JPH06300719A - Method and apparatus for measuring thermoelectric conversion characteristic - Google Patents

Method and apparatus for measuring thermoelectric conversion characteristic

Info

Publication number
JPH06300719A
JPH06300719A JP5089639A JP8963993A JPH06300719A JP H06300719 A JPH06300719 A JP H06300719A JP 5089639 A JP5089639 A JP 5089639A JP 8963993 A JP8963993 A JP 8963993A JP H06300719 A JPH06300719 A JP H06300719A
Authority
JP
Japan
Prior art keywords
sample piece
thermocouples
temperature
heating
metal body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5089639A
Other languages
Japanese (ja)
Inventor
Shoji Tachibana
昇二 橘
Kenichi Hirano
賢一 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP5089639A priority Critical patent/JPH06300719A/en
Publication of JPH06300719A publication Critical patent/JPH06300719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To provide a new measuring method which measures the thermoelectric conversion characteristic of a sample piece precisely and simply and to provide an apparatus which is used for its measurement. CONSTITUTION:A sample stand 5 in which the support face of a sample piece 1 is constituted of a heating support face A composed of a metal body 2 having an insulator layer 17 on the surface and of a non-heated support face B composed of an insulator 3, a plurality of pairs of thermocouples 6, 7 and an electron-flux generating device 4 are provided in a vacuum chamber 11. The thermocouples 6, 7 of one pair are arranged on the heated support face A and the other thermocouples are arranged on the non-heated support face B so as to be capable of being moved respectively up and down. The electron-flux generating device 4 is arranged in a position in which the metal 2 constituting the heated support face A can be irradiated with an electron flux. A voltmeter 12 is connected across the thermocouples on the heated support face and the other thermocouples. The individual thermocouples 6, 7 are connected respectively to voltage-to-temperature converters 13, 14. The measuring apparatus, of a thermoelectric conversion characteristic, which has been constituted so as to be capable of measuring the temperature difference between the thermocouples brought into contact with the sample piece 1 place on the support stand and a potential difference in each point is used, and the potential difference and the temperature difference between two points of a high-temperature part and a low-temperature part of the sample piece 1 are measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料片の熱電変換特性
を正確かつ簡便に測定するための新規な測定方法及びそ
の測定に使用される装置を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a novel measuring method for accurately and simply measuring the thermoelectric conversion characteristics of a sample piece, and an apparatus used for the measurement.

【0002】[0002]

【従来の技術】物質の熱電変換特性の測定方法として、
試料片中に温度が異なる2点を形成し、該2点間の温度
差(△T)と電位差(E)を測定する方法がある。即
ち、かかる温度差及び電位差により物質の熱電変換特性
の指標の一つであるゼーベック係数(S)が次式により
算出される。
2. Description of the Related Art As a method for measuring thermoelectric conversion characteristics of a substance,
There is a method of forming two points having different temperatures in a sample piece and measuring a temperature difference (ΔT) and a potential difference (E) between the two points. That is, the Seebeck coefficient (S), which is one of the indexes of the thermoelectric conversion characteristics of the substance, is calculated by the following equation based on the temperature difference and the potential difference.

【0003】 S(単位;V/KまたはV/℃)=E/△T 上記方法において、比較的試料片に温度が異なる2点を
形成することは、極めて困難であり、かかる技術に対し
て種々の検討が成されている。
S (unit: V / K or V / ° C.) = E / ΔT In the above method, it is extremely difficult to form two points having different temperatures on a sample piece, which is extremely difficult for such a technique. Various studies have been made.

【0004】例えば、特開平4−125458号には、
試料片中に温度差を発生させる方法として、試料片の一
端に電熱ヒーター、ペルチエ素子を当接して加熱するこ
とにより高温部を形成する方法が記載されている。
For example, Japanese Patent Application Laid-Open No. 4-125458 discloses that
As a method of generating a temperature difference in a sample piece, a method of forming a high temperature portion by bringing an electric heater and a Peltier element into contact with one end of the sample piece to heat the sample piece is described.

【0005】また、同文献には、試料片の一端に赤外線
ランプを照射して加熱することにより高温部を形成する
方法も記載されている。
Further, the document also describes a method of forming a high temperature portion by irradiating an end of a sample piece with an infrared lamp and heating it.

【0006】そして、上記方法によって形成された試料
片の高温部と他端の低温部にそれぞれ熱電対端子を接触
させてその間に発生した電位差、即ち熱起電力および温
度差が測定される。
Then, the thermocouple terminals are respectively brought into contact with the high temperature portion and the low temperature portion of the other end of the sample piece formed by the above method, and the potential difference generated between them, that is, the thermoelectromotive force and the temperature difference are measured.

【0007】上記文献によれば、かかる方法によって、
試料片の高温部と低温部とにそれぞれ熱電対の端子を接
触させ、該熱電対の回路を利用してかかる2点間の電位
差、温度差を測定するため、高精度に測定を行うことが
可能であるとされている。
According to the above-mentioned document, by such a method,
Since the terminals of the thermocouple are brought into contact with the high temperature part and the low temperature part of the sample piece respectively and the potential difference and the temperature difference between the two points are measured using the circuit of the thermocouple, the measurement can be performed with high accuracy. It is said to be possible.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、試料片
中に温度差を発生させる方法として、試料片の一端に電
熱ヒーター、ペルチエ素子を当接して加熱することによ
り高温部を形成する方法を採用した場合、電熱ヒータ
ー、ペルチエ素子自体の加熱速度が遅く、試料片の一端
を所定の温度に加熱するまでにかなりの時間を要する。
そのため、電位差、温度差の迅速な測定が困難となる。
また、試料の材質、大きさにもよるが、高温部が加熱さ
れるまでに試料片中の熱伝導により、低温側も加熱さ
れ、その結果、高温部と低温部の2点間の温度差を十分
大きくすることが困難となる。従って、試料片内でわず
かな温度差しか発生せず、測定される電位差及び温度差
の精度において未だ改良の余地があった。特に、測定の
対象となる試料の成形性及び焼結性が悪いため、大きな
成形体及び焼結体の作製が困難である場合、或いは熱伝
導性が高い試料片を使用する場合などにおいてかかる問
題が顕著に現れていた。
However, as a method of generating a temperature difference in the sample piece, a method of forming a high temperature portion by bringing an electric heater or a Peltier element into contact with one end of the sample piece to heat the sample piece is adopted. In this case, the heating rate of the electric heater and the Peltier element itself is slow, and it takes a considerable time to heat one end of the sample piece to a predetermined temperature.
Therefore, it becomes difficult to quickly measure the potential difference and the temperature difference.
Also, depending on the material and size of the sample, the low temperature side is also heated by the heat conduction in the sample piece before the high temperature part is heated, and as a result, the temperature difference between the two points of the high temperature part and the low temperature part. It becomes difficult to make the value sufficiently large. Therefore, only a slight temperature difference occurs in the sample piece, and there is still room for improvement in the accuracy of the measured potential difference and temperature difference. In particular, when the sample to be measured has poor moldability and sinterability, it is difficult to produce a large molded body and sintered body, or when using a sample piece with high thermal conductivity Was noticeable.

【0009】また、赤外線ランプを用いて試料片を加熱
する場合においても、上記と同様の問題を有する。即
ち、赤外線ランプによる方法では試料片の加熱効率が悪
く、試料片の加熱速度を十分に上げることができない。
また、加熱効率を上げるために集光ミラーにより集光す
るのが一般的であるが、この場合非常に小さな円板ある
いは細長い角棒状の試料片の測定を行う場合に、集光し
きれない漏れ光が試料片の周辺部、例えば試料片の支持
台などを加熱し、そのため、試料片の加熱を必要としな
い部分までが加熱され、該試料片における高温部と低温
部との温度差の低下を助長する場合があった。
Also, when the sample piece is heated by using an infrared lamp, the same problem as above is encountered. That is, the method using the infrared lamp has a poor heating efficiency of the sample piece, and the heating rate of the sample piece cannot be sufficiently increased.
In addition, in order to increase the heating efficiency, it is common to collect light with a collection mirror, but in this case, when measuring a very small disk or a long rectangular rod-shaped sample piece, the light cannot be collected completely. The light heats the peripheral portion of the sample piece, for example, the support of the sample piece, so that even the portion of the sample piece that does not require heating is heated, and the temperature difference between the high temperature portion and the low temperature portion of the sample piece is reduced. In some cases.

【0010】[0010]

【課題を解決するための手段】本発明者は、従来の加熱
方式を採用する上記熱電変換特性の測定方法をの問題点
を解決すべく、鋭意研究を行ってきた。
The present inventor has conducted earnest research to solve the problems of the above-mentioned method for measuring thermoelectric conversion characteristics that employs a conventional heating method.

【0011】その結果、試料片の一部に絶縁体層を介し
て金属体を当接し、該金属体を電子束の照射により加熱
して、試料片における非常に狭い範囲の加熱を高速で行
うことによって高温部を形成することにより、低温部と
の温度差を大きく確保することが可能となり、該高温部
と低温部を間にそれぞれ接触させた熱電対によって、そ
の間の電位差、温度差を極めて正確に測定することがで
き、該測定値より試料片のゼーベック係数が極めて正確
に算出し得ることを見い出し、本発明を完成するに至っ
た。
As a result, a metal body is brought into contact with a part of the sample piece through the insulating layer, and the metal body is heated by irradiation of electron flux, so that the sample piece is heated in a very narrow range at high speed. By forming the high temperature portion by this, it is possible to secure a large temperature difference with the low temperature portion, the potential difference and temperature difference between the high temperature portion and the low temperature portion can be extremely increased by the thermocouples in contact with each other. The present invention has been completed by finding that the Seebeck coefficient of a sample piece can be accurately calculated from the measured values.

【0012】即ち、本発明は、試料片の一部に絶縁体層
を介して金属体を当接し、該金属体に真空下で電子束を
照射して加熱し、上記試料片の加熱部位および該加熱部
位より離れた部位にそれぞれ熱電対端子を接触させ、該
熱電対端子を接触させた2点間に生じる温度差及び電位
差を測定することを特徴とする熱電変換特性の測定方法
である。
That is, according to the present invention, a metal body is brought into contact with a part of a sample piece through an insulator layer, and the metal body is irradiated with an electron flux under vacuum to heat the sample body. A thermoelectric conversion characteristic measuring method, characterized in that a thermocouple terminal is brought into contact with a portion apart from the heated portion, and a temperature difference and a potential difference generated between two points where the thermocouple terminal is brought into contact are measured.

【0013】本発明において、熱電変換特性の測定の対
象となる試料は、試料片に成形可能なものであれば特に
制限されない。一般には、金属、半導体、その他の無機
及び有機の固体材料が挙げられる。そのうち、熱電変換
材料として有望と考えられているのは、半導体あるいは
半導体と他材料との複合材料であり、本発明はかかる材
料の熱電変換特性の測定において好適である。
In the present invention, the sample whose thermoelectric conversion characteristics are to be measured is not particularly limited as long as it can be molded into a sample piece. Commonly mentioned are metals, semiconductors, and other inorganic and organic solid materials. Among them, what is considered to be promising as a thermoelectric conversion material is a semiconductor or a composite material of a semiconductor and another material, and the present invention is suitable for measuring thermoelectric conversion characteristics of such a material.

【0014】上記試料よりなる試料片の形状は特に制限
されないが、絶縁体層を有する金属体への当接、熱電対
の接触を容易にするため、少なくとも2面以上の平らな
面で構成された形状が好ましい。特に、厚さが0.1〜
5mmの板状体が推奨される。
The shape of the sample piece made of the above-mentioned sample is not particularly limited, but in order to facilitate contact with a metal body having an insulating layer and contact with a thermocouple, it is composed of at least two flat surfaces. It is preferable that the shape is In particular, the thickness is 0.1
5 mm plate is recommended.

【0015】また、試料片の面積も特に制限されない
が、本発明の方法によれば、熱電対を接触させる高温部
と低温部の距離が8mm以下しか確保できない程度の小さ
い試料片の熱電変換特性の測定においても正確に測定す
ることが可能である。
Also, the area of the sample piece is not particularly limited, but according to the method of the present invention, the thermoelectric conversion characteristics of the small sample piece such that the distance between the high temperature portion and the low temperature portion for contacting the thermocouple can be secured to be 8 mm or less. It is possible to accurately measure the above.

【0016】本発明において、上記試料片の加熱は、該
試料片の一部、一般には端部に絶縁層を介して金属体を
当接し、該金属体に真空下で電子束を照射することによ
って行われる。
In the present invention, the heating of the sample piece is performed by contacting a part of the sample piece, generally an end, with a metal body via an insulating layer, and irradiating the metal body with an electron flux under vacuum. Done by

【0017】かかる加熱方法によれば、金属体の昇温速
度が極めて速いので、これに絶縁体層を介して当接され
る試料片の加熱も迅速に行われ、加熱されていない他部
との温度差を大きくすることが可能となる。
According to such a heating method, the rate of temperature rise of the metal body is extremely high, so that the sample piece which is brought into contact with the metal body via the insulator layer is also rapidly heated, and the other portion not heated is heated. It is possible to increase the temperature difference between.

【0018】上記金属体としては、電子束の照射により
発熱する金属であれば特に制限なく使用される。特に、
室温における電気抵抗率が1×10-6〜1×10-3Ωc
mの範囲内にある金属体が電子束による発熱効率が高い
ため、本発明において好適である。かかる金属体の材質
を具体的に例示すれば、モリブデン、タングステン、タ
ンタル、ニオブ等の高融点金属、金、銀、白金等の貴金
属、銅、鉄、或いは上記金属を含有する合金などが挙げ
られる。
As the metal body, any metal can be used without particular limitation as long as it is a metal that generates heat when irradiated with an electron flux. In particular,
Electric resistivity at room temperature is 1 × 10 −6 to 1 × 10 −3 Ωc
A metal body within the range of m has high heat generation efficiency due to the electron flux, and is suitable in the present invention. Specific examples of the material of the metal body include refractory metals such as molybdenum, tungsten, tantalum, and niobium, precious metals such as gold, silver, and platinum, copper, iron, and alloys containing the above metals. .

【0019】また、金属体の表面に形成する絶縁体層
は、金属体に照射した電子束の電子が試料片を通って熱
電対に流れるのを防止するために設けられる。該絶縁体
層の厚みは、電子流れのを実質的に遮断する機能を発揮
する程度の厚みで形成されていれば良い。しかし、絶縁
体層があまり厚い場合は、加熱された金属体の熱からの
伝導を低下させる傾向がある。一般に、絶縁体層の厚み
は、絶縁体の材質に応じて多少の差異はあるが、0.1
〜3mm程度が好適である。
The insulator layer formed on the surface of the metal body is provided to prevent the electrons of the electron flux irradiated on the metal body from flowing through the sample piece to the thermocouple. The thickness of the insulator layer may be such that it has a function of substantially blocking the flow of electrons. However, if the insulator layer is too thick, it tends to reduce the conduction of heat from the heated metal body. In general, the thickness of the insulator layer varies depending on the material of the insulator, but is 0.1
About 3 mm is suitable.

【0020】上記絶縁体層を構成する絶縁体は、公知の
材質のものが特に制限なく使用される。好適に使用され
る絶縁体の材料を例示すれば、窒化アルミニウム等の高
熱伝導性セラミックス、アルミナ、二酸化ケイ素、或い
はこれらを含有する複合セラミックス、表面に0.1〜
3μmの絶縁性皮膜を形成した金属等が挙げられる。中
でも、熱伝導率が高い窒化アルミニウムは、前記試料片
への熱の伝達速度が極めて高く、本発明において特に好
適に使用される。
As the insulator forming the above-mentioned insulator layer, a known material may be used without particular limitation. Examples of suitable insulator materials include high thermal conductivity ceramics such as aluminum nitride, alumina, silicon dioxide, or composite ceramics containing these, with 0.1 to 0.1% on the surface.
Examples thereof include a metal having an insulating film of 3 μm formed thereon. Among them, aluminum nitride, which has a high thermal conductivity, has an extremely high rate of heat transfer to the sample piece and is particularly preferably used in the present invention.

【0021】試料片を絶縁体層を介して金属体に当接す
る方法は、該試料片の一部、好ましくは端部を含む面が
当接される態様であれば特に制限されない。上記試料片
の端部を含む面が当接されるように試料片を設置する態
様は、加熱される該部位と他端との距離を最大限とるこ
とが可能であり、比較的小さい試料片でも他端との温度
差を十分に確保することが可能である。
The method of bringing the sample piece into contact with the metal body via the insulating layer is not particularly limited as long as a part of the sample piece, preferably the surface including the end portion, is brought into contact with the metal body. In the aspect in which the sample piece is installed so that the surface including the end portion of the sample piece is in contact with the sample piece, the distance between the heated portion and the other end can be maximized, and the sample piece is relatively small. However, it is possible to secure a sufficient temperature difference from the other end.

【0022】上記試料片を金属体に当接させる面積は、
熱伝導が可能な面積であればよいが、一般には2mm2
上が好ましい。
The area where the above-mentioned sample piece is brought into contact with the metal body is
It is sufficient if the area allows heat conduction, but generally 2 mm 2 or more is preferable.

【0023】また、試料片への熱伝導性を向上させるた
め、試料片は絶縁体層に密接するよう、止め具などの固
定手段により固定することが好ましい。
Further, in order to improve the thermal conductivity to the sample piece, it is preferable that the sample piece is fixed by a fixing means such as a stopper so as to be in close contact with the insulator layer.

【0024】本発明において、残留ガスによって電子束
が遮断されるのを防止するため及び試料片、金属体等が
酸化されるのを防止するため、金属体への電子束の照射
は真空下で実施される。かかる真空の度合いは、上記現
象が防止できる範囲を適宜決定すればよいが、一般に
1.3×10-3Pa(パスカル)以下が望ましい。真空
度は市販の真空ゲージと真空計を用いて測定することが
できる。
In the present invention, in order to prevent the electron flux from being blocked by the residual gas and to prevent the sample piece, the metal body, etc. from being oxidized, the metal body is irradiated with the electron flux under vacuum. Be implemented. The degree of the vacuum may be appropriately determined within a range in which the above phenomenon can be prevented, but is generally 1.3 × 10 −3 Pa (pascal) or less. The degree of vacuum can be measured using a commercially available vacuum gauge and vacuum gauge.

【0025】本発明において、金属体への電子束の照射
は公知の方法によって実施することができる。例えば、
電子衝撃式加熱装置によって発生する熱電子を金属体に
照射することによって行う方法が代表的である。上記電
子衝撃式加熱装置は、一般に、陰極となるコイル状電線
を含む加熱部、加熱用電源及び温度制御部などから構成
され、これによる金属体の加熱は、該金属体を陽極ある
いはコイル状電線よりも高い電位となるように、導線な
どで加熱用電源と結線することにより行われる。このよ
うにすることにより、熱電子よりなる電子束がコイル状
電線より発生され、高電位の金属体に照射され、その衝
撃によって金属体が加熱される。そして金属体から試料
片に絶縁体層を通して熱伝導が起こり、試料片の金属体
と当接する部位が加熱される。
In the present invention, the electron flux can be applied to the metal body by a known method. For example,
A typical method is to irradiate a metal body with thermoelectrons generated by an electron impact heating device. The electron impact heating device is generally composed of a heating unit including a coil-shaped electric wire serving as a cathode, a heating power source, a temperature control unit, and the like. It is performed by connecting the heating power source with a conductor or the like so that the potential becomes higher than that. By doing so, an electron bundle of thermoelectrons is generated from the coil-shaped electric wire, radiated to the high-potential metal body, and the metal body is heated by the impact. Then, heat conduction occurs from the metal body to the sample piece through the insulating layer, and the portion of the sample piece that contacts the metal body is heated.

【0026】また、電子束による金属体の加熱温度は、
熱電変換特性を測定される試料片の高温側の測定温度に
応じて適宜決定される。かかる温度は、一般に50〜1
000℃である。上記加熱温度は、コイル状電線の電
圧、電流、金属体の電位等を制御し、発生する熱電子の
量即ち電子束の量を変化させることによって、自由に制
御できる。尚、高精度のゼーベック係数の測定及び算出
を行うためには、金属体の電気抵抗率が試料片の電気抵
抗率よりも小さくすることが好ましい。
The heating temperature of the metal body by the electron flux is
The thermoelectric conversion characteristics are appropriately determined according to the measurement temperature on the high temperature side of the sample piece to be measured. Such temperature is generally 50 to 1
It is 000 ° C. The heating temperature can be freely controlled by controlling the voltage and current of the coil-shaped electric wire, the potential of the metal body, and the like, and changing the amount of thermoelectrons generated, that is, the amount of electron flux. In order to measure and calculate the Seebeck coefficient with high accuracy, it is preferable that the electrical resistivity of the metal body be smaller than that of the sample piece.

【0027】上記のようにして、試料片の加熱された金
属体と当接する部位は高温部となり、当接しない部位は
低温部となる。そして、これらの部位の間の温度差によ
って、かかる2点間に電位差即ち熱起電力が発生する。
As described above, the portion of the sample piece that comes into contact with the heated metal body is the high temperature portion, and the portion that does not come into contact is the low temperature portion. Then, due to the temperature difference between these portions, a potential difference, that is, a thermoelectromotive force is generated between the two points.

【0028】本発明において、温度差を有する部位の2
点間の温度差及び電位差の測定は、該各部位に熱電対端
子を接触させて行うことができる。
In the present invention, two of the parts having a temperature difference are
The temperature difference and the potential difference between the points can be measured by bringing a thermocouple terminal into contact with each part.

【0029】上記熱電対は、公知のものが特に制限なく
使用される。例えば、日本工業規格で提示されているB
(白金ロジウム合金−白金ロジウム合金)、R(白金ロ
ジウム合金−白金)、S(白金ロジウム合金−白金)、
K(ニッケルクロム合金−ニッケル合金)、E(ニッケ
ルクロム合金−銅ニッケル合金)、J(鉄−銅ニッケル
合金)、T(銅−銅ニッケル合金)などが挙げられ、こ
れらの中より試料片との反応性、熱電対の熱伝導性など
を考慮して最適なものを選択すれば良い。
Known thermocouples can be used without particular limitation. For example, B presented in Japanese Industrial Standards
(Platinum rhodium alloy-platinum rhodium alloy), R (platinum rhodium alloy-platinum), S (platinum rhodium alloy-platinum),
K (nickel chrome alloy-nickel alloy), E (nickel chrome alloy-copper nickel alloy), J (iron-copper nickel alloy), T (copper-copper nickel alloy), and the like are mentioned. The optimum one may be selected in consideration of the reactivity of the above, the thermal conductivity of the thermocouple, and the like.

【0030】また、試料片の高温部及び低温部にそれぞ
れ接触させる2対の熱電対は、測定した電位差を補正す
る必要がないことから同種のものが望ましい。
The two types of thermocouples that are brought into contact with the high temperature portion and the low temperature portion of the sample piece are preferably of the same type because it is not necessary to correct the measured potential difference.

【0031】更に、正確な温度測定を行うために、試料
片と熱電対端子の接触部に熱伝導性、電気伝導性のよい
銀ペーストなどを塗布することも好ましい態様である。
Further, in order to perform accurate temperature measurement, it is also a preferable embodiment to apply silver paste or the like having good thermal conductivity and electrical conductivity to the contact portion between the sample piece and the thermocouple terminal.

【0032】上記試料片の高温部と低温部との温度差
(△T)は、各部位にその端子が接触する2対の熱電対
の電気回路をそれぞれ零点補償回路またはそれに相当す
るものを付属した電圧−温度変換器に接続し、測定され
た温度即ちT1(高温部)及びT2(低温部)から算出す
ることができる。
Regarding the temperature difference (ΔT) between the high temperature portion and the low temperature portion of the above-mentioned sample piece, the electric circuits of the two pairs of thermocouples whose terminals are in contact with the respective parts are attached to the zero compensation circuit or equivalent ones. It can be calculated from the measured temperatures, that is, T 1 (high temperature portion) and T 2 (low temperature portion) by connecting to the voltage-temperature converter.

【0033】また、試料片の高温部と低温部との電位差
(E)の測定は、2対のそれぞれの熱電対端子を構成す
る金属線の内、同種類の金属線の間に電圧計を接続して
行うことが好ましい。このとき補償用導線などにより、
熱電対端子の各金属線を電圧−温度変換器と電圧計に同
時に接続しておけば、温度差と電位差の同時測定が可能
である。勿論、各部位に別途金属線を接触させ、これに
電圧計を接続して電位差を測定することも可能である。
Further, the measurement of the potential difference (E) between the high temperature part and the low temperature part of the sample piece is performed by using a voltmeter between the metal wires of the same kind among the metal wires constituting the two pairs of thermocouple terminals. It is preferable to perform the connection. At this time, due to the compensation lead wire,
If each metal wire of the thermocouple terminal is simultaneously connected to the voltage-temperature converter and the voltmeter, the temperature difference and the potential difference can be measured simultaneously. Of course, it is also possible to separately contact each part with a metal wire and connect a voltmeter to this to measure the potential difference.

【0034】上記のように測定された試料片の高温部と
低温部の各部位間の温度差及び電位差から次式を用いて
ゼーベック係数(S)が算出される。
The Seebeck coefficient (S) is calculated from the temperature difference and the potential difference between the high temperature portion and the low temperature portion of the sample piece measured as described above using the following equation.

【0035】S=E/△T (単位;V/K) 本発明の方法を実施するために好適な熱電変換特性の測
定装置をも提供する。
S = E / ΔT (unit: V / K) A thermoelectric conversion characteristic measuring apparatus suitable for carrying out the method of the present invention is also provided.

【0036】以下、本発明の装置の代表的な態様の概略
図を示す図1に基づいて説明するが、本発明の測定装置
はかかる図面に記載された態様に限定されるものではな
い。
The following description will be given with reference to FIG. 1, which shows a schematic diagram of a typical embodiment of the apparatus of the present invention, but the measuring apparatus of the present invention is not limited to the embodiment described in such drawings.

【0037】本発明の熱電変換特性の測定装置は、真空
を形成し得るチャンバー11内に、絶縁体層17を表面
に有する金属体2よりなる加熱支持面Aと絶縁体3より
なる非加熱支持面Bとによって試料片の支持面が構成さ
れた試料台、複数対の熱電対6、7および電子束発生
装置を有し、該熱電対の一対は、上記加熱支持面上
に、他の熱電対は非加熱支持面上にそれぞれ上下動可能
に配置され、電子束発生装置は、加熱支持面を構成す
る金属体2に電子束を照射し得る位置に配置され、且つ
上記加熱支持面上の熱電対と他の熱電対との間には電圧
計12が接続され、各熱電対6、7はそれぞれ電圧−温
度変換器13、14に接続され、前記支持台上に置かれ
た上記熱電対を接触させた試料片の高温部と低温部の間
の温度差と電位差を測定し得るように構成される。
The thermoelectric conversion characteristic measuring apparatus of the present invention comprises a heating support surface A made of a metal body 2 having an insulating layer 17 on its surface and a non-heating support made of an insulator 3 in a chamber 11 capable of forming a vacuum. It has a sample table 5 in which a supporting surface for the sample piece is constituted by the surface B, a plurality of thermocouples 6 and 7 and an electron flux generating device 4 , and one pair of the thermocouples is provided on the heating supporting surface and the other. The thermocouples are vertically movable on the non-heating supporting surface, and the electron flux generator 4 is disposed at a position where the metal body 2 forming the heating supporting surface can be irradiated with the electron flux. A voltmeter 12 was connected between the thermocouple on the surface and the other thermocouple, and each thermocouple 6, 7 was connected to a voltage-temperature converter 13, 14, respectively, and placed on the support table. The temperature difference and the potential difference between the high temperature part and the low temperature part of the sample piece with which the thermocouple was contacted Configured to be measurable.

【0038】本発明の上記装置において、真空を形成し
得るチャンバー11は、使用環境下で強度、耐食性を有
する材質より形成されるものであれば特に制限されな
い。例えば、ステンレス鋼、アルミニウム合金などの金
属合金かまたは同等の強度を有する材質が好適である。
また、チャンバーの大きさは、測定条件下で、支持台、
電子衝撃式加熱装置、熱電対など構成要素のうち、真空
下での使用が必要とされる部分が収納できる大きさとす
るのが一般的である。最適なチャンバーの大きさとして
は、4×104cm3以下の範囲が望ましい。即ち、該容
積より大きな容積を有するチャンバーは、大きな排気ポ
ンプを必要とするばかりでなく、真空を形成するために
長時間を有する。
In the above apparatus of the present invention, the chamber 11 capable of forming a vacuum is not particularly limited as long as it is made of a material having strength and corrosion resistance under the use environment. For example, a metal alloy such as stainless steel or aluminum alloy, or a material having equivalent strength is suitable.
In addition, the size of the chamber is
Of the components such as the electron-impact-type heating device and the thermocouple, it is common to have a size capable of accommodating a portion that needs to be used under vacuum. The optimum chamber size is preferably 4 × 10 4 cm 3 or less. That is, a chamber having a volume greater than that requires not only a large exhaust pump, but also a long time to form a vacuum.

【0039】上記チャンバー11内を真空とする手段も
特に制限されない。一般には、公知の油回転式ポンプ、
油拡散ポンプ、ターボ分子ポンプ、クライオポンプなど
単独、或いは適宜組み合わせて構成された真空ポンプ1
5をチャンバー11に接続することによりチャンバー内
の排気を行う方法が好適である。
Means for evacuating the chamber 11 is not particularly limited. Generally, known oil rotary pumps,
A vacuum pump 1 composed of an oil diffusion pump, a turbo molecular pump, a cryopump or the like, or a combination thereof as appropriate.
A method of exhausting the inside of the chamber by connecting 5 to the chamber 11 is suitable.

【0040】本発明の装置において、試料台の加熱支
持面Aは、金属体2の表面において、少なくとも試料片
1を当接する部分に絶縁体層17を設けて構成される。
In the apparatus of the present invention, the heating support surface A of the sample table 5 is constructed by providing an insulating layer 17 on at least a portion of the surface of the metal body 2 which is in contact with the sample piece 1.

【0041】上記加熱支持面Aと非加熱支持面Bとは、
試料片の形状に応じてその表面形状及び配置を決定する
ことが好ましい。例えば、図に示すように、試料片1が
板状体である場合は、加熱支持面Aと非加熱支持面Bと
は平滑面に形成され且つ同一平面に位置するように配置
される。また、加熱支持面Aと非加熱支持面Bとは、連
続していてもよいが、加熱された金属体2の熱が支持台
を伝わって試料片の加熱が不必要な箇所を加熱するのを
防止するため、試料片1の長さより短い距離で間隔をあ
けて設けることが好ましい。
The heating support surface A and the non-heating support surface B are
It is preferable to determine the surface shape and arrangement according to the shape of the sample piece. For example, as shown in the drawing, when the sample piece 1 is a plate-shaped body, the heating support surface A and the non-heating support surface B are formed as smooth surfaces and are arranged so as to be located on the same plane. Further, the heating support surface A and the non-heating support surface B may be continuous, but the heat of the heated metal body 2 is transmitted to the support base to heat a portion where heating of the sample piece is unnecessary. In order to prevent the above, it is preferable to provide the sample piece 1 with a distance shorter than the length thereof.

【0042】また、加熱支持面A及び非加熱支持面Bに
は、試料片1を該面上に抑えつけるための止め具16を
設けることが好ましい。
Further, it is preferable that the heating supporting surface A and the non-heating supporting surface B are provided with stoppers 16 for holding the sample piece 1 on the surfaces.

【0043】本発明の装置において、電子束発生装置
は、上記金属体2に電子束を照射する位置に配置され
る。上記電子束発生装置としては、電子衝撃式加熱装置
が一般に使用される。かかる電子衝撃式加熱装置は、一
般に、陰極となるコイル状電線21を含む加熱部、電源
を含む温度制御部20などから構成され、金属体2は陽
極あるいはコイル状電線よりも高い電位となるように構
成される。この場合、温度制御部20と金属体2とは、
電気的に接続される。かかる接続は、電線により直接結
線するか、或いは支持台を導体で構成し、チャンバー
11と絶縁性を保った状態で該支持台と温度制御部2
0とを結線することなどにより行われる。
In the apparatus of the present invention, the electron flux generator 4
Is arranged at a position where the metal body 2 is irradiated with an electron flux. An electron impact heating device is generally used as the electron flux generator. Such an electron impact heating device is generally composed of a heating unit including a coil-shaped electric wire 21 serving as a cathode, a temperature control unit 20 including a power source, and the like, so that the metal body 2 has a higher potential than the anode or the coil-shaped electric wire. Is composed of. In this case, the temperature control unit 20 and the metal body 2 are
It is electrically connected. Such connection may be made by directly connecting with an electric wire, or by forming the supporting base 5 with a conductor and maintaining the insulating property with respect to the chamber 11, the supporting base 5 and the temperature control unit 2 are connected.
This is done by connecting 0 and the like.

【0044】上記電子衝撃式加熱装置を使用し、金属体
2に効率よく電子束を照射するためには、金属体以外の
箇所に電子束が漏れないように、遮蔽板19を設けるこ
とが好ましい。特に、試料片1に漏れた電子束が照射さ
れた場合には、熱電対に電気が流れることがあるため、
試料片の高温部と低温部との間の電位差、温度差に測定
誤差が生じる場合がある。従って、かかる現象を防止す
るためにも遮蔽板19を設けることが好ましい。
In order to efficiently irradiate the metal body 2 with the electron flux by using the electron impact type heating device, it is preferable to provide the shield plate 19 so that the electron flux does not leak to a portion other than the metal body. . In particular, when the leaked electron flux is applied to the sample piece 1, electricity may flow to the thermocouple,
A measurement error may occur in the potential difference and the temperature difference between the high temperature portion and the low temperature portion of the sample piece. Therefore, it is preferable to provide the shield plate 19 also in order to prevent such a phenomenon.

【0045】遮蔽板の材質は、その電気抵抗が金属体の
電気抵抗より大きいものであれば特に制限されないが、
そのうち、特に、電子束を反射するものまたは電子束を
殆ど吸収しないものが好適に使用される。好適な材質を
例示すれば、二酸化ケイ素を主成分とするガラス、アル
ミナ等の絶縁体が挙げられる。尚、遮蔽板の材質とし
て、電気抵抗の低い材質を使用した場合には、該遮蔽板
と電子束発生装置及びチャンバーとの絶縁性を保つ必要
がある。
The material of the shielding plate is not particularly limited as long as its electric resistance is larger than that of the metal body.
Among them, those that reflect the electron flux or those that hardly absorb the electron flux are preferably used. Examples of suitable materials include glass having silicon dioxide as a main component, and insulators such as alumina. When a material having a low electric resistance is used as the material of the shield plate, it is necessary to maintain the insulating property between the shield plate and the electron flux generator and the chamber.

【0046】本発明の装置に用いる熱電対としては、前
記材質の金属線の組み合わせよりなるものが特に制限な
く使用されるが、特に、温度検出部である金属線の溶接
部を除いてアルミナなどの材質の保護管などによって被
覆された構造を有するものが好ましい。
As the thermocouple used in the apparatus of the present invention, a combination of the metal wires of the above-mentioned materials can be used without any particular limitation. In particular, except the welded part of the metal wire which is the temperature detecting part, alumina or the like is used. It is preferable to have a structure covered with a protective tube made of the above material.

【0047】上記熱電対6、7は、それぞれ独立して或
いは一緒に上下動可能なヘッド18に固定された支持枠
10に保持することによって上下動可能に配置される。
また、必要に応じて、図には示されていないが、それぞ
れの熱電対が独立して横方向に動く機構を支持枠10に
設けてもよい。かかる態様によれば、測定距離、測定箇
所を試料片の大きさ、位置等に応じて熱電対の位置を調
節することができるため好ましい。
The thermocouples 6 and 7 are arranged so as to be movable up and down by holding them on a support frame 10 fixed to a head 18 which can move up and down independently or together.
Further, although not shown in the figure, a mechanism in which each thermocouple independently moves in the lateral direction may be provided in the support frame 10, if necessary. According to this aspect, the position of the thermocouple can be adjusted according to the measurement distance, the measurement location, the size, the position, etc. of the sample piece, which is preferable.

【0048】本発明の装置において、熱電対6、7は、
それぞれ独立して電圧−温度変換器13、14に接続さ
れる。また、電圧計12は、測定箇所にそれぞれ接続す
る金属線と接続される。かかる金属線として、それぞれ
の熱電対を構成する金属線の内、同種類の金属線を使用
することによって、熱電対による上記温度差の測定回路
と電位差の測定回路を同時に形成することができ装置の
簡略化を図ることができる。
In the apparatus of the present invention, the thermocouples 6 and 7 are
Each is independently connected to the voltage-temperature converters 13 and 14. Further, the voltmeter 12 is connected to the metal wires that are connected to the measurement points. By using the same type of metal wire among the metal wires forming each thermocouple as the metal wire, it is possible to simultaneously form the temperature difference measuring circuit and the potential difference measuring circuit by the thermocouple. Can be simplified.

【0049】本発明の装置において、他の構造は特に制
限されず、本発明の効果を著しく低下させない範囲で種
々の変更が可能である。
In the device of the present invention, other structures are not particularly limited, and various modifications can be made within a range that does not significantly reduce the effects of the present invention.

【0050】[0050]

【発明の効果】以上の説明より理解されるように、本発
明によれば、試料片の一部に絶縁体層を介して金属体を
当接し、該金属体を電子束の照射により加熱することに
より、試料片の非常に狭い範囲の加熱を高速で行うこと
ができ、これによって高温部を形成することにより、該
試料片における低温部との温度差を大きく確保すること
が可能となり、かかる高温部と低温部間の電位差、温度
差を極めて正確に測定することができる。
As can be understood from the above description, according to the present invention, a metal body is brought into contact with a part of a sample piece through an insulating layer, and the metal body is heated by irradiation of electron flux. By doing so, it is possible to perform heating of the sample piece in a very narrow range at high speed, and by forming a high temperature part by this, it becomes possible to secure a large temperature difference between the sample piece and the low temperature part. The potential difference and temperature difference between the high temperature part and the low temperature part can be measured extremely accurately.

【0051】従って、試料片として大きな焼結体を作製
する必要がなく、小さい成形体よりなる試料片でも正確
に熱電変換特性の測定を行うことができる。さらには、
試料片及び試料台の周辺部に試料片の低温部の温度を下
げるための冷却水循環などの機構を設けたりする必要が
なくなり、測定装置としても簡便なものである。
Therefore, it is not necessary to prepare a large sintered body as a sample piece, and the thermoelectric conversion characteristics can be accurately measured even with a sample piece formed of a small compact. Moreover,
It is not necessary to provide a mechanism such as a cooling water circulation for lowering the temperature of the low temperature part of the sample piece around the sample piece and the sample table, and it is a simple measuring device.

【0052】[0052]

【実施例】以下、実施例を示すが、本発明はこれらの実
施例に限定されるものではない。
EXAMPLES Examples will be shown below, but the present invention is not limited to these examples.

【0053】実施例1 図1に示したように、真空ポンプ15(油回転ポンプ及
びターボ分子ポンプ)に接続されたステンレス鋼製チャ
ンバー11(300mm×300mm×300mm)内
に、上部に窒化アルミニウム(20mm×20mm×厚
さ1mm)よりなる絶縁体層17を設けたモリブデン製
の金属体2(50mm×50mm×厚さ3mm、一部厚
さ2mm)により加熱支持面A、絶縁体3(26mm×
26mm×厚さ3mm)により非加熱支持面Bをそれぞ
れ間隔を開けて形成し、支持台を形成した。電子束発
生装置として、コイル状電線21を含む加熱部及び電
源を含む温度制御部20によって構成される電子衝撃式
加熱装置(助川電気工業(株)社製)を使用した。ま
た、アルミナ製の保護管8及び9によって支持された熱
電対6及び7を支持枠10に上下動可能に取り付けた。
Example 1 As shown in FIG. 1, in a stainless steel chamber 11 (300 mm × 300 mm × 300 mm) connected to a vacuum pump 15 (oil rotary pump and turbo molecular pump), aluminum nitride ( The heating support surface A and the insulator 3 (26 mm ×) are provided by the molybdenum metal body 2 (50 mm × 50 mm × thickness 3 mm, partial thickness 2 mm) provided with the insulator layer 17 made of 20 mm × 20 mm × thickness 1 mm).
26 mm × thickness 3 mm), the non-heated supporting surfaces B were formed at intervals, and the supporting table 5 was formed. As the electron flux generating device 4 , an electron impact heating device (manufactured by Sukegawa Electric Industry Co., Ltd.) including a heating unit including the coiled electric wire 21 and a temperature control unit 20 including a power source was used. Further, the thermocouples 6 and 7 supported by the protection tubes 8 and 9 made of alumina were attached to the support frame 10 so as to be vertically movable.

【0054】上記支持台上に、β−FeSi2を主成分
とする焼結体試料片1(直径12mm、厚さ1.5m
m)を、その一端が絶縁体層17によって構成される加
熱支持面Aに重なるように当接し、他端が絶縁体3によ
って構成される非加熱支持面Bに重なるように当接し、
止め具16によって固定した。このとき試料片1の底面
の4割の面積の部分が、加熱支持面に当接するようにし
た。
On the above-mentioned supporting table, a sintered compact sample piece 1 (diameter 12 mm, thickness 1.5 m) containing β-FeSi 2 as a main component.
m) so that one end thereof abuts on the heating support surface A formed by the insulator layer 17 and the other end abuts on the non-heating support surface B formed by the insulator 3,
It was fixed by a stopper 16. At this time, 40% of the area of the bottom surface of the sample piece 1 was brought into contact with the heating support surface.

【0055】チャンバー11の上部外に設けたマイクロ
メーターと接続したヘッド18を通して、保護管8及び
9を支持した支持枠10を降下させ、試料片1の上部に
2対の熱電対6及び7の端子を接触させた。かかる2対
の熱電対端子と試料片1の接触部には銀ペーストを塗布
し、これを乾燥させて導電性及び熱伝導性を向上させ
た。
The support frame 10 supporting the protective tubes 8 and 9 is lowered through the head 18 connected to the micrometer provided outside the upper part of the chamber 11, and the two thermocouples 6 and 7 of the thermocouples 6 and 7 are arranged above the sample piece 1. The terminals were contacted. A silver paste was applied to the contact portion between the two pairs of thermocouple terminals and the sample piece 1, and the silver paste was dried to improve the electrical conductivity and thermal conductivity.

【0056】2対の熱電対端子の間隔は7mmとし、両
熱電対の中心が試料片1の中心となるようにした。
The distance between the two pairs of thermocouple terminals was set to 7 mm, and the centers of both thermocouples were set to the center of the sample piece 1.

【0057】チャンバー11内を真空ポンプ15によっ
て、8×10-7Torr以下の真空度になるまでに真空
にひいた後、電子束発生装置のコイル状電線21に通
電し、試料片1を加熱した。このときの出力は約0.5
KWであった。加熱を始めてから3分後、試料片1の低
温部と高温部の温度を零点補償回路付の電圧−温度変換
器13及び14(真空理工(株)社製)によって、2点
間の電位差(絶対値)を電圧計12(キースレー社製)
によって測定を行った結果、それぞれ380℃、400
℃、4.4mVであった。
The chamber 11 was evacuated by the vacuum pump 15 to a vacuum degree of 8 × 10 −7 Torr or less, and then the coil-shaped electric wire 21 of the electron flux generator 4 was energized to fix the sample piece 1 to the sample piece 1. Heated. The output at this time is about 0.5
It was KW. Three minutes after starting heating, the temperature of the low temperature part and the high temperature part of the sample piece 1 was measured by voltage-temperature converters 13 and 14 (manufactured by Vacuum Riko Co., Ltd.) with a zero compensation circuit (potential difference between the two points). Voltmeter 12 (manufactured by Keithley)
As a result of measurement by 380 ° C. and 400
C. and 4.4 mV.

【0058】同様の測定を5回行い、測定値から計算さ
れる測定温度におけるゼーベック係数の平均値は約22
0μV/K、平均値からのばらつきは±5μV/K以内
であった。
The same measurement is carried out 5 times, and the average Seebeck coefficient at the measurement temperature calculated from the measured values is about 22.
0 μV / K, variation from the average value was within ± 5 μV / K.

【0059】比較例1 実施例1において、加熱手段を図2に示すように、加熱
支持面を構成する絶縁板25及び該絶縁板の下部に設置
した電熱ヒーター26を設置して構成し、加熱を該電熱
ヒーターの発熱によって実施した以外は、同様の構造を
有する熱電変換特性の測定装置を構成した。尚、電熱ヒ
ーター26はモリブデン製のものを使用した。
Comparative Example 1 In Example 1, as shown in FIG. 2, the heating means was constructed by installing an insulating plate 25 constituting a heating support surface and an electric heater 26 installed under the insulating plate, and heating. A thermoelectric conversion characteristic measuring device having a similar structure was constructed except that the above was carried out by the heat generation of the electric heater. The electric heater 26 was made of molybdenum.

【0060】上記装置を使用し、実施例1と同じ試料片
1を同様な真空度において、該試料片の高温部の温度が
400℃となるまで加熱した。かかる温度に達するまで
の時間は10分であり、この時、試料片の低温部の温度
は395℃であった。また、電圧差は1.0mVであっ
た。
Using the above apparatus, the same sample piece 1 as in Example 1 was heated in the same vacuum degree until the temperature of the high temperature part of the sample piece reached 400 ° C. The time required to reach this temperature was 10 minutes, at which time the temperature of the low temperature part of the sample piece was 395 ° C. The voltage difference was 1.0 mV.

【0061】同様の測定を5回行い、測定値から計算さ
れる測定温度におけるゼーベック係数の平均値は約20
0μV/K、平均値からのばらつきは±20μV/Kで
あった。
The same measurement was carried out 5 times, and the average value of Seebeck coefficient at the measurement temperature calculated from the measured values was about 20.
The deviation from the average value was 0 μV / K and ± 20 μV / K.

【0062】比較例2 比較例1の電熱ヒーターによる加熱手段に代えて、図3
に示すように、真空理工(株)社製の点集光型の赤外線
ランプを使用し、チャンバー11の下部面に設けた石英
ガラスよりなる窓30を通して、集光した赤外光を試料
片1の端部の下面に照射し得るように、直径8mmの円
形の穴を有し、且つ表面に絶縁体層17を設けた試料台
33により構成した以外は、同様の構造を有する熱電変
換特性の測定装置を構成した。
Comparative Example 2 Instead of the heating means by the electric heater of Comparative Example 1, FIG.
As shown in FIG. 1, a point focusing infrared lamp manufactured by Vacuum Riko Co., Ltd. is used, and the focused infrared light is passed through a window 30 made of quartz glass provided on the lower surface of the chamber 11 Of a thermoelectric conversion characteristic having a similar structure except that the sample table 33 has a circular hole with a diameter of 8 mm so that the lower surface of the end of the The measuring device was constructed.

【0063】上記装置を使用し、実施例1と同じ試料片
を試料台の穴の中心と試料片の中心が一致するように設
置し、実施例1と同様な真空度において、試料片を加熱
した。このときの出力は約0.4KWであった。加熱を
始めてから15分後、試料片の高温部と低温部の温度及
び電位差を測定した結果、それぞれ400℃、395
℃、1.0mVであった。
Using the above apparatus, the same sample piece as in Example 1 was installed so that the center of the hole of the sample stand and the center of the sample piece were aligned, and the sample piece was heated in the same degree of vacuum as in Example 1. did. The output at this time was about 0.4 kW. After 15 minutes from the start of heating, the temperature and potential difference between the high temperature part and the low temperature part of the sample piece were measured, and the result was 400 ° C.
The temperature was 1.0 ° C at 1.0 ° C.

【0064】同様の測定を5回行い、測定値から計算さ
れる測定温度におけるゼーベック係数の平均値は約20
0μV/K、平均値からのばらつきは±22μV/Kで
あった。
The same measurement is performed 5 times, and the average value of Seebeck coefficient at the measurement temperature calculated from the measured values is about 20.
The deviation from the average value was 0 μV / K and ± 22 μV / K.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱電変換特性測定装置の代表的な態様
を示す概略図
FIG. 1 is a schematic view showing a typical embodiment of a thermoelectric conversion characteristic measuring device of the present invention.

【図2】電熱ヒーターによる加熱手段を用いた従来の熱
電変換特性測定装置を示す概略図
FIG. 2 is a schematic view showing a conventional thermoelectric conversion characteristic measuring device using a heating means by an electric heater.

【図3】赤外線ランプによる加熱手段を用いた従来の熱
電変換特性測定装置を示す概略図
FIG. 3 is a schematic view showing a conventional thermoelectric conversion characteristic measuring device using a heating means by an infrared lamp.

【符号の説明】[Explanation of symbols]

1 試料片 2 金属体 3 絶縁体 電子束発生装置 支持台 6 熱電対 7 熱電対 8 保護管 9 保護管 10 支持枠 11 チャンバー 12 電圧計 13 電圧−温度変換器 14 電圧−温度変換器 15 真空ポンプ 16 止め具 17 絶縁体層 18 ヘッド 19 遮蔽板 20 電源を含む温度制御部 21 コイル状電線 25 絶縁板 26 電熱ヒーター 27 電熱ヒーターの電源及び温度制御部 30 窓 31 赤外線ランプの電源及び温度制御部 32 赤外線ランプ 33 試料台 34 穴DESCRIPTION OF SYMBOLS 1 sample piece 2 metal body 3 insulator 4 electron flux generator 5 support stand 6 thermocouple 7 thermocouple 8 protection tube 9 protection tube 10 support frame 11 chamber 12 voltmeter 13 voltage-temperature converter 14 voltage-temperature converter 15 Vacuum pump 16 Stopper 17 Insulator layer 18 Head 19 Shielding plate 20 Temperature control unit including power supply 21 Coiled wire 25 Insulating plate 26 Electric heater 27 Power supply and temperature control unit of electric heater 30 Window 31 Power supply and temperature control of infrared lamp Part 32 Infrared lamp 33 Sample stand 34 holes

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】試料片の一部に絶縁体層を介して金属体を
当接し、該金属体に真空下で電子束を照射して加熱し、
上記試料片の加熱部位及び該加熱部位より離れた部位に
それぞれ熱電対端子を接触させ、該熱電対端子を接触さ
せた2点間に生じる温度差及び電位差を測定することを
特徴とする熱電変換特性の測定方法。
1. A metal body is brought into contact with a part of a sample piece through an insulating layer, and the metal body is irradiated with an electron flux under vacuum to be heated,
Thermoelectric conversion, characterized in that a thermocouple terminal is brought into contact with a heated portion of the sample piece and a portion distant from the heated portion, and a temperature difference and a potential difference generated between two points where the thermocouple terminal is brought into contact are measured. How to measure characteristics.
【請求項2】真空を形成し得るチャンバー内に、絶縁体
層を表面に有する金属体よりなる加熱支持面と絶縁体よ
りなる非加熱支持面とによって試料片の支持面が構成さ
れた試料台、複数対の熱電対及び電子束発生装置を有
し、該熱電対の一対は、該加熱支持面上に、他の熱電対
は非加熱支持面上にそれぞれ上下動可能に配置され、電
子束発生装置は加熱支持面を構成する金属体に電子束を
照射し得る位置に配置され、且つ上記加熱支持面上の熱
電対と他の熱電対との間には電圧計が接続され、各熱電
対はそれぞれ電圧−温度変換器に接続され、前記支持台
上に置かれた試料片に接触させた上記熱電対間の温度差
と各点における電位差を測定し得るようにした熱電変換
特性の測定装置。
2. A sample stage in which a supporting surface of a sample piece is constituted by a heating supporting surface made of a metal body having an insulating layer on its surface and a non-heating supporting surface made of an insulating material in a chamber capable of forming a vacuum. , A plurality of pairs of thermocouples and electron flux generators, one pair of the thermocouples being arranged on the heating support surface, and the other thermocouples being arranged on the non-heating support surface so as to be movable up and down. The generator is arranged at a position where a metal body forming the heating support surface can be irradiated with electron flux, and a voltmeter is connected between the thermocouple on the heating support surface and another thermocouple, and each thermocouple is connected to the thermocouple. Each pair is connected to a voltage-temperature converter, and the temperature difference between the thermocouples brought into contact with the sample piece placed on the support table and the potential difference at each point can be measured. apparatus.
JP5089639A 1993-04-16 1993-04-16 Method and apparatus for measuring thermoelectric conversion characteristic Pending JPH06300719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5089639A JPH06300719A (en) 1993-04-16 1993-04-16 Method and apparatus for measuring thermoelectric conversion characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5089639A JPH06300719A (en) 1993-04-16 1993-04-16 Method and apparatus for measuring thermoelectric conversion characteristic

Publications (1)

Publication Number Publication Date
JPH06300719A true JPH06300719A (en) 1994-10-28

Family

ID=13976351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5089639A Pending JPH06300719A (en) 1993-04-16 1993-04-16 Method and apparatus for measuring thermoelectric conversion characteristic

Country Status (1)

Country Link
JP (1) JPH06300719A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003872A (en) * 2002-03-26 2004-01-08 National Institute Of Advanced Industrial & Technology Evaluating method of thermoelectric transducing material
JP2004165233A (en) * 2002-11-11 2004-06-10 National Institute Of Advanced Industrial & Technology Seebeck coefficient measuring device
US6902317B2 (en) * 2001-03-16 2005-06-07 Japan Science And Technology Corporation Method and device for measuring thermoelectric characteristics of combinatorial specimen
WO2011101900A1 (en) * 2010-02-17 2011-08-25 アルバック理工株式会社 Apparatus and method for evaluating thermoelectric conversion element
CN106198616A (en) * 2016-06-30 2016-12-07 上海第二工业大学 Synchronism detection nano fluid heat transferring coefficient and the system and method to thermoelectric heat generation system generating efficiency affecting laws thereof
JP2017040556A (en) * 2015-08-20 2017-02-23 国立研究開発法人物質・材料研究機構 Sample support, electrothermal characteristic evaluation device, method of evaluating electrothermal characteristic, and method of evaluating electrode
JP2020139834A (en) * 2019-02-28 2020-09-03 オザワ科学株式会社 Thermoelectric property evaluation unit, thermoelectric property evaluation device, and thermoelectric property evaluation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902317B2 (en) * 2001-03-16 2005-06-07 Japan Science And Technology Corporation Method and device for measuring thermoelectric characteristics of combinatorial specimen
JP2004003872A (en) * 2002-03-26 2004-01-08 National Institute Of Advanced Industrial & Technology Evaluating method of thermoelectric transducing material
JP2004165233A (en) * 2002-11-11 2004-06-10 National Institute Of Advanced Industrial & Technology Seebeck coefficient measuring device
WO2011101900A1 (en) * 2010-02-17 2011-08-25 アルバック理工株式会社 Apparatus and method for evaluating thermoelectric conversion element
JP5511941B2 (en) * 2010-02-17 2014-06-04 アルバック理工株式会社 Thermoelectric conversion element evaluation apparatus and evaluation method
JP2017040556A (en) * 2015-08-20 2017-02-23 国立研究開発法人物質・材料研究機構 Sample support, electrothermal characteristic evaluation device, method of evaluating electrothermal characteristic, and method of evaluating electrode
CN106198616A (en) * 2016-06-30 2016-12-07 上海第二工业大学 Synchronism detection nano fluid heat transferring coefficient and the system and method to thermoelectric heat generation system generating efficiency affecting laws thereof
JP2020139834A (en) * 2019-02-28 2020-09-03 オザワ科学株式会社 Thermoelectric property evaluation unit, thermoelectric property evaluation device, and thermoelectric property evaluation method

Similar Documents

Publication Publication Date Title
KR102661729B1 (en) Heating modules and smoke generating devices
US7224256B2 (en) Stable high temperature heater with serpentine heating strands on insulative substrate
JPS5915195B2 (en) Thermoelectric devices with large temperature gradients
KR20150007686A (en) Thermoelectric property measurement system
JPH06300719A (en) Method and apparatus for measuring thermoelectric conversion characteristic
US4787551A (en) Method of welding thermocouples to silicon wafers for temperature monitoring in rapid thermal processing
US5225663A (en) Heat process device
JP2000074862A (en) Method for measuring seebeck coefficient by alternating current heating, and structure of measuring sample used therefor
US3337309A (en) Thermoelectric unit comprising intimate layers of gallium-indium alloy and alumina
JP3129417B2 (en) Heating / cooling device and electrical characteristic evaluation device
JPS6037116A (en) Optical irradiating furnace
Takazawa et al. Efficiency measurement of thermoelectric modules operating in the temperature difference of up to 550K
JPH0552783A (en) Thermoelectric characteristic measuring device
JP2912616B1 (en) Plate heating device
JP2000050661A (en) Power generator
Sosin et al. Cryostat for Irradiating at 4.2° K
WO2017164104A1 (en) Thermoelectric module power generation evaluation device
US12010917B2 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and optical sensor
US4695793A (en) Resistive sensing thermal device for current measurement
US3569602A (en) Temperature programming apparatus with a heating sensing arrangement
JPH0518913A (en) Method and apparatus for measuring thermoelectromotive force
JP2006040989A (en) Thermoelectric characteristic measuring apparatus for semiconductor element
Crucq et al. A new method for the measurement of the thermoelectric power of sintered semiconductors
JPH0718826B2 (en) Thermal conductivity measurement method
US3382109A (en) Brazing lead telluride thermoelectric generator elements