の比重を示す。未変換石炭はどの灰
分よりも低密度であるから,溢流部はフィード組成に比
較して未変換炭素に富む。According to the invention, the removal of the solid contaminants contained in the liquefied coal is carried out by first centrifuging the coal liquefaction product as in a hydrocyclone to remove most of these solid contaminants. . The remaining ultrafine particles are then removed from the coal liquefaction product by electrofiltration. The ultrafine particles have particles in the range of up to about 5 microns and perhaps some particles up to about 10 microns. The combination of a hydrocyclone and an electrofilter to remove fine solid particle-containing ash from a coal liquefaction product of the type indicated has a complementary effect. These fine solid particles are made of (FeO, FeS, TiO 2, Al 2 O 3, MgO, CaO, such as SiO 2, Na 2 O and K 2 O) inorganic and unconverted solid coal or carbonaceous material. Since particles are distributed according to their size,
Higher density component (FeO, FeS, TiO 2, Al 2 O 3, MgO) is collected preferentially in a lower layer flow, therefore, the overflow portion includes particles finer than rich low density solid . By way of example, Table 1 shows the specific gravity of the fine solid particles produced from Kentucky # 9 coal at the Dotiki mine. Since unconverted coal has a lower density than any ash, the overflow is rich in unconverted carbon compared to the feed composition.
より高密度の成分を除去することによりエレクトロフィ
ルターの稼働が高められる。低電導性の微細固体粒子
(すなわち,高比誘電率の固体)は,そのエレクトロフ
ィルターの有る固体を蓄積すべき能力を低下させる。本
発明によれば高比誘電率の石炭液化生成物のこれら固体
成分(第2表)もまた高密度の成分でもある。それゆ
え,上流式の液体サイクロン分離により選択的かつ優先
的に除去される。 The removal of higher density components enhances the operation of the electrofilter. Fine solid particles of low conductivity (ie, high dielectric constant solids) reduce the ability of the electrofilter to store solids. According to the invention, these solid constituents of the high relative permittivity coal liquefaction products (Table 2) are also dense constituents. Therefore, it is selectively and preferentially removed by upstream hydrocyclone separation.
第2表 石炭液化生成物の微細固体粒子の比誘電率 化 合 物 比誘電率 FeO 14.20 TiO2 86.00 Al2O3 9.34 MgO 9.70 CaO 11.80 SiO2 4.50 液化石炭の成分 クリセン 3.46 ピレン 3.80 さらに,エレクトロフィルターは,固体の液化石炭との
比誘電率の差により固体を優先的にとられる。それゆ
え,無機物は優先的に除去され,炭素質固体は石炭液化
生成物と共に流れ去る。未変換の固形石炭はBTU値が
高いので,この物質が石炭液化生成物に含まれると燃料
価が増大する。Table 2 Relative permittivity of fine solid particles of coal liquefaction product Compound relative permittivity FeO 14.20 TiO 2 86.00 Al 2 O 3 9.34 MgO 9.70 CaO 11.80 SiO 2 4.50 Liquefied coal components Chrysene 3.46 Pyrene 3.80 Furthermore, electrofilter Is preferentially taken due to the difference in relative permittivity between solid and liquefied coal. Therefore, inorganics are preferentially removed and carbonaceous solids run off with coal liquefaction products. Since unconverted solid coal has a high BTU value, the fuel value increases when this substance is included in the coal liquefaction product.
本発明方法を以下に図面と共に述べる。The method of the present invention will be described below with reference to the drawings.
第1図に示すように,溶媒による石炭の精製において用
いられかつ分散固体を含有するタイプの液化石炭スラリ
ーのフィードがライン10を通って第一段階の液体サイ
クロン系11へ導かれる。代表的には,この石炭スラリ
ーの一部は850゜Fよりも高い沸点を有する。この第
一段階の液体サイクロン系11において,投入物よりも
固体含量の多い下層流部分12と固体含量の少い溢流部
分13との間に分離が起こる。第一分離段階において,
溢流部分と下層流部分との比率は一般に0.8〜1.2
の範囲にある。下層流の排出を制限しないようにして固
体の除去を最大にするよう適当に調整することにより,
75〜80%の固体がこの第一液体サイクロン段階で除
去され得る。As shown in FIG. 1, a feed of liquefied coal slurry of the type used in solvent coal refining and containing dispersed solids is directed through line 10 to a first stage hydrocyclone system 11. Typically, some of this coal slurry has a boiling point above 850 ° F. In this first stage hydrocyclone system 11, separation occurs between a lower flow portion 12 having a higher solid content than the input and an overflow portion 13 having a lower solid content. In the first separation stage,
The ratio of the overflow portion to the lower layer flow portion is generally 0.8 to 1.2.
Is in the range. By appropriately adjusting the maximum removal of solids without limiting the lower stream discharge,
75-80% solids can be removed in this first hydrocyclone stage.
以下で述べる第一段階液体サイクロン系11と第二段階
液体サイクロン系14は,当該技術分野でよく知られて
いるように,多様な複数の液体サイクロンから成り得
る。この目的のたみに,液体サイクロン系11および1
4は,以下の文献に記載されているような従来構造のも
のを有し得る:(1)"A Further Study of the Hydraulic
Cyclone,"Chemical Engineering Science(1953),Vol.
2,pp.254-272;(2)"A Theoretical Study of the Hydrau
lic Cyclone,"Industrial Chemist(1958,9月),Vol.34,p
p.473−終り;そして(3)The TMC Dorr Clone-Aid to th
e Fluidized Catalytic Cracking Unit"Dorr Oliver In
corporated発行(プリントNo.4005)。The first stage hydrocyclone system 11 and the second stage hydrocyclone system 14 described below can consist of a variety of hydrocyclones, as is well known in the art. For the purpose of this purpose, hydrocyclone system 11 and 1
4 can have a conventional structure as described in the following references: (1) "A Further Study of the Hydraulic
Cyclone, "Chemical Engineering Science (1953), Vol.
2, pp.254-272; (2) "A Theoretical Study of the Hydrau
lic Cyclone, "Industrial Chemist (1958, September), Vol.34, p
p.473-End; and (3) The TMC Dorr Clone-Aid to th
e Fluidized Catalytic Cracking Unit "Dorr Oliver In
Published by corporated (Print No. 4005).
第一段階液体サイクロンからライン12を通って排出さ
れる固体濃縮物は第二段階液体サイクロン系14に入
る。そこではさらに分離が行われ第二段階下層流15を
得る。この下層流15は,ライン10を通って充てんさ
れる初期供給物の初期の微細固体粒子の大部分を含む。
実際にはこれら粒子のすべてが約5ミクロン以上の大き
さである。ライン16を通って排出される第二段階液体
サイクロン系からの溢流は,ライン13の第1液体サイ
クロン段階からの溢流と合流される。合流した溢流物は
電気ろ過によりさらに分離処理に供される。The solid concentrate discharged from the first stage hydrocyclone through line 12 enters the second stage hydrocyclone system 14. There, further separation is carried out to obtain a second stage lower layer flow 15. This underflow 15 contains the majority of the initial fine solid particles of the initial feed that are charged through line 10.
Practically all of these particles are larger than about 5 microns. The overflow from the second stage hydrocyclone system discharged through line 16 is combined with the overflow from the first hydrocyclone stage in line 13. The combined overflow product is further subjected to separation treatment by electrofiltration.
ライン13と16の第一第二段階溢流の合流分はエレク
トロフィルター系17へ導入される。この合流した溢流
中の固体は,大きさが約10ミクロンまでの範囲,主と
して0〜5ミクロンである。この固体は,その高密度灰分
の故に,無機物中に優先的にとりこまれる。エレクトロ
フィルターにより除去される固体は,液化石炭に比較し
て無機物の誘電率が高いために,灰分を優先的に含有す
る。それゆえ,エレクトロフィルターのろ液に含まれる
未収集の固体は主に炭素質物である。The combined first and second stage overflows of lines 13 and 16 are introduced into the electrofilter system 17. The solids in this combined overflow are in the size range up to about 10 microns, predominantly 0-5 microns. This solid is preferentially incorporated into the inorganic matter because of its high density ash. The solids removed by the electrofilter contain ash preferentially because the dielectric constant of inorganic substances is higher than that of liquefied coal. Therefore, the uncollected solids contained in the electrofilter filtrate are mainly carbonaceous.
エレクトロフィルター系17は,例えば米国特許第3,79
9,855号,第3,799,857号および第3,928,158号に記載さ
れているような層状のエレクトロフィルター(a bank o
f electrofilters)から成り得る。エレクトロフィルタ
ーは,一般に円筒状容器18のような形状のものであ
り,そこには単一分散で均一で円滑なガラス球体19が
充てんされている。球体の直径は1/16〜1/2インチ,
好ましくは1/8〜1/4インチの範囲にある。10〜50
KVの図外の直流電源が中央電極もしくは多極電極へ電
力を供給する。フィルター床は電極から所定距離のとこ
ろで接地されている。それゆえこの床には電圧が生じ
る。The electrofilter system 17 is, for example, US Pat.
Layered electrofilters (a bank o as described in 9,855, 3,799,857 and 3,928,158).
f electrofilters). The electrofilter is generally shaped like a cylindrical container 18 and is filled with monodisperse, uniform and smooth glass spheres 19. The diameter of the sphere is 1/16 to 1/2 inch,
It is preferably in the range of 1/8 to 1/4 inch. 10-50
A DC power source (not shown) of the KV supplies power to the central electrode or the multipolar electrode. The filter floor is grounded at a distance from the electrodes. Therefore, a voltage develops on this floor.
微細な粒子物質はこれら球体上に集められる。床容量に
相当する固体量に達すると,電力供給は停止される。そ
して,適当な逆洗浄液体,好ましくは沸点が約300゜F〜
約850゜Fの範囲にある石炭由来の溶媒が20として示す
手段により床に通される。用いられる逆洗浄液体の量
は,代表的には床からの約2回分の流出量(すなわち,
床の空間量の2倍)に相当する。ほぼ連続した流れを得
るために複式モジュールが用いられる。それゆえ,複数
のエレクトロフィルターのうちの−もしくはそれ以上の
フィルターが使用中のときでも,飽和に達している別の
エレクトロフィルターは逆洗浄に供され得る。Fine particulate matter is collected on these spheres. When the solid amount corresponding to the floor capacity is reached, the power supply is stopped. And a suitable backwash liquid, preferably having a boiling point of about 300 ° F to
Coal-derived solvent in the range of about 850 ° F is passed through the bed by the means shown as 20. The amount of backwash liquid used is typically about two outflows from the bed (ie,
Equivalent to twice the amount of floor space). Duplex modules are used to obtain a nearly continuous flow. Therefore, even when one or more of the multiple electrofilters is in use, another electrofilter that has reached saturation can be subjected to backwash.
ライン13と16からの溢流合流液がエレクトロフィル
ター床19へ流入する間に,ろ過された生成物はライン
22を経て排出される。回収されるろ液は一般にライン
10から系へ供給された初期フィードの約80%以上を
成す。適当に選択された操作条件では,このろ液は約
0.1%を下まわる微細固体粒子を含有するはずであ
る。The filtered product is discharged via line 22 while the overflow confluent from lines 13 and 16 enters electrofilter bed 19. The filtrate recovered generally comprises about 80% or more of the initial feed fed to the system via line 10. Under properly selected operating conditions, the filtrate should contain less than about 0.1% finely divided solid particles.
電力供給を停止して床19を逆洗浄している間洗浄流出
液はライン23を経て排出される。この洗浄流出液は,
実際にはすべての残留する微細固体粒子を含有する。こ
の固体粒子は,第二段階液体サイクロン系14によりラ
イン15から除去されなかったものである。それらは主
として0〜5ミクロンの範囲にある粒子である。The wash effluent is discharged via line 23 while the power supply is stopped and the floor 19 is backwashed. This wash effluent is
In fact it contains all the remaining fine solid particles. The solid particles have not been removed from line 15 by the second stage hydrocyclone system 14. They are mainly particles in the range 0 to 5 microns.
上記系が効率よく作動するためには,エレクトロフィル
ターへ供給されるフィード流が決して遊離水を含んでい
ないことが必要である。溶解水は1000ppmを下まわって
いることが必要である。For the above system to work efficiently, it is necessary that the feed stream fed to the electrofilter contains no free water. Dissolved water must be below 1000ppm.
第1図および第2図に示す系を操作することにより,一
般には,5〜10重量%濃度のフィード因体を有する石
炭液化生成物から,含有固体の95〜99+重量%が除去さ
れ得る。これらの固体を含有する液体フィードは,第一
段階では高温高圧下で0.5〜2.0gpm(ガロン/分)/液
体サイクロンの間の流速(1.89〜7.57リットル/分),
好ましくは1.0〜1.5gpm液体サイクロンの流速(3.79〜
5.68リットル/分)で層状液体サイクロンに供給され
る。第一段階液体サイクロン系11は下層流の排出を無
制限にすることにより固体の除去が最大限になるよう調
整される。供給液体の温度は液体粘度を10cp以下,好ま
しくは1cp以下にするべく調整される。第一液体サイク
ロン段階での操作においては,溢流対下層流の比率は,
75〜80%の固体の除去が通常期待され得るとの条件
のもとで,0.8〜1.2である。第二段階液体サイクロンで
の操作においては,下層流濃度を最大にして系からの液
体生成物のロスを最小にすることが目的である。第二段
階からの溢流は第一段階の溢流と合流され得る(第一
図)。ただし,合流した溢流中の固体濃度が約3重量%
を下まわるときである。あるいは,この第二段階からの
溢流は,合流体全体の濃度が3重量%を上まわるときに
は,再循環されそして第一段階のフィードと合流される
(第2図)。By operating the system shown in FIGS. 1 and 2, generally 95-99 +% by weight of the solids contained can be removed from coal liquefaction products having a feed agent concentration of 5-10% by weight. The liquid feed containing these solids has a flow rate (1.89-7.57 liters / min) between 0.5-2.0 gpm (gallons / min) / hydrocyclone under high temperature and high pressure in the first stage,
Preferably 1.0-1.5 gpm hydrocyclone flow rate (3.79-
5.68 liters / minute) is supplied to the layered hydrocyclone. The first stage hydrocyclone system 11 is tuned to maximize solids removal by allowing unlimited underflow discharge. The temperature of the supply liquid is adjusted so that the liquid viscosity is 10 cp or less, preferably 1 cp or less. In operation in the first hydrocyclone stage, the ratio of overflow to lower flow is
0.8-1.2, provided that removal of 75-80% solids can usually be expected. In the second stage hydrocyclone operation, the goal is to maximize the underflow concentration and minimize the loss of liquid product from the system. The overflow from the second stage can be combined with the overflow from the first stage (Fig. 1). However, the solid concentration in the combined overflow is approximately 3% by weight.
It is time to go down. Alternatively, the overflow from this second stage is recirculated and combined with the first stage feed when the concentration of the total combined fluid exceeds 3% by weight (Fig. 2).
石炭液化生成物から微細固体粒子を最初に除去するため
に,石炭生成物はその粘度が約3cpを越えないような温
度のもとで第一段階の液体サイクロン系へ供給される。
その理由は,これ以上高い粘度のときには分離効率があ
まりにも低すぎるからである。その温度は好ましくは1c
pを越えない粘度になるよう選択される。これは約600゜F
(315℃)の温度において達成される。To initially remove the fine solid particles from the coal liquefaction product, the coal product is fed to the first stage hydrocyclone system at a temperature such that its viscosity does not exceed about 3 cp.
The reason is that when the viscosity is higher than this, the separation efficiency is too low. The temperature is preferably 1c
It is selected so that the viscosity does not exceed p. This is about 600 ° F
Achieved at a temperature of (315 ° C).
液体サイクロンの操作において用いられる圧力には特に
制限はない。しかし,初期圧力レベルは十分に大気圧以
上であり各液体サイクロン段階において圧力降下を有し
かつ低沸点化合物が液体から蒸発するのを防ぐものであ
ることが必要である。段階当りの圧力降下は約40〜8
0psi(2.75〜5.5bars)の範囲にある。There is no particular limitation on the pressure used in the operation of the hydrocyclone. However, the initial pressure level must be sufficiently above atmospheric pressure to have a pressure drop at each hydrocyclone stage and to prevent low boiling compounds from evaporating from the liquid. Pressure drop per stage is about 40-8
It is in the range of 0 psi (2.75 to 5.5 bars).
エレクトロフィルターの操作においては,このフィルタ
ーに供給される供給物の粘度が約10cp以下であるよう
に,温度は十分高いことが必要である。さらに,その温
度は,液体抵抗率が108cbm−cmを越えるように選択され
る必要がある。抵抗率が低いときには,電力消費が極端
に多くなり得る。圧力は電気ろ過における重大な変数で
はない。開示のタイプのエレクトロフィルターに必要と
思われる圧力降下は約15〜30psi(1〜2bars)のオーダ
ーのものである。In the operation of an electrofilter, the temperature needs to be high enough so that the viscosity of the feed fed to this filter is less than about 10 cp. Furthermore, the temperature should be chosen so that the liquid resistivity is above 10 8 cbm-cm. When the resistivity is low, the power consumption can be extremely high. Pressure is not a significant variable in electrofiltration. The pressure drop that would be required for an electrofilter of the type disclosed is on the order of about 15-30 psi (1-2 bars).
第1図に示す系は,固体濃度の比較的低い石炭液化生成
物,例えば約5重量%を越えないけん濁固体を含有する
ものからの固体の除去に特にふさわしい。固体濃度の比
較的高いフィードを得るためには,例えば第2図に示す
ように,一つの液体サイクロン段階ともう一つの液体サ
イクロン段階の間に相互段階での再循環系を用いるよう
にすることが好ましい。The system shown in FIG. 1 is particularly suitable for removing solids from coal liquefaction products having relatively low solids concentrations, such as those containing suspended solids not exceeding about 5% by weight. In order to obtain a relatively high solids feed, for example, as shown in Fig. 2, use a recirculation system with mutual stages between one hydrocyclone stage and another hydrocyclone stage. Is preferred.
第2図には上記実施態様におけると同じ一般的な装置が
示されている。この装置は第一段階液体サイクロン系1
1,第二段階液体サイクロン系14およびエレクトロフィ
ルター系17を有する。液体石炭は,ライン30を通っ
て第一段階液体サイクロンの入口へ供給され,ライン3
2から排出される下層流部分とライン33から排出され
る溢流部分とに分離される。ライン32の下層流部分は
第二段階液体サイクロン系14へ供給され,ここでライ
ン35の下層流部分とライン36の溢流部分とに分かれ
る。ライン35の下層流部分は実際には約5ミクロン以
上の大きさの微細固体粒子をすべて含有している。この
下層流部分は排出され下流でのコークス化もしくはガス
化などの処理に供される。ライン36の溢流部分は再循
環されてライン30の新しいフィードに併合される。第
一段階液体サイクロン分離から得られる溢流生成物はラ
イン33を通ってエレクトロフィルター17へ送られ
る。エレクトロフィルター17においては,残りの極微
細固体粒子がガラス玉床19にたい積することにより除
去される。前記実地態様におけるように,このフィルタ
ーに液体が流入する間および床19の固体保持能力が限
界にくるまで,フィルター17には電力が供給される。
床の能力に限界が来たときには,電力供給は停止されそ
して適当な逆洗浄液体が床に通される。それゆえ,フィ
ルターに液体が流入して作動している間は,固体を含有
しないろ液はフィルター17からライン42を通って排
出される。床19を再生する間逆洗浄液は,ライン40
を通って送り込まれる。そして,逆洗浄流出液はライン
43を通って排出される。FIG. 2 shows the same general apparatus as in the above embodiment. This equipment is the first stage hydrocyclone system 1
1, having a second stage hydrocyclone system 14 and an electrofilter system 17. Liquid coal is fed through line 30 to the inlet of the first stage hydrocyclone, line 3
It is separated into a lower layer flow portion discharged from 2 and an overflow portion discharged from the line 33. The underflow portion of line 32 is fed to the second stage hydrocyclone system 14 where it is split into the underflow portion of line 35 and the overflow portion of line 36. The underflow portion of line 35 actually contains all the fine solid particles sized above about 5 microns. This lower layer flow portion is discharged and used for downstream coke processing or gasification processing. The overflow portion of line 36 is recirculated and merged with the new feed of line 30. The overflow product resulting from the first stage hydrocyclone separation is sent to electrofilter 17 through line 33. In the electrofilter 17, remaining ultrafine solid particles are removed by depositing on the glass bead 19. As in the practical embodiment, power is supplied to the filter 17 while liquid is flowing into the filter and until the solid holding capacity of the floor 19 is at its limit.
When the capacity of the bed is reached, power is turned off and a suitable backwash liquid is passed through the bed. Therefore, the filtrate, which does not contain solids, is discharged from the filter 17 through line 42 while the liquid is flowing into the filter and operating. Backflushing liquid during the regeneration of floor 19
Be sent through. Then, the backwash effluent is discharged through the line 43.
次の実施例1により,総固体濃度が5%以上の石炭液化
生成物を第1図のフロー装置を用いて処理するときの実
際上の操作を説明する。The following Example 1 will be used to explain the actual operation when treating a coal liquefaction product having a total solids concentration of 5% or more using the flow apparatus of FIG.
実施例1 各第一および第二段階液体サイクロン系は(180〜300)
の層状の液体サイクロンからなる。液体サイクロンの直
径は10mmである。フィードは第一段階液体サイクロン
系に供給される。このときの温度は500゜F(260℃),圧
力は200psi(1.38bars),そして流速は一つの液体サイ
クロン当り1.2gpm(4.54/min)である。供給液体は
粘度が1.0cp,液体密度が0.9g/cm3そして固体密度が2.
0g/cm3である。重量が中間に位置する固体粒子の大き
さは7.0ミクロンである。Example 1 Each first and second stage hydrocyclone system (180-300)
It consists of a layered hydrocyclone. The diameter of the hydrocyclone is 10 mm. The feed is fed to a first stage hydrocyclone system. The temperature at this time is 500 ° F (260 ° C), the pressure is 200psi (1.38bars), and the flow rate is 1.2gpm (4.54 / min) per hydrocyclone. The feed liquid has a viscosity of 1.0 cp, a liquid density of 0.9 g / cm 3 and a solid density of 2.
It is 0 g / cm 3 . The size of the solid particles in the middle of the weight is 7.0 microns.
ライン13と16との溢流合流液は450゜F(232℃)にて
エレクトロフィルター系へ供給される。The overflow confluent in lines 13 and 16 is fed to the electrofilter system at 450 ° F (232 ° C).
第3表はフロー分布“F”と固体濃度を示す。“F”は
フィード域の流速に等しく,“C”は固体重量%に等し
い。Table 3 shows the flow distribution "F" and solids concentration. "F" equals the flow rate in the feed zone and "C" equals% solids by weight.
実施例1の条件では,固体の80%が第一液体サイクロ
ン段階で除去されそしてライン12に含まれる固体の7
5%が第二段階で除かれる。エレクトロフィルター17
に入る合流流体の固体含量は2.207重量%であり,その
うちの96%の固体がその後の電気ろ過により除かれ
る。 Under the conditions of Example 1, 80% of the solids were removed in the first hydrocyclone stage and 7% of the solids contained in line 12
5% is removed in the second stage. Electro filter 17
The incoming combined fluid has a solids content of 2.207% by weight, of which 96% solids are removed by subsequent electrofiltration.
全体の固体除去は98.4%であり,液体の回収は次式から
85.3%となる。Total solid removal is 98.4% and liquid recovery is 85.3% from the following equation.
実施例2は固体濃度が8重量%の石炭液化生成物を処理
するための操作を説明している。 Example 2 describes the procedure for treating a coal liquefaction product with a solids concentration of 8% by weight.
実施例2 用いた温度と圧力は,ほぼ,実施例1で述べた範囲にあ
る。Example 2 The temperatures and pressures used are approximately in the ranges described in Example 1.
第4表にフロー分布と固体濃度を示す。Table 4 shows the flow distribution and solid concentration.
分 離 効 率 段 階 固体除去% 第一液体サイクロン 80 第二液体サイクロン 75 エレクトロフィルター 97 全 体 99.25 本発明では,通常,固体濃度が十分に高く(約5重量%
を越える)かつ中間重量の粒子の直径が約10ミクロン
以下であるような大きさの実質的に多数の微細粒子を含
有する石炭液化生成物の処理に関して述べられている。
しかし,本発明方法は,固体濃度と粒子寸法分布との観
点から同様な分離問題を提供するけん濁固体を含有する
他の炭化水素液体の処理において有利に用いられ得る。 % Separation efficiency stage solids removal in the first hydrocyclone 80 second hydrocyclone 75 electro filter 97 overall 99.25 present invention, typically, the solids concentration is sufficiently high (about 5 wt%
More than) and medium weight particles having a substantially large number of fine particles sized such that the diameter is about 10 microns or less.
However, the method of the present invention may be used to advantage in the treatment of other hydrocarbon liquids containing suspended solids which provide similar separation problems in terms of solids concentration and particle size distribution.
第1図は本発明に従って液体媒質から分散固体を分離す
るための系の一例の概略フローダイヤグラム,そして第
2図は別の実施態様の概略フローダイヤグラムである。 11…第一段階液体サイクロン系,14…第二段階液体
サイクロン系,17…エレクトロフィルター系,19…
床。FIG. 1 is a schematic flow diagram of an example of a system for separating dispersed solids from a liquid medium according to the present invention, and FIG. 2 is a schematic flow diagram of another embodiment. 11 ... First stage liquid cyclone system, 14 ... Second stage liquid cyclone system, 17 ... Electrofilter system, 19 ...
floor.
Claims (9)
な固体粒子を除去する方法であって、 (a)該石炭液化生成物を液体サイクロン処理に供して該
石炭液化生成物を分画し初期フィードの固体濃度よりも
実質的に高い固体濃度を有する下層流部分と初期フィー
ドよりも低固体濃度の溢流部分とを得る工程;該下層流
部分は、FeO、FeS、TiO2、Al2O3、およびMgOからなる群
から選択される少なくとも一種の無機物を包含し、該溢
流部分は、大きさが約10ミクロンまでの範囲の初期フ
ィードの粒子の大部分を少くとも含有する、 (b)該溢流部分をエレクトロフィルターの静電場へ導入
し含有固体を該フィルターに析出させる工程、 (c)固体を含まない該液体ろ液を該エレクトロフィルタ
ーから排出する工程、および (d)該エレクトロフィルターを液体流で逆洗浄し析出固
体を除去することにより該フィルターを定期的に再生
し、しかも該逆洗浄工程の間は該フィルターへの電気エ
ネルギーの供給を中断する工程;該逆洗浄用液体が約3
00゜F〜約850゜Fの範囲にある沸点を有する石炭
由来の溶媒である、 を包含する方法。1. A method for removing suspended fine solid particles contained in a coal liquefaction product, comprising: (a) subjecting the coal liquefaction product to a liquid cyclone treatment to fractionate the coal liquefaction product. A lower flow portion having a solids concentration substantially higher than that of the initial feed and an overflow portion having a lower solids concentration than the initial feed; said lower flow portion is made of FeO, FeS, TiO 2 , Al. 2 O 3 , and at least one mineral selected from the group consisting of MgO, the overflow portion containing at least a majority of the particles of the initial feed ranging in size up to about 10 microns, (b) introducing the overflow portion into an electrostatic field of an electrofilter to deposit solids contained in the filter, (c) discharging the liquid filtrate containing no solids from the electrofilter, and (d) Liquid the electrofilter Periodically regenerating the filter by backwashing with flow to remove precipitated solids, and interrupting the supply of electrical energy to the filter during the backwashing step;
A coal-derived solvent having a boiling point in the range of 00 ° F to about 850 ° F.
りも高い沸点を有する前記特許請求の範囲第1項に記載
の方法。2. The method of claim 1 wherein a portion of the coal liquefaction product has a boiling point above 850 ° F.
て行われ、該第一段階からの下層流は該第二段階へ送ら
れ;そして該第二段階からの溢流は該第一段階からの溢
流と合流され、これら合流した溢流部はエレクトロフィ
ルターの静電場へ送られる前記特許請求の範囲第1項に
記載の方法。3. The hydrocyclone treatment is carried out in two stages, the underflow from the first stage is sent to the second stage; and the overflow from the second stage is the overflow from the first stage. A method as claimed in claim 1 in which the combined streams are combined and the combined overflows are sent to the electrostatic field of the electrofilter.
て行われ、該第一段階からの下層流は該第二段階へ送ら
れ、そして該第二段階からの溢流は該第一段階の前記フ
ィードへ再循環され該第一段階からの溢流はエレクトロ
フィルターの静電場へ送られる前記特許請求の範囲第1
項に記載の方法。4. The hydrocyclone treatment is carried out in two stages, the underflow from the first stage is sent to the second stage, and the overflow from the second stage is the feed of the first stage. Claim 1 wherein the overflow from the first stage is recycled to the electrostatic field of the electrofilter.
The method described in the section.
5cpを越えないような温度において液体サイクロン処
理に供される前記特許請求の範囲第2項に記載の方法。5. A method according to claim 2 wherein the initial feed is subjected to a hydrocyclone treatment at a temperature such that the viscosity of the feed does not exceed 5 cp.
1cpを越えないような温度において液体サイクロン処
理に供される前記特許請求の範囲第2項に記載の方法。6. The method according to claim 2, wherein the initial feed is subjected to a hydrocyclone treatment at a temperature such that the viscosity of the feed does not exceed 1 cp.
らの溢流生成物は、10cp以下の粘度を有するのに十
分高い温度でかつ液体抵抗率が108オーム・センチメ
ートルを越えるような温度にある前記特許請求の範囲第
2項に記載の方法。7. The overflow product from the hydrocyclone treatment subjected to electrofiltration is at a temperature high enough to have a viscosity of 10 cp or less and at a liquid resistivity above 10 8 ohm centimeters. A method according to claim 2 in claim 3.
得られる特許請求の範囲第2項に記載の方法。8. A method according to claim 2 wherein said coal liquefaction product is obtained from a coal refining solvent process.
大きさが約7ミクロン、固体密度が約2g/cm3そして
液体密度が約0.9g/cm3であり、該生成物は温度約
500゜F圧力200psiにて液体サイクロン処理に
かけられる前記特許請求の範囲第2項に記載の方法。9. The coal liquefaction product has a medium weight particle size of about 7 microns, a solid density of about 2 g / cm 3 and a liquid density of about 0.9 g / cm 3. The method of claim 2 wherein the method is subjected to a hydrocyclone treatment at a temperature of about 500 ° F and a pressure of 200 psi.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US267141 | 1981-05-26 | ||
US06/267,141 US4399041A (en) | 1981-05-26 | 1981-05-26 | Process for particulate removal from coal liquids |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57195791A JPS57195791A (en) | 1982-12-01 |
JPH064859B2 true JPH064859B2 (en) | 1994-01-19 |
Family
ID=23017489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57049945A Expired - Lifetime JPH064859B2 (en) | 1981-05-26 | 1982-03-25 | Method for removing fine particles from coal liquefaction |
Country Status (7)
Country | Link |
---|---|
US (1) | US4399041A (en) |
JP (1) | JPH064859B2 (en) |
AU (1) | AU541241B2 (en) |
CA (1) | CA1168174A (en) |
DE (1) | DE3208863A1 (en) |
GB (1) | GB2098887B (en) |
ZA (1) | ZA821557B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4571301A (en) * | 1984-09-19 | 1986-02-18 | Inskeep Jr Eugene L | Method and apparatus for cleaning chemical/water solutions |
US4738779A (en) * | 1984-11-28 | 1988-04-19 | Noel Carroll | Cyclone separator |
FR2655657B1 (en) * | 1989-12-12 | 1992-02-07 | Font Pierre | DEVICE AND METHOD FOR TREATING WASTE OILS AND P.C.B. (POLYCHLOROBIPHENYLES). |
US5324425A (en) * | 1992-08-26 | 1994-06-28 | Ellison Billy L | Method and apparatus for removing solids from aqueous wash solutions |
US6461509B1 (en) * | 1999-10-08 | 2002-10-08 | Rowafil Waterrecycling B.V. | Method and installation for purifying contaminated water |
GB0011928D0 (en) * | 2000-05-17 | 2000-07-05 | Kellogg Brown & Root Inc | Separation method and apparatus for stream containing multi-phase liquid mixture and entrained particles |
US8357289B2 (en) * | 2008-05-12 | 2013-01-22 | Chevron U.S.A. Inc. | Method and system for removing contaminants from a fluid |
EP3103858A1 (en) * | 2015-06-08 | 2016-12-14 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method for washing organic liquids with a liquid comprising flurohydrocarbons |
CN109097100B (en) * | 2018-08-23 | 2021-03-12 | 中石化(洛阳)科技有限公司 | Method for removing solid content of catalytic cracking slurry oil |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3770605A (en) * | 1971-03-08 | 1973-11-06 | Rockwell International Corp | Apparatus and method for removing solids from liquids |
US3799857A (en) * | 1972-06-15 | 1974-03-26 | Petrolite Corp | Electrofilter system |
US3799855A (en) * | 1972-06-15 | 1974-03-26 | Petrolite Corp | Solids removal process |
US3928158A (en) * | 1973-05-22 | 1975-12-23 | Gulf Research Development Co | Electrofilter |
JPS52145404A (en) * | 1976-05-28 | 1977-12-03 | Kobe Steel Ltd | Process and apparatus for separation and removing of solid content from liquefied reaction products of coals |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1796750A (en) * | 1926-11-09 | 1931-03-17 | Petroleum Rectifying Co California | Dehydrating apparatus having preliminary agglomerator |
US3089750A (en) * | 1958-08-18 | 1963-05-14 | Petrolite Corp | Recovery of values from ores by use of electric fields |
US3197393A (en) * | 1961-03-27 | 1965-07-27 | Pure Oil Co | Method and apparatus for dielectrophoretic separation of polar particles |
US3338814A (en) * | 1964-05-08 | 1967-08-29 | Imp Oil Ltd | Process for separating oil from bituminous sand |
US3478494A (en) * | 1968-06-26 | 1969-11-18 | Gen Electric | Vortex-electrostatic separator |
SE329591B (en) * | 1968-11-15 | 1970-10-19 | Alfa Laval Ab | |
US3764008A (en) * | 1972-04-27 | 1973-10-09 | Shell Oil Co | Well operation for recovering oil from produced sand |
DE2233437C3 (en) * | 1972-07-07 | 1978-10-05 | Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen | Process for separating the specifically lighter fraction from a stream of a medium loaded with suspended substances by means of centrifugal force |
US3974073A (en) * | 1974-09-06 | 1976-08-10 | The Lummus Company | Coal liquefaction |
US4116790A (en) * | 1977-07-18 | 1978-09-26 | Combustion Engineering, Inc. | Method and apparatus for separation of fluids with an electric field and centrifuge |
US4285805A (en) * | 1980-03-20 | 1981-08-25 | Phillips Petroleum Company | Time-delay process and control system for electrostatic filter |
-
1981
- 1981-05-26 US US06/267,141 patent/US4399041A/en not_active Expired - Fee Related
-
1982
- 1982-02-24 CA CA000396948A patent/CA1168174A/en not_active Expired
- 1982-02-25 AU AU80918/82A patent/AU541241B2/en not_active Ceased
- 1982-02-26 GB GB8205740A patent/GB2098887B/en not_active Expired
- 1982-03-09 ZA ZA821557A patent/ZA821557B/en unknown
- 1982-03-11 DE DE19823208863 patent/DE3208863A1/en not_active Withdrawn
- 1982-03-25 JP JP57049945A patent/JPH064859B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3770605A (en) * | 1971-03-08 | 1973-11-06 | Rockwell International Corp | Apparatus and method for removing solids from liquids |
US3799857A (en) * | 1972-06-15 | 1974-03-26 | Petrolite Corp | Electrofilter system |
US3799855A (en) * | 1972-06-15 | 1974-03-26 | Petrolite Corp | Solids removal process |
US3928158A (en) * | 1973-05-22 | 1975-12-23 | Gulf Research Development Co | Electrofilter |
JPS52145404A (en) * | 1976-05-28 | 1977-12-03 | Kobe Steel Ltd | Process and apparatus for separation and removing of solid content from liquefied reaction products of coals |
Also Published As
Publication number | Publication date |
---|---|
GB2098887A (en) | 1982-12-01 |
AU541241B2 (en) | 1984-12-20 |
ZA821557B (en) | 1983-04-27 |
US4399041A (en) | 1983-08-16 |
JPS57195791A (en) | 1982-12-01 |
GB2098887B (en) | 1985-06-12 |
DE3208863A1 (en) | 1982-12-23 |
CA1168174A (en) | 1984-05-29 |
AU8091882A (en) | 1982-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5308586A (en) | Electrostatic separator using a bead bed | |
CA2249679C (en) | Solvent-free method and apparatus for removing bituminous oil from oil sands | |
KR890001631A (en) | Recovery of regenerated adsorption particles and ash separation method therefrom | |
JPH064859B2 (en) | Method for removing fine particles from coal liquefaction | |
US4592837A (en) | Apparatus for the filtering of solids-containing liquids | |
EP1970426A1 (en) | Separation process and apparatus for removal of particulate material from delayed coking gas oil | |
US2690261A (en) | Concentration of minerals | |
JPS6146299A (en) | Method of separating solidified grain from slurry | |
US4177139A (en) | Process for treating particles of adsorbent used to remove phenol from waste water | |
JPS5941408A (en) | Method and device for treating blast furnace gas | |
US4595492A (en) | Recovery of phosphorus from dilute waste streams | |
US4022675A (en) | Filtering process | |
US6126705A (en) | Process for treating coal tailings | |
US20040026342A1 (en) | Sand stabilization method and apparatus | |
US4406781A (en) | Process for the separation of mineral substances | |
KR19990053876A (en) | Wastewater treatment method using minute coke and apparatus used therefor | |
US4104128A (en) | Apparatus and method for recovery of coal fines | |
CA1080157A (en) | Process for separating mixtures of particles | |
CN115738468B (en) | Method and device for purifying byproduct hydrochloric acid particles of titanium dioxide chlorination process | |
AU711949B2 (en) | Process for treating coal tailings | |
CA1200366A (en) | Recovery of phosphorus from dilute waste streams | |
JPS58186413A (en) | Dehydration of suspension | |
JPS58166952A (en) | Swiveling type solid-liquid separator | |
Siebert | Gravity separation of silt from industrial wastes | |
WO1982004202A1 (en) | Oil treating apparatus |