JPH0638912A - Dust detecting device for vacuum cleaner - Google Patents
Dust detecting device for vacuum cleanerInfo
- Publication number
- JPH0638912A JPH0638912A JP19509392A JP19509392A JPH0638912A JP H0638912 A JPH0638912 A JP H0638912A JP 19509392 A JP19509392 A JP 19509392A JP 19509392 A JP19509392 A JP 19509392A JP H0638912 A JPH0638912 A JP H0638912A
- Authority
- JP
- Japan
- Prior art keywords
- dust
- sensor
- amount
- piezoelectric element
- detection device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electric Vacuum Cleaner (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、圧電素子をもちいて,
塵埃の通過量を検知する検知装置およびそれを用いた掃
除機に関する。BACKGROUND OF THE INVENTION The present invention uses a piezoelectric element,
The present invention relates to a detection device that detects the amount of passing dust and a cleaner using the detection device.
【0002】[0002]
【従来の技術】近年、塵埃の量に応じて吸引力を制御し
たり,室内の汚れ状態を判定表示するような高付加価値
の電気掃除機の要求が高まりつつある。そのための塵埃
の量の検知には発光ダーオードとフォトトランジスタの
組み合せによるフォトカプラ等が用いられ、光学的に光
軸を横切る塵埃の量を検知する方法が一般的である。2. Description of the Related Art In recent years, there has been an increasing demand for high-value-added vacuum cleaners that control suction force according to the amount of dust and judge and display the state of dirt in a room. To detect the amount of dust for that purpose, a photocoupler or the like which is a combination of a light emitting diode and a phototransistor is used, and a method of optically detecting the amount of dust that crosses the optical axis is generally used.
【0003】[0003]
【発明が解決しようとする課題】前記、光学式の場合、
初期の測定精度は高いが、長期の使用中にさまざまな塵
埃を吸引することにより、発光部、受光部ともにその窓
部に塵埃が付着し光強度を著しく損ねる結果、塵埃検知
の精度が使用とともに低下するといった欠点があった。
塵埃の付着要因としては、摩擦による塵埃の帯電効果お
よびフォトカプラ窓材の帯電効果による塵埃の付着、吸
引時における液を含んだ塵埃による窓の汚れが考えら
れ、その対策として、窓部を一定間隔でクリニングする
方法や帯電防止剤で窓部をコーティングする方法等が採
られているが、不十分であり、塵埃検知精度の低下とい
う課題があった。In the case of the optical type,
The initial measurement accuracy is high, but as a result of suctioning various dusts during long-term use, dust adheres to the windows of both the light emitting part and the light receiving part, and the light intensity is significantly impaired. There was a drawback that it decreased.
Possible causes of dust adhesion include dust adhesion due to friction and dust due to charging effect of photocoupler window material, and dirt on the window due to dust containing liquid at the time of suction. Methods such as cleaning at intervals and coating the window with an antistatic agent have been adopted, but they are insufficient and there is a problem that the dust detection accuracy decreases.
【0004】本発明は上記課題を解決するもので、低コ
ストで信頼性が高い塵埃検知装置およびそれを用いた掃
除機を提供するものである。The present invention solves the above-mentioned problems, and provides a dust detection device of low cost and high reliability, and a cleaner using the dust detection device.
【0005】[0005]
【課題を解決するための手段】本発明は上記目的を解決
するために、塵埃検出装置として圧電体の両面に電極を
設けてなる圧電素子を用いる構成である。また、前記塵
埃検出器を塵埃吸入経路の任意の位置に配し、塵埃吸入
経路を通過する塵埃を検出し、検出量に応じて駆動制御
する部分からなる構成である。In order to solve the above-mentioned problems, the present invention uses a piezoelectric element having electrodes on both sides of a piezoelectric body as a dust detection device. Further, the dust detector is arranged at an arbitrary position of the dust suction path, detects dust passing through the dust suction path, and controls driving according to the detected amount.
【0006】[0006]
【作用】本発明は上記した構成によって、塵埃吸入経路
を通過する塵埃を検出する圧電素子を用いるので塵埃に
よる窓材の汚れに左右されることのない安定した塵埃検
知を可能とするものである。With the above-described structure, the present invention uses the piezoelectric element for detecting the dust passing through the dust suction path, and thus enables stable dust detection that is not affected by dirt on the window material. .
【0007】また、塵埃吸入経路を通過する塵埃の検出
量に応じて駆動制御する高精度駆動制御の掃除機ができ
るものである。Further, it is possible to provide a vacuum cleaner of high precision drive control in which drive control is performed according to the detected amount of dust passing through the dust suction path.
【0008】[0008]
【実施例】以下、本発明の一実施例について図を参照し
ながら説明する。An embodiment of the present invention will be described below with reference to the drawings.
【0009】図1は本発明の一実施例による掃除機の概
略構成を示す図であり、電気掃除機本体3には吸引用の
ノズル2が設けられ、前記ノズルの屈曲部に塵埃センサ
1を設置する。FIG. 1 is a diagram showing a schematic structure of a vacuum cleaner according to an embodiment of the present invention. A vacuum cleaner body 3 is provided with a suction nozzle 2 and a dust sensor 1 is provided at a bent portion of the nozzle. Install.
【0010】(実施例1)図2を用いてより詳しく説明
する。圧電体素子からなる塵埃センサ4をノズル2に埋
設し、フレキシブルな可撓性に富んだ保護用板6でカバ
ーする。5はセンサからの信号線である。今、電気掃除
機をON状態にすることによりノズル内に吸引気流が流
れ、気流中に塵埃が含まれていると、屈曲部の保護用板
6に衝突する。このとき、前記保護用板6が変形し、か
つ、塵埃センサ4も局部的に変形する結果、出力信号が
得られる。すなわち、塵埃量と出力信号の強度および発
生頻度との間には相関関係が成立し、センサの信号処理
により、塵埃量を推論できる。(First Embodiment) A more detailed description will be given with reference to FIG. A dust sensor 4 made of a piezoelectric element is embedded in the nozzle 2 and covered with a flexible and flexible protective plate 6. Reference numeral 5 is a signal line from the sensor. Now, when the vacuum cleaner is turned on, a suction airflow flows in the nozzle, and if dust is contained in the airflow, the suction airflow collides with the protection plate 6 of the bent portion. At this time, the protective plate 6 is deformed, and the dust sensor 4 is also locally deformed, so that an output signal is obtained. That is, there is a correlation between the dust amount and the intensity and frequency of occurrence of the output signal, and the dust amount can be inferred by the signal processing of the sensor.
【0011】図3には、実際の掃除におけるセンサ信号
出力例を示す。図中(a)に示すように、吸引開始後、
塵埃が吸引されている間、センサからの出力電圧は高
く、塵埃が少なくなるにつれて、出力も低下する。今、
一定出力以上の出力値を信号処理で、サンプリングする
と、図中(b)に示すような結果が得られ、出力信号の
強度および発生頻度から、塵埃量が計算できることが判
明した。信号処理には信号強度による塵埃の種類と、信
号発生頻度による塵埃量に関するメンバーシップ関数を
求めファジイ推論により推論する方法も有効であった。FIG. 3 shows an example of sensor signal output in actual cleaning. As shown in (a) in the figure, after starting suction,
While the dust is being sucked, the output voltage from the sensor is high, and the output decreases as the dust decreases. now,
When output values above a certain level were sampled by signal processing, the results shown in (b) in the figure were obtained, and it was found that the dust amount can be calculated from the intensity and frequency of occurrence of the output signal. For signal processing, a method of obtaining a membership function related to the dust type according to the signal intensity and the dust amount according to the signal generation frequency and inferring it by fuzzy inference was also effective.
【0012】以上説明のように圧電体を用いた塵埃セン
サからの出力信号の処理により塵埃検知装置が可能であ
った。As described above, the dust detection device can be realized by processing the output signal from the dust sensor using the piezoelectric body.
【0013】なお、塵埃センサの設置位置は気流が一部
分でも壁面に当る位置であれば塵埃検知装置として機能
することが判明した。It has been found that the dust sensor functions as a dust detection device as long as the air flow hits the wall surface even if only a part of the dust sensor is installed.
【0014】(実施例2)塵埃センサとして、種々の圧
電センサを検討した結果、ポリフッ化ビニルもしくは、
ポリフッ化ビニリデンからなるフィルム状の有機圧電体
を用いたセンサが可撓性もよく利用できることが分っ
た。(Example 2) As a result of examining various piezoelectric sensors as a dust sensor, polyvinyl fluoride or
It was found that a sensor using a film-shaped organic piezoelectric material made of polyvinylidene fluoride can be used with good flexibility.
【0015】図4に本センサ部の概略図を示す。本セン
サは前記有機圧電体7の両面にアルミニウム等の金属性
に電極8,9を設けた構造がよい。図において10は電
極のリード線で11は、前記リード線と電極を電気的に
接続する接続部である。なお、図中には記載してない
が、通常、電極上を信頼性を高めるために、有機材料で
被覆するとよい。FIG. 4 shows a schematic view of this sensor section. This sensor preferably has a structure in which electrodes 8 and 9 made of metal such as aluminum are provided on both surfaces of the organic piezoelectric body 7. In the figure, 10 is a lead wire of the electrode, and 11 is a connecting portion for electrically connecting the lead wire and the electrode. Although not shown in the drawing, it is usually preferable to coat the electrodes with an organic material in order to improve reliability.
【0016】前記有機圧電体のほかに、チタン酸バリウ
ム、チタン酸鉛、タンタル酸リチウム、ニオブ酸リチウ
ム等の無機圧電体材料からなる圧電素子を用いて実施例
1と同様に検討した結果、塵埃センサとして利用でき
た。In addition to the above-mentioned organic piezoelectric material, a piezoelectric element made of an inorganic piezoelectric material such as barium titanate, lead titanate, lithium tantalate, lithium niobate, etc. was used. It could be used as a sensor.
【0017】(実施例3)実施例2に示した有機圧電体
からなる塵埃センサは、室内環境下で電磁ノイズが乗る
場合があるが、図4における塵埃センサを2つ折とし、
アース側に接続する一方の電極が外側全体を覆い、他方
の電極が内側で背中合わせになる構造とすることによ
り、外部電磁ノイズに影響されない塵埃検知装置が可能
であった。(Embodiment 3) The dust sensor made of the organic piezoelectric material shown in Embodiment 2 may be subject to electromagnetic noise in an indoor environment, but the dust sensor shown in FIG.
By adopting a structure in which one electrode connected to the ground side covers the entire outside and the other electrode is back-to-back inside, a dust detection device that is not affected by external electromagnetic noise was possible.
【0018】(実施例4)塵埃検知装置の信号処理情報
により以下の電気掃除機制御を行なった。 (1)塵埃量、塵埃の種類の段階にあわせて部屋のクリ
ーン度の段階表示をする。 (2)塵埃量、塵埃の種類の段階にあわせて塵埃量の多
いとき、もしくは重い塵埃については吸引力をアップさ
せるという自動吸引力制御を行なう。 (3)塵埃量、塵埃の種類の段階にあわせて塵埃量の多
いとき、もしくは重い塵埃については床ブラシ駆動制御
を行なう。 以上の制御を行なうことにより、より高性能な省エネル
ギー型の電気掃除機が実現できた。(Embodiment 4) The following vacuum cleaner control was performed based on the signal processing information of the dust detection device. (1) The room cleanliness level is displayed according to the amount of dust and the type of dust. (2) Automatic suction force control is performed to increase the suction force when the dust amount is large or when the dust amount is heavy in accordance with the amount of dust and the type of dust. (3) Floor brush drive control is performed when the amount of dust is large or the amount of heavy dust is large in accordance with the amount of dust and the type of dust. By performing the above control, a higher performance energy-saving vacuum cleaner was realized.
【0019】[0019]
【発明の効果】以上の説明から明らかなように、本発明
は、塵埃センサとして圧電素子を用い、前記センサの電
気信号変化から塵埃量を計算することから、検出部に付
着する塵埃に左右されることなく長期使用期間にわたっ
て、塵埃量を間接的に精度よく検知できる効果を有する
ものである。As is apparent from the above description, the present invention uses the piezoelectric element as the dust sensor and calculates the dust amount from the change in the electric signal of the sensor. Therefore, the present invention is dependent on the dust adhering to the detecting portion. It is possible to indirectly and accurately detect the amount of dust over a long period of use without any need.
【図1】本発明の一実施例による電気掃除機のの概略図FIG. 1 is a schematic view of a vacuum cleaner according to an embodiment of the present invention.
【図2】本発明の一実施例による塵埃検知装置の取り付
け部の外見図FIG. 2 is an external view of a mounting portion of a dust detection device according to an embodiment of the present invention.
【図3】本発明の一実施例による塵埃検知の信号処理説
明図 (a)はセンサ出力を示す図 (b)は信号処理部からの出力を示す図FIG. 3 is an explanatory diagram of signal processing of dust detection according to an embodiment of the present invention (a) shows a sensor output, and (b) shows an output from a signal processing unit.
【図4】本発明の一実施例による塵埃センサの断面構造
を示す斜視図FIG. 4 is a perspective view showing a cross-sectional structure of a dust sensor according to an embodiment of the present invention.
2 ノズル 4 塵埃センサ 5 信号線 6 保護用板 2 Nozzle 4 Dust sensor 5 Signal line 6 Protection plate
Claims (4)
置。1. A dust detecting device using a piezoelectric element for a dust detecting portion.
素子の両面に箔状の第1の電極と第2の電極を設け、表
面を保護膜で被覆したことを特徴とする請求項1記載の
塵埃検知装置。2. The piezoelectric element is film-shaped, and a foil-shaped first electrode and a second electrode are provided on both surfaces of the piezoelectric element, and the surface is covered with a protective film. The dust detection device described.
側の電極が内側の電極を覆う形状となることを特徴とす
る請求項2記載の塵埃検知装置。3. The dust detection device according to claim 2, wherein the film-shaped piezoelectric element has a double structure, and the outer electrode covers the inner electrode.
知量に応じた塵埃量表示、吸引力制御、床ブラシ駆動制
御のいずれか1つ、またはいずれか2つ、またはすべて
を行なうことを特徴とする掃除機。4. A dust detection device comprising a piezoelectric element is provided, and any one or any two or all of the dust amount display, suction force control, and floor brush drive control according to the detected amount can be performed. Characteristic vacuum cleaner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19509392A JPH0638912A (en) | 1992-07-22 | 1992-07-22 | Dust detecting device for vacuum cleaner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19509392A JPH0638912A (en) | 1992-07-22 | 1992-07-22 | Dust detecting device for vacuum cleaner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0638912A true JPH0638912A (en) | 1994-02-15 |
Family
ID=16335419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19509392A Pending JPH0638912A (en) | 1992-07-22 | 1992-07-22 | Dust detecting device for vacuum cleaner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0638912A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005083541A1 (en) * | 2004-01-28 | 2005-09-09 | Irobot Corporation | Debris sensor for cleaning apparatus |
US6956348B2 (en) * | 2004-01-28 | 2005-10-18 | Irobot Corporation | Debris sensor for cleaning apparatus |
JP2009254914A (en) * | 2009-08-12 | 2009-11-05 | Irobot Corp | Debris sensor and method for operating cleaning apparatus |
JP2010188186A (en) * | 2010-06-08 | 2010-09-02 | Irobot Corp | Debris sensor for cleaning device |
JP2012045433A (en) * | 2011-12-08 | 2012-03-08 | Irobot Corp | Autonomous cleaning apparatus |
JP2012106080A (en) * | 2012-03-02 | 2012-06-07 | Irobot Corp | Cleaning device equipped with debris sensor |
US8380350B2 (en) | 2005-12-02 | 2013-02-19 | Irobot Corporation | Autonomous coverage robot navigation system |
US8386081B2 (en) * | 2002-09-13 | 2013-02-26 | Irobot Corporation | Navigational control system for a robotic device |
US8428778B2 (en) * | 2002-09-13 | 2013-04-23 | Irobot Corporation | Navigational control system for a robotic device |
JP2014030772A (en) * | 2013-11-21 | 2014-02-20 | Irobot Corp | Cleaning apparatus with debris sensor |
JP2016052607A (en) * | 2016-01-18 | 2016-04-14 | アイロボット コーポレイション | Cleaning device provided with debris sensor |
JP2017051861A (en) * | 2016-12-26 | 2017-03-16 | アイロボット コーポレイション | Cleaning device provided with debris sensor |
US9622635B2 (en) | 2001-01-24 | 2017-04-18 | Irobot Corporation | Autonomous floor-cleaning robot |
US9826872B2 (en) | 2010-12-30 | 2017-11-28 | Irobot Corporation | Debris monitoring |
US9955841B2 (en) | 2006-05-19 | 2018-05-01 | Irobot Corporation | Removing debris from cleaning robots |
US10299652B2 (en) | 2007-05-09 | 2019-05-28 | Irobot Corporation | Autonomous coverage robot |
US10314449B2 (en) | 2010-02-16 | 2019-06-11 | Irobot Corporation | Vacuum brush |
-
1992
- 1992-07-22 JP JP19509392A patent/JPH0638912A/en active Pending
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9883783B2 (en) | 2001-01-24 | 2018-02-06 | Irobot Corporation | Debris sensor for cleaning apparatus |
US9622635B2 (en) | 2001-01-24 | 2017-04-18 | Irobot Corporation | Autonomous floor-cleaning robot |
US9591959B2 (en) | 2001-01-24 | 2017-03-14 | Irobot Corporation | Debris sensor for cleaning apparatus |
US8386081B2 (en) * | 2002-09-13 | 2013-02-26 | Irobot Corporation | Navigational control system for a robotic device |
US9949608B2 (en) | 2002-09-13 | 2018-04-24 | Irobot Corporation | Navigational control system for a robotic device |
US8428778B2 (en) * | 2002-09-13 | 2013-04-23 | Irobot Corporation | Navigational control system for a robotic device |
KR101425335B1 (en) * | 2004-01-28 | 2014-08-01 | 아이로보트 코퍼레이션 | Debris sensor for cleaning apparatus |
US8253368B2 (en) | 2004-01-28 | 2012-08-28 | Irobot Corporation | Debris sensor for cleaning apparatus |
EP2546714A1 (en) * | 2004-01-28 | 2013-01-16 | iRobot Corporation | Debris sensor |
US6956348B2 (en) * | 2004-01-28 | 2005-10-18 | Irobot Corporation | Debris sensor for cleaning apparatus |
EP3287863A1 (en) * | 2004-01-28 | 2018-02-28 | iRobot Corporation | Autonomous cleaning apparatus with debris sensor |
US10595695B2 (en) | 2004-01-28 | 2020-03-24 | Irobot Corporation | Debris sensor for cleaning apparatus |
KR101354369B1 (en) * | 2004-01-28 | 2014-01-22 | 아이로보트 코퍼레이션 | An autonomous cleaning apparatus with debris sensors |
JP2007519468A (en) * | 2004-01-28 | 2007-07-19 | アイロボット コーポレイション | Debris sensor for cleaning equipment |
WO2005083541A1 (en) * | 2004-01-28 | 2005-09-09 | Irobot Corporation | Debris sensor for cleaning apparatus |
US10182693B2 (en) | 2004-01-28 | 2019-01-22 | Irobot Corporation | Debris sensor for cleaning apparatus |
US8380350B2 (en) | 2005-12-02 | 2013-02-19 | Irobot Corporation | Autonomous coverage robot navigation system |
US10244915B2 (en) | 2006-05-19 | 2019-04-02 | Irobot Corporation | Coverage robots and associated cleaning bins |
US9955841B2 (en) | 2006-05-19 | 2018-05-01 | Irobot Corporation | Removing debris from cleaning robots |
US10299652B2 (en) | 2007-05-09 | 2019-05-28 | Irobot Corporation | Autonomous coverage robot |
JP2009254914A (en) * | 2009-08-12 | 2009-11-05 | Irobot Corp | Debris sensor and method for operating cleaning apparatus |
US10314449B2 (en) | 2010-02-16 | 2019-06-11 | Irobot Corporation | Vacuum brush |
US11058271B2 (en) | 2010-02-16 | 2021-07-13 | Irobot Corporation | Vacuum brush |
JP2010188186A (en) * | 2010-06-08 | 2010-09-02 | Irobot Corp | Debris sensor for cleaning device |
US10244913B2 (en) | 2010-12-30 | 2019-04-02 | Irobot Corporation | Debris monitoring |
US9826872B2 (en) | 2010-12-30 | 2017-11-28 | Irobot Corporation | Debris monitoring |
JP2012045433A (en) * | 2011-12-08 | 2012-03-08 | Irobot Corp | Autonomous cleaning apparatus |
JP2012106080A (en) * | 2012-03-02 | 2012-06-07 | Irobot Corp | Cleaning device equipped with debris sensor |
JP2014030772A (en) * | 2013-11-21 | 2014-02-20 | Irobot Corp | Cleaning apparatus with debris sensor |
JP2016052607A (en) * | 2016-01-18 | 2016-04-14 | アイロボット コーポレイション | Cleaning device provided with debris sensor |
JP2017051861A (en) * | 2016-12-26 | 2017-03-16 | アイロボット コーポレイション | Cleaning device provided with debris sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0638912A (en) | Dust detecting device for vacuum cleaner | |
US6023814A (en) | Vacuum cleaner | |
JP3453962B2 (en) | Capacitive rain sensor | |
RU2263461C1 (en) | Robotized cleaning apparatus and method of functioning the same | |
JP4961429B2 (en) | Dust collector for floors that can run independently | |
JP3014282B2 (en) | Robot vacuum cleaner | |
EP1752077A2 (en) | Robot cleaner having function for detecting separation of dust tank and control method thereof | |
KR101324166B1 (en) | Robot cleaner and self testing method of the same | |
US20060010638A1 (en) | Cleaner | |
KR20040086940A (en) | Mobile robot in using image sensor and his mobile distance mesurement method | |
KR101103910B1 (en) | Structure of dust perceiving sensor for robot cleaner | |
JP3344079B2 (en) | Self-propelled vacuum cleaner | |
KR101492069B1 (en) | Robot cleaner and control method thereof | |
TW202010466A (en) | Self-propelled electric vacuum cleaner characterized by suppressing electric power consumption and efficiently cleaning trash | |
KR101303158B1 (en) | Robot cleaner and self testing method of the same | |
JP2018143649A (en) | Self-propelled movable body, humidity sensor and liquid detection device | |
KR101371036B1 (en) | Robot cleaner and self testing method of the same | |
JP3719045B2 (en) | Anti-pinch device | |
GB2225933A (en) | Vacuum cleaner with dirt sensor | |
US20220248926A1 (en) | Robot cleaner using artificial intelligence and controling method thereof | |
JP3451723B2 (en) | Mobile robot | |
KR19990055544A (en) | Dust display device of the central vacuum cleaner | |
KR100640752B1 (en) | Robot vacuum cleaner and it's cleaning method | |
JP3339184B2 (en) | Mobile robot | |
US6801015B2 (en) | Method and circuit arrangement for preventing the stand-by discharge of a battery-powered signal evaluation circuit of a sensor |