JPH06300539A - Three-dimensional shape measurement device - Google Patents
Three-dimensional shape measurement deviceInfo
- Publication number
- JPH06300539A JPH06300539A JP5089794A JP8979493A JPH06300539A JP H06300539 A JPH06300539 A JP H06300539A JP 5089794 A JP5089794 A JP 5089794A JP 8979493 A JP8979493 A JP 8979493A JP H06300539 A JPH06300539 A JP H06300539A
- Authority
- JP
- Japan
- Prior art keywords
- intensity
- measurement
- light flux
- dimensional shape
- ray bundle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Image Input (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、スリット状或いはスポ
ット状の測定光線束を測定対象物に向けて照射する測定
光線束照射手段と、前記測定対象物の表面からの散乱光
線束を検出する散乱光線束検出手段と、その散乱光線束
検出手段による検出データに基づいて前記測定対象物の
三次元形状を演算導出する信号処理手段とから構成して
ある三次元形状計測装置に関し、例えば、スポット状の
レーザ光線束を測定対象物に走査して、測定対象物から
の散乱光線束をCCDイメージセンサ等で計測し、その
検出された位置データから測定対象物の形状を特定する
装置で、成形用型やデザインされた各種製品の模型から
外観形状を入力して最終設計図面に仕上げるCAD用デ
ータの入力装置や、教育用や販売用に用いられる三次元
映像資料の入力装置、医療用診断装置、或いはロボット
の視覚センサとして用いられる三次元形状計測装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects a measuring beam bundle irradiating means for irradiating a measuring beam bundle in the form of a slit or a spot toward an object to be measured, and a beam bundle scattered from the surface of the object to be measured. Regarding a three-dimensional shape measuring device comprising a scattered light flux detection means and signal processing means for calculating and deriving the three-dimensional shape of the measurement object based on detection data by the scattered light flux detection means, for example, a spot A device that scans a circular laser beam bundle onto the measurement target, measures the scattered light flux from the measurement target with a CCD image sensor, etc., and specifies the shape of the measurement target from the detected position data. Input device for CAD data that inputs the external shape from the model of various types of designed products and finishes the final design drawing, and input device for 3D image materials used for education and sales , Medical diagnostic equipment, or relates to a three-dimensional shape measuring apparatus used as a visual sensor of a robot.
【0002】[0002]
【従来の技術】この種の三次元形状計測装置は、測定対
象物からの散乱光線束のうち散乱光線束検出手段に入射
する微小な光線束を検出するものであるために、所定の
出力を得るように前記測定光線束の強度を確保する必要
があった。例えば、スポット状のレーザ光線束を測定対
象物に走査して、測定対象物からの散乱光線束をCCD
イメージセンサで計測し、その位置を検出するもので
は、散乱光線束強度が強すぎるとCCDイメージセンサ
の隣接する複数の画素の出力が飽和して、真の位置を検
出できなかったり、散乱光線束強度が弱すぎるとCCD
イメージセンサの出力が微小となりS/N比が低下し
て、正確に真の位置を検出できないことにもなる。そこ
で、散乱光線束検出手段による検出強度が所定の範囲、
例えば、CCDイメージセンサを検出素子として用いた
場合には飽和に達せずしかもS/N比が低下することの
ない一定の範囲に入るように、その検出強度が小であれ
ば測定光線束の強度を一定の比率で上げ、その検出強度
が大であれば測定光線束の強度を一定の比率で下げる、
いわゆる比例制御を行う強度調節手段を設けていた。2. Description of the Related Art A three-dimensional shape measuring apparatus of this type detects a minute light flux incident on a scattered light flux detecting means out of scattered light flux from an object to be measured. It was necessary to secure the intensity of the measurement light flux so as to obtain it. For example, a spot-like laser beam flux is scanned on the measurement target, and the scattered light flux from the measurement target is transferred to the CCD.
In the case of measuring with an image sensor and detecting the position, if the scattered light flux intensity is too strong, the output of multiple adjacent pixels of the CCD image sensor is saturated, and the true position cannot be detected, or the scattered light flux is not detected. CCD is too weak
The output of the image sensor becomes so small that the S / N ratio is lowered, and the true position cannot be accurately detected. Therefore, the detection intensity by the scattered light flux detection means is within a predetermined range,
For example, when a CCD image sensor is used as a detection element, if the detection intensity is small so that it falls within a certain range where saturation is not reached and the S / N ratio does not decrease, the intensity of the measurement light flux is small. Is increased at a constant rate, and if the detected intensity is large, the intensity of the measurement light beam is reduced at a constant rate.
A strength adjusting means for performing so-called proportional control was provided.
【0003】[0003]
【発明が解決しようとする課題】しかし、上述した従来
技術による強度調節手段は、測定対象物の表面色や表面
状態、或いは測定光線束の入射角度等を考慮せず、一律
に一定の散乱特性である(測定光線束強度と散乱光線束
強度とが比例関係にある)との想定の下に、一定の比率
で測定光線束の強度を比例制御するものであったので、
測定対象物の表面色や表面状態、或いは測定光線束の入
射角度等によっては、散乱光線束検出手段に入射する光
線束の強度が想定された値と大きく異なる場合も考えら
れ、そのような場合には正確な検出が不可能になるとい
う問題点があった。例えば、強度調節手段が、表面色”
黒”の測定対象物を基準にして一定の比率で測定光線束
を強度調節する場合に、表面色が”白”の測定対象物が
計測されると”黒”よりも”白”の方が反射係数が大で
あるために補正過剰となり、逆に、強度調節手段が、表
面色”白”の測定対象物を基準にして一定の比率で測定
光線束を強度調節する場合に、表面色が”黒”の測定対
象物が計測されると”白”よりも”黒”の方が反射係数
が小であるために補正不足となるのである。本発明の目
的は上述した従来欠点を解消し、測定対象物の表面色や
表面状態、或いは測定光線束の入射角度等に係わらず、
常に適正な散乱光線束強度を得ることができる強度調節
手段を備えた三次元形状計測装置を提供することにあ
る。However, the above-mentioned intensity adjusting means according to the prior art does not consider the surface color or surface state of the object to be measured, the incident angle of the measuring light beam bundle, or the like, and has a uniform scattering characteristic. Assuming that (the measured light flux intensity and the scattered light flux intensity are in a proportional relationship), the intensity of the measured light flux is proportionally controlled at a constant ratio.
Depending on the surface color and surface state of the object to be measured, the incident angle of the measurement light flux, etc., the intensity of the light flux incident on the scattered light flux detection means may differ greatly from the expected value. Has a problem that accurate detection becomes impossible. For example, the intensity control means is the surface color "
When the intensity of the measurement light flux is adjusted at a constant rate based on the "black" measurement target, when a measurement target with a "white" surface color is measured, "white" is better than "black" Since the reflection coefficient is large, overcorrection occurs, and conversely, when the intensity adjusting means intensity-adjusts the measurement light flux at a constant ratio based on the measurement object with the surface color "white", the surface color is When a "black" object is measured, the correction coefficient is insufficient because "black" has a smaller reflection coefficient than "white." The object of the present invention is to eliminate the above-mentioned conventional drawbacks. , Regardless of the surface color or surface condition of the object to be measured, or the incident angle of the measurement light bundle,
It is an object of the present invention to provide a three-dimensional shape measuring apparatus provided with an intensity adjusting means that can always obtain an appropriate scattered light flux intensity.
【0004】[0004]
【課題を解決するための手段】この目的を達成するた
め、本発明による三次元形状計測装置の特徴構成は、散
乱光線束検出手段による検出強度とその時の測定光線束
の強度の比に基づいて、前記散乱光線束検出手段による
検出強度が所定範囲に入るように、前記測定光線束の強
度を調節する強度調節手段を備えた点にある。上述の構
成において、前記強度調節手段は、前記測定対象物に対
する測定対象箇所の近傍における前記散乱光線束検出手
段による検出強度とその時の測定光線束の強度の比に基
づいて、前記測定光線束の強度を調節するものであるこ
とが好ましい。さらに、前記強度調節手段は、前記測定
対象物に対する測定対象箇所における前記散乱光線束検
出手段による検出強度とその時の測定光線束の強度の比
に基づいて、前記測定光線束の強度を調節するものであ
ることが好ましい。In order to achieve this object, the characteristic configuration of the three-dimensional shape measuring apparatus according to the present invention is based on the ratio between the intensity detected by the scattered light flux detecting means and the intensity of the measured light flux at that time. The point is that intensity adjusting means for adjusting the intensity of the measurement light flux is provided so that the intensity detected by the scattered light flux detection means falls within a predetermined range. In the above-mentioned configuration, the intensity adjusting means, based on the ratio of the intensity of the measurement light flux at that time and the detection intensity by the scattered light flux detection means in the vicinity of the measurement target location for the measurement target, It is preferable to control the strength. Further, the intensity adjusting means adjusts the intensity of the measurement light flux based on the ratio of the intensity of the measurement light flux at that time to the intensity detected by the scattered light flux detection means at the measurement object position with respect to the measurement object. Is preferred.
【0005】[0005]
【作用】測定対象物の表面色や表面状態、或いは測定光
線束の入射角度等が一定の下では、散乱光線束検出手段
による検出強度とその時の測定光線束の強度の比が一定
となる点に着目して、強度調節手段は、散乱光線束検出
手段による検出強度とその時の測定光線束の強度の比に
基づいて、散乱光線束検出手段による検出強度が所定範
囲に入るように測定光線束の強度を調節するのである。
この場合、測定対象物に対する測定対象箇所の近傍で
は、測定対象物の表面色や表面状態、或いは測定光線束
の入射角度等がほぼ一定である場合が多いので、例え
ば、前回に計測された測定対象箇所の近傍における前記
散乱光線束検出手段による検出強度とその時の測定光線
束の強度の比に基づいて今回の測定光線束の強度を調節
すれば、連続的に測定対象箇所を異ならせて高速に計測
できる。さらには、測定対象物に対する測定対象箇所の
近傍で、測定対象物の表面色や表面状態、或いは測定光
線束の入射角度等が急激に変化するような場合では、測
定対象物の同一の測定対象箇所における前記散乱光線束
検出手段による検出強度とその時の測定光線束の強度の
比に基づいて、測定光線束の強度をさらに調節すれば、
より正確に計測できる。When the surface color or surface condition of the object to be measured, or the incident angle of the measuring light flux is constant, the ratio of the intensity detected by the scattered light flux detecting means and the intensity of the measuring light flux at that time is constant. Focusing on, the intensity adjusting means, based on the ratio of the intensity detected by the scattered light flux detecting means and the intensity of the measured light flux at that time, the intensity of the measuring light flux detected by the scattered light flux detecting means falls within a predetermined range. The intensity of is adjusted.
In this case, in the vicinity of the measurement target location with respect to the measurement target, the surface color or surface state of the measurement target, or the incident angle of the measurement light flux is often almost constant. By adjusting the intensity of the measurement light flux this time based on the ratio of the intensity of the scattered light flux detection means in the vicinity of the target location and the intensity of the measurement light flux at that time, the measurement target location can be continuously changed to a high speed. Can be measured. Furthermore, in the case where the surface color or surface state of the measurement target, or the incident angle of the measurement light flux changes rapidly in the vicinity of the measurement target location for the measurement target, the same measurement target of the measurement target is measured. Based on the ratio of the intensity of the measured light flux at that point by the scattered light flux detection means and the intensity of the measurement light flux, if the intensity of the measurement light flux is further adjusted,
Can measure more accurately.
【0006】[0006]
【発明の効果】従って、本発明によれば、測定対象物の
表面色や表面状態、或いは測定光線束の入射角度等に係
わらず、常に適正な散乱光線束強度を得ることができる
強度調節手段を備えた三次元形状計測装置を提供するこ
とができるようになった。Therefore, according to the present invention, the intensity adjusting means can always obtain an appropriate scattered light flux intensity regardless of the surface color or surface condition of the object to be measured or the incident angle of the measurement light flux. It has become possible to provide a three-dimensional shape measuring device equipped with.
【0007】[0007]
【実施例】以下実施例を説明する。図1に示すように、
三次元形状計測装置は、スポット状の測定光線束をX−
Y参照平面1上に載置された測定対象物2に向けて照射
する測定光線束照射手段Aと、測定対象物2の表面から
の散乱光線束を検出する散乱光線束検出手段Bと、その
散乱光線束検出手段Bによる検出データに基づいて前記
測定対象物2の三次元形状を演算導出する信号処理手段
Cとから構成してある。EXAMPLES Examples will be described below. As shown in Figure 1,
The three-dimensional shape measuring device X-
Measuring beam bundle irradiating means A for irradiating the measuring object 2 placed on the Y reference plane 1, scattered beam bundle detecting means B for detecting scattered beam flux from the surface of the measuring object 2, and its And a signal processing means C for calculating and deriving the three-dimensional shape of the measuring object 2 based on the detection data by the scattered light flux detecting means B.
【0008】測定光線束照射手段Aは、レーザを設けた
光源3と、Y軸方向に沿った軸芯P回りに回動自在の両
面反射ミラー4と、第一固定ミラー5とで構成してあ
り、両面反射ミラー4の回動により光源3からのスポッ
ト光線束を第一固定ミラー5を介して測定対象物2に向
けてX軸方向に走査する。The measuring beam bundle irradiating means A comprises a light source 3 provided with a laser, a double-sided reflecting mirror 4 rotatable about an axis P along the Y-axis direction, and a first fixed mirror 5. The spot light flux from the light source 3 is scanned in the X-axis direction toward the measurement object 2 via the first fixed mirror 5 by the rotation of the double-sided reflection mirror 4.
【0009】散乱光線束検出手段Bは、測定対象物2の
表面からの散乱光線束の一部を、両面反射ミラー4の裏
面に向けて反射する第二固定ミラー6と、両面反射ミラ
ー4と、CCDイメージセンサでなる受光素子8と、受
光素子8に散乱光線束を集光させる光学系7とで構成し
てあり、測定光線束照射手段Aにより走査され測定対象
物2から散乱される光線束を検出する。The scattered light flux detection means B includes a second fixed mirror 6 for reflecting a part of the scattered light flux from the surface of the object 2 to be measured toward the back surface of the double-sided reflection mirror 4, and the double-sided reflection mirror 4. , A light receiving element 8 composed of a CCD image sensor, and an optical system 7 for condensing the scattered light beam bundle on the light receiving element 8, and a light beam which is scanned by the measuring light beam irradiating means A and scattered from the measuring object 2. Detect a bundle.
【0010】さらに、測定光線束照射手段A及び散乱光
線束検出手段Bを一体として光学ヘッドHを構成し、そ
の光学ヘッドHをY軸方向へ移動させることによりY軸
方向への走査を行う走査機構(図示せず)を設けてあ
り、以て、測定光線束をXY平面全体に走査できるよう
に構成してある。Further, the measuring beam bundle irradiating means A and the scattered beam bundle detecting means B are integrated to form an optical head H, and the optical head H is moved in the Y axis direction to perform scanning in the Y axis direction. A mechanism (not shown) is provided so that the measuring beam bundle can be scanned over the XY plane.
【0011】信号処理手段Cは、マイクロコンピュータ
等を用いた制御回路で、受光素子8が参照平面1からの
散乱光線束に対して検出する位置と現在の散乱光線束に
対して検出する位置との偏差及び前記両面反射ミラー4
の回動角度等とから、前記参照平面1からの測定対象物
2の表面位置を演算導出する。即ち、図2に示すよう
に、CCDイメージセンサで検出される距離X0 X1 が
ΔX0 に比例すること、及び、参照平面1からの測定対
象物2の表面位置Z0 が、Z0 ×θ=ΔX0 なる関係を
有することからZ0 を求めるとともに、測定光線束のX
Y方向の照射位置から測定対象物2の表面のXYZ座標
を導出する。The signal processing means C is a control circuit using a microcomputer or the like, and has a position at which the light receiving element 8 detects the scattered light flux from the reference plane 1 and a position at which the current scattered light flux is detected. Deviation and the double-sided reflection mirror 4
The surface position of the measuring object 2 from the reference plane 1 is calculated and derived from the rotation angle and the like. That is, as shown in FIG. 2, the distance X 0 X 1 detected by the CCD image sensor is proportional to ΔX 0 , and the surface position Z 0 of the measuring object 2 from the reference plane 1 is Z 0 × Since Z 0 is obtained from the relationship of θ = ΔX 0 , X of the measurement light flux is determined.
The XYZ coordinates of the surface of the measuring object 2 are derived from the irradiation position in the Y direction.
【0012】前記散乱光線束検出手段Bによる検出強度
とその時の測定光線束の強度の比に基づいて、前記散乱
光線束検出手段Bによる検出強度が所定範囲に入るよう
に、前記測定光線束の強度を調節する強度調節手段Dを
備えてある。詳述すると、図3に示すように、強度調節
手段Dは、受光素子8で検出された強度データIn-1 と
その時の光源3の出力強度Fn-1 とを入力して、それら
間の比Kn を制御パラメータとして導出して、次式に基
づいて次回の光源3の出力強度Fn を導出する演算回路
と、その値に応じて光源3への供給電流値を制御する電
流調節回路等で構成してある。 Kn =Fn-1 /In-1 Fn =Kn ・(In-1 −I)+Fn-1 =Kn ・I ここに、Kn は制御パラメータ、Fn-1 は前回のレーザ
出力値、In-1 は前回の輝度値、Fn は計算値、Iは補
正輝度値である。Based on the ratio of the intensity detected by the scattered ray bundle detecting means B to the intensity of the measured ray bundle at that time, the scattered ray bundle detecting means B adjusts the intensity of the measured ray bundle so that the detected intensity falls within a predetermined range. A strength adjusting means D for adjusting the strength is provided. More specifically, as shown in FIG. 3, the intensity adjusting means D inputs the intensity data I n-1 detected by the light receiving element 8 and the output intensity F n-1 of the light source 3 at that time, and outputs them between them. the ratio K n derives as a control parameter for the current regulation for controlling the current supplied an operation circuit for deriving the output intensity F n of the next light source 3 based on the following equation, to the light source 3 according to the value It is composed of a circuit and the like. Here K n = F n-1 / I n-1 F n = K n · (I n-1 -I) + F n-1 = K n · I, K n is the control parameter, F n-1 is the previous Laser output value, I n−1 is the previous brightness value, F n is the calculated value, and I is the corrected brightness value.
【0013】一般に、受光素子8で検出される平均光量
Id は次式で表される。 Id =(1/π)・α・Ft ・ρ・cosθ ここに、αは受光光学系の定数パラメータ、Ft は測定
対象物2への入射光量、ρは拡散反射係数、θは測定対
象物の面の法線方向と入射光の方向のなす角(入射角)
である。上式より、例えば、同一の入射光量Ft の光線
束が測定対象物2へ照射された場合であっても、平均光
量Id は入射角θが小であれば大きく入射角θが大であ
れば小さくなる。しかし、制御パラメータKn =Fn-1
/In-1 (=Ft /Id =π/α・ρ・cosθ)は、
入射角θが小であれば小さく入射角θが大であれば大き
くなるので、結果として、輝度の適正値からのずれI
n-1 −Iが同じであっても、制御量Kn ・(In-1 −
I)は相対的に減少する。測定対象物2の表面色や状態
の差が拡散反射係数ρにより表され、上述と同様その変
化に対応でき、従って、測定箇所の表面状態に応じて、
受光素子8により検出される輝度値を正確な検出が可能
な一定範囲内に保つことができるのである。Generally, the average light quantity I d detected by the light receiving element 8 is expressed by the following equation. I d = (1 / π) · α · F t · ρ · cos θ where α is a constant parameter of the light receiving optical system, F t is the amount of light incident on the measurement object 2, ρ is a diffuse reflection coefficient, and θ is measurement. The angle between the direction of the normal to the surface of the object and the direction of the incident light (incident angle)
Is. From the above equation, for example, even when the light flux having the same incident light amount F t is applied to the measurement object 2, the average light amount I d is large if the incident angle θ is small and the incident angle θ is large. It will be smaller if there is. However, the control parameter K n = F n-1
/ I n-1 (= F t / I d = π / α · ρ · cos θ) is
The smaller the incident angle θ is, the smaller the incident angle θ is, and the larger the incident angle θ is.
Even if n-1 −I is the same, the controlled variable K n · (I n-1 −
I) decreases relatively. The difference between the surface color and the state of the measuring object 2 is represented by the diffuse reflection coefficient ρ, and the change can be dealt with in the same manner as described above. Therefore, according to the surface state of the measurement location,
The brightness value detected by the light receiving element 8 can be kept within a certain range where accurate detection is possible.
【0014】ここで、強度調節手段Dによる強度調節動
作を、測定対象物2に対する測定対象箇所の近傍におけ
る散乱光線束検出手段Bによる検出強度とその時の測定
光線束の強度の比に基づいて、測定光線束の強度を調節
すれば、極めて高速で計測できる。つまり、図4(イ)
に示すように、計測ポイントの近傍での表面状態には大
きな変化がないとの前提の下に、両面反射ミラー4の回
動により光源3からのスポット光線束を第一固定ミラー
5を介して測定対象物2に向けてX軸方向に走査した
り、走査機構によりY軸方向に走査する場合に、次回の
計測ポイントに対する光源3の出力強度の調節量を近傍
箇所の計測値、例えば直前の計測値を基に決定するので
ある。Here, the intensity adjusting operation by the intensity adjusting means D is performed on the basis of the ratio of the intensity detected by the scattered ray bundle detecting means B in the vicinity of the measuring object portion to the measuring object 2 and the intensity of the measuring light flux at that time. By adjusting the intensity of the measurement light flux, it is possible to measure at extremely high speed. That is, FIG. 4 (a)
As shown in, on the assumption that the surface state in the vicinity of the measurement point does not change significantly, the spot light flux from the light source 3 is passed through the first fixed mirror 5 by the rotation of the double-sided reflection mirror 4. When scanning in the X-axis direction toward the measurement target 2 or in the Y-axis direction by the scanning mechanism, the adjustment amount of the output intensity of the light source 3 with respect to the next measurement point is a measurement value at a nearby position, for example, immediately before. It is decided based on the measured value.
【0015】さらに、図4(ロ)に示すように、強度調
節手段Dによる強度調節動作を、測定対象物2に対する
測定対象箇所における散乱光線束検出手段Bによる検出
強度とその時の測定光線束の強度の比に基づいて、測定
光線束の強度を調節すれば、極めて精度良く確実に計測
できる。つまり、同一の計測ポイントでの前回の、或い
は、複数回の過去の計測結果に基づいて光源3の出力強
度の調節量を決定するのである。Further, as shown in FIG. 4 (b), the intensity adjusting operation by the intensity adjusting means D is carried out by detecting the intensity detected by the scattered ray bundle detecting means B at the measurement target portion with respect to the measurement object 2 and the measurement light flux at that time. If the intensity of the measurement light beam is adjusted based on the ratio of the intensities, the measurement can be performed extremely accurately and reliably. That is, the adjustment amount of the output intensity of the light source 3 is determined based on the previous or multiple past measurement results at the same measurement point.
【0016】以下、本発明の別実施例を説明する。先の
実施例で説明したスポット光を走査する三次元形状計測
装置の構成はこれに限定するものではなく、光源自体を
駆動して走査するもの等の種々の構成で実現できる。Another embodiment of the present invention will be described below. The configuration of the three-dimensional shape measuring apparatus that scans the spot light described in the above embodiments is not limited to this, and can be realized by various configurations such as driving and scanning the light source itself.
【0017】先の実施例では、光源にレーザ発振器を、
受光素子にCCDイメージセンサを用いた場合を説明し
たが、これらに限定するものではなく他の素子を用いる
こともできる。In the above embodiment, a laser oscillator is used as the light source,
Although the case where the CCD image sensor is used as the light receiving element has been described, the present invention is not limited to these and other elements can be used.
【0018】先の実施例では、三次元形状計測装置とし
て、測定対象物にスポット光を走査するものを説明した
が、測定対象物にスリット光を走査する光切断法を用い
て測定対象物の断面形状を計測するものであってもよ
い。In the above embodiment, as the three-dimensional shape measuring device, the one in which the measuring object is scanned with the spot light is described. However, the measuring object is measured by using the light cutting method of scanning the measuring object with the slit light. It may be one that measures the cross-sectional shape.
【0019】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.
【図1】三次元形状計測装置の全体構成図[Fig. 1] Overall configuration diagram of the three-dimensional shape measuring apparatus
【図2】原理を示す説明図FIG. 2 is an explanatory diagram showing the principle.
【図3】要部のブロック構成図FIG. 3 is a block configuration diagram of a main part.
【図4】強度調節動作の説明図FIG. 4 is an explanatory diagram of strength adjusting operation.
2 測定対象物 A 測定光線束照射手段 B 散乱光線束検出手段 C 信号処理手段 D 強度調節手段 2 object to be measured A measuring beam flux irradiating means B scattered beam flux detecting means C signal processing means D intensity adjusting means
Claims (3)
束を測定対象物(2)に向けて照射する測定光線束照射
手段(A)と、前記測定対象物(2)の表面からの散乱
光線束を検出する散乱光線束検出手段(B)と、その散
乱光線束検出手段(B)による検出データに基づいて前
記測定対象物(2)の三次元形状を演算導出する信号処
理手段(C)とから構成してある三次元形状計測装置で
あって、 前記散乱光線束検出手段(B)による検出強度とその時
の測定光線束の強度の比に基づいて、前記散乱光線束検
出手段(B)による検出強度が所定範囲に入るように、
前記測定光線束の強度を調節する強度調節手段(D)を
備えた三次元形状計測装置。1. A measuring ray bundle irradiating means (A) for irradiating a measuring ray bundle in the form of a slit or a spot toward a measuring object (2), and a scattered ray bundle from the surface of the measuring object (2). And a signal processing means (C) for calculating and deriving the three-dimensional shape of the measuring object (2) based on the detection data by the scattered light flux detecting means (B). A three-dimensional shape measuring apparatus configured from the scattered light flux detecting means (B) based on the ratio of the intensity detected by the scattered light flux detecting means (B) to the intensity of the measured light flux at that time. So that the detection intensity is within the specified range,
A three-dimensional shape measuring apparatus comprising intensity adjusting means (D) for adjusting the intensity of the measurement light beam.
象物(2)に対する測定対象箇所の近傍における前記散
乱光線束検出手段(B)による検出強度とその時の測定
光線束の強度の比に基づいて、前記測定光線束の強度を
調節するものである請求項1記載の三次元形状計測装
置。2. The intensity adjusting means (D) is a ratio between the intensity detected by the scattered light flux detecting means (B) in the vicinity of the measurement target position with respect to the measurement target (2) and the intensity of the measurement light flux at that time. The three-dimensional shape measuring apparatus according to claim 1, wherein the intensity of the measurement light beam is adjusted based on the above.
象物(2)に対する測定対象箇所における前記散乱光線
束検出手段(B)による検出強度とその時の測定光線束
の強度の比に基づいて、前記測定光線束の強度を調節す
るものである請求項1記載の三次元形状計測装置。3. The intensity adjusting means (D) is based on the ratio of the intensity detected by the scattered light flux detecting means (B) at the measurement target position to the measurement target (2) and the intensity of the measurement light flux at that time. The three-dimensional shape measuring apparatus according to claim 1, wherein the intensity of the measurement light beam is adjusted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5089794A JPH06300539A (en) | 1993-04-16 | 1993-04-16 | Three-dimensional shape measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5089794A JPH06300539A (en) | 1993-04-16 | 1993-04-16 | Three-dimensional shape measurement device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06300539A true JPH06300539A (en) | 1994-10-28 |
Family
ID=13980611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5089794A Pending JPH06300539A (en) | 1993-04-16 | 1993-04-16 | Three-dimensional shape measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06300539A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000048699A1 (en) * | 1999-02-19 | 2000-08-24 | Sanyo Electric Co., Ltd. | Real 3-d model forming device |
WO2000048698A1 (en) * | 1999-02-19 | 2000-08-24 | Sanyo Electric Co., Ltd. | 3-d model providing device |
JP2009534969A (en) * | 2006-04-27 | 2009-09-24 | スリーディー スキャナーズ リミテッド | Optical scanning probe |
-
1993
- 1993-04-16 JP JP5089794A patent/JPH06300539A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000048699A1 (en) * | 1999-02-19 | 2000-08-24 | Sanyo Electric Co., Ltd. | Real 3-d model forming device |
WO2000048698A1 (en) * | 1999-02-19 | 2000-08-24 | Sanyo Electric Co., Ltd. | 3-d model providing device |
US6977651B1 (en) | 1999-02-19 | 2005-12-20 | Sanyo Electric Co., Ltd. | 3-d model providing device |
JP2009534969A (en) * | 2006-04-27 | 2009-09-24 | スリーディー スキャナーズ リミテッド | Optical scanning probe |
US8117668B2 (en) | 2006-04-27 | 2012-02-14 | Stephen James Crampton | Optical scanning probe |
US8353059B2 (en) | 2006-04-27 | 2013-01-08 | Metris N.V. | Optical scanning probe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1068005A (en) | Method and apparatus for detecting characteristic features of surfaces | |
US20060049158A1 (en) | Method and apparatus for regulating an automatic treatment process | |
US6700671B2 (en) | Non-contact type profile measuring apparatus | |
JP4872948B2 (en) | Three-dimensional shape measuring apparatus and three-dimensional shape measuring method | |
JP2005121486A (en) | Three-dimensional measuring device | |
JPH06300539A (en) | Three-dimensional shape measurement device | |
JP2733170B2 (en) | 3D shape measuring device | |
JPS6210361B2 (en) | ||
JPS6316892A (en) | Distance measuring instrument for laser beam machine | |
KR0131526B1 (en) | Optical measuring device and its measuring method | |
JP2839059B2 (en) | 3D shape measuring device | |
JPH06102026A (en) | Three dimensional image input system | |
JPH09229638A (en) | Method and device for measuring thickness and tilt angle of material having rectangular section | |
JP7578288B2 (en) | X-ray diffraction measurement device and calculation method using X-ray diffraction image | |
JPH06347227A (en) | Apparatus and method for measuring surface shape | |
JPH074932A (en) | Method and apparatus for measurement of shape of object | |
WO2024157533A1 (en) | Measurement device and measurement method | |
JPS63127106A (en) | Method for measuring three-dimensional shape | |
JPH06102021A (en) | Three-dimensional shape measuring apparatus | |
JP3018042B2 (en) | Fluorescent X-ray film thickness measuring device | |
JPH05215528A (en) | Three-dimensional shape measuring apparatus | |
JPH08114428A (en) | Jig for device for inputting three-dimensional shape | |
JP2023140586A (en) | Exposure adjustment method and three-dimensional shape measurement device | |
JP4320796B2 (en) | Pattern position measuring device | |
JPH07234116A (en) | Warpage rate measuring method for plate material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080317 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120317 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |