JPH06299211A - Production of oxidation resistant palladium powder - Google Patents
Production of oxidation resistant palladium powderInfo
- Publication number
- JPH06299211A JPH06299211A JP11109093A JP11109093A JPH06299211A JP H06299211 A JPH06299211 A JP H06299211A JP 11109093 A JP11109093 A JP 11109093A JP 11109093 A JP11109093 A JP 11109093A JP H06299211 A JPH06299211 A JP H06299211A
- Authority
- JP
- Japan
- Prior art keywords
- palladium
- powder
- palladium powder
- solution
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電子回路の膜導体や電
子部品の電極等に利用される耐酸化性に優れた導電性パ
ラジウム粉末の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductive palladium powder having excellent oxidation resistance, which is used for a film conductor of an electronic circuit, an electrode of an electronic component and the like.
【0002】[0002]
【従来技術とその課題】積層コンデンサーなどでは、パ
ラジウム粉末の導電性ペーストを用いて内部電極を形成
している。例えば、チタン酸バリウム製積層コンデンサ
ー等は、チタン酸バリウム絶縁層の間にパラジウム粉末
を含む導電性ペーストを介在した積層体を形成し、該積
層体を一体に焼成することにより内部電極を形成したコ
ンデンサーを製造している。従来、このようなパラジウ
ム粉末を製造する方法として、パラジウムイオンを含む
水溶液に水酸化ナトリウムを加えてpHを調整し、ヒド
ラジン、ギ酸、水素化ホウ素ナトリウムなどの還元剤を
添加し、パラジウムイオンを還元して金属パラジウムと
して回収する方法が従来知られているが、この方法で得
られるパラジウム粉末は粒径が不均一であり、また粒子
形状も不規則であるため、この欠点を解消するために、
原料のパラジウムイオン源として、テトラアンミンパラ
ジウム(II)塩を用い、還元剤としてヒドラジン化合物を
用いる製造方法も知られている(特開平3-277706 号公
報)。2. Description of the Related Art In multilayer capacitors and the like, internal electrodes are formed by using a conductive paste of palladium powder. For example, in a barium titanate multilayer capacitor or the like, a laminated body in which a conductive paste containing palladium powder is interposed between barium titanate insulating layers is formed, and the laminated body is integrally fired to form an internal electrode. Manufactures capacitors. Conventionally, as a method for producing such a palladium powder, sodium hydroxide is added to an aqueous solution containing palladium ions to adjust the pH, and a reducing agent such as hydrazine, formic acid or sodium borohydride is added to reduce the palladium ions. A method of recovering as metallic palladium is conventionally known, but the palladium powder obtained by this method has a non-uniform particle size and an irregular particle shape, in order to eliminate this drawback,
There is also known a production method in which a tetraamminepalladium (II) salt is used as a raw material palladium ion source and a hydrazine compound is used as a reducing agent (JP-A-3-277706).
【0003】[0003]
【発明の解決課題】しかし、上記方法によって製造され
るパラジウム粉末は何れも酸化し易く、コンデンサーの
電極切れや層剥離を生じる問題がある。例えば、チタン
酸バリウム製コンデンサーは、チタン酸バリウムの絶縁
層の間に導電性パラジウムペーストを挟んだ積層体を1
200〜1400℃に焼成して形成されるが、この焼成
時にパラジウム粉末は600℃付近で酸化され酸化パラ
ジウムになり、粒子の体積が約60%程度膨脹する。こ
の酸化パラジウムは焼成温度が850℃以上に上昇する
と熱分解して金属パラジウムに還元され、粒子の体積が
収縮して元の大きさに戻る。焼成時のこのような体積膨
脹と収縮によって電極切れや層間剥離が引き起こされ
る。上記電極切れや層間剥離を防止する方法として、パ
ラジウム粉末の表面を珪素やAl等の酸化物または水酸
化物で被覆することが知られている(特開昭63-216204
号、特開平4-43504 号)が、この方法によっても電極切
れなどを充分に防止できないのが現状である。本発明は
従来の製造方法における上記課題を解決した製造方法を
提供するものであって、本発明によれば耐酸化性に優れ
たパラジウム粉末が得られる。However, any of the palladium powders produced by the above method is apt to be oxidized, and there is a problem that the electrodes of the capacitor are broken or the layers are separated. For example, a barium titanate capacitor has a laminated body in which a conductive palladium paste is sandwiched between insulating layers of barium titanate.
It is formed by firing at 200 to 1400 ° C. During this firing, the palladium powder is oxidized at around 600 ° C to become palladium oxide, and the volume of the particles expands by about 60%. When the firing temperature rises to 850 ° C. or higher, this palladium oxide is thermally decomposed and reduced to metallic palladium, and the volume of the particles shrinks to return to the original size. Such volume expansion and contraction during firing cause electrode breakage and delamination. As a method for preventing the above electrode breakage and delamination, it is known to coat the surface of palladium powder with an oxide or hydroxide of silicon, Al or the like (Japanese Patent Laid-Open No. 63-216204).
However, the current situation is that even in this method, electrode breakage and the like cannot be sufficiently prevented. The present invention provides a manufacturing method that solves the above problems in the conventional manufacturing method, and according to the present invention, a palladium powder having excellent oxidation resistance can be obtained.
【0004】[0004]
【課題の解決手段】本発明のパラジウム粉末の製造方法
は、溶液中のパラジウムイオンを還元して金属パラジウ
ム沈殿を回収し、該金属パラジウムを加熱加圧処理する
ことにより耐酸化性パラジウム粉末を得ることを特徴と
する。また本発明は、その好適な態様として、還元剤を
添加する前に、パラジウムイオンを含む溶液のpHを
5.5〜9に調整すると共に高分子分散剤または界面活
性剤を添加し、さらに還元剤の溶液のpHを5.5〜7
に調整して上記パラジウムイオンを含む溶液に添加する
ことを特徴とする。本発明は、上記電極切れなどを生じ
ない程度の耐酸化性を有するパラジウム粉末をオートク
レーブ処理を付加するだけで容易に得られるようにした
ものであって、実用性の高い製造方法である。According to the method for producing a palladium powder of the present invention, a palladium ion in a solution is reduced to recover a metal palladium precipitate, and the metal palladium is heated and pressed to obtain an oxidation resistant palladium powder. It is characterized by In a preferred embodiment of the present invention, before adding the reducing agent, the pH of the solution containing palladium ions is adjusted to 5.5 to 9 and a polymer dispersant or a surfactant is added to further reduce the pH. The pH of the solution of the agent is 5.5 to 7
And is added to the solution containing the palladium ion. INDUSTRIAL APPLICABILITY The present invention is a highly practical manufacturing method, which makes it possible to easily obtain a palladium powder having oxidation resistance to the extent that the above electrode breakage does not occur simply by adding an autoclave treatment.
【0005】[0005]
【発明の具体的な開示】以下に本発明を図示する製造法
のフローシートを参照して詳細に説明する。本発明の方
法では、パラジウム原料として、ジクロロジアミンパラ
ジウム、ジブロムジアミンパラジウムなどのハロゲン化
ジアミンパラジウムに代表されるパラジウムアンミン(I
I)塩化合物などが用いられる。ジクロロジアミンパラジ
ウムPd(NH 3)2 Cl2 を用いる場合を一例として
本発明を説明すると、ジクロロジアミンパラジウムと塩
化アンモニウムを含む水溶液に、アンモニア水を加えて
溶液のpHを5.5〜9、好ましくは、5.9〜6.2
に調整して、上記パラジウム化合物を溶解する。溶液の
pHが5.5未満以下であるとパラジウムが析出し、p
Hが9を上回ると得られるパラジウム粉末の粒径が1μ
m より大きくなり、電極材料として使用した場合に接触
不良を生じ易いので好ましくない。なお、塩化アンモニ
ウムに代えて硝酸アンモニウムを用いてもよい。DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail below with reference to the flow sheet of the manufacturing method shown in the drawings. In the method of the present invention, as the palladium raw material, dichlorodiaminepalladium, palladium ammine (I
I) Salt compounds and the like are used. The present invention will be described by taking the case of using dichlorodiamine palladium Pd (NH 3 ) 2 Cl 2 as an example. To the aqueous solution containing dichlorodiamine palladium and ammonium chloride, ammonia water is added to adjust the pH of the solution to 5.5 to 9, preferably. Is 5.9 to 6.2
And the palladium compound is dissolved. If the pH of the solution is less than 5.5, palladium will precipitate and p
When H exceeds 9, the particle size of the obtained palladium powder is 1μ
Since it becomes larger than m, contact failure tends to occur when used as an electrode material, which is not preferable. Note that ammonium nitrate may be used instead of ammonium chloride.
【0006】上記パラジウム溶液に高分子分散剤、界面
活性剤を加え、更に還元剤を加えてパラジウムイオンを
金属パラジウムに還元する。高分子分散剤としてはゼラ
チン、アラビアゴム、ポリエチレングリコールなどが用
いられる。高分子分散剤は粒子形状を制御する作用を果
たし、高分子分散剤を添加することにより均一な球状パ
ラジウム粒子を得ることができる。高分子分散剤の添加
量は1〜6 g/lが好ましい。1 g/l未満の添加量ではパ
ラジウム粒子が凝集して1μm 以上の粒子になり、また
添加量が6 g/lを超えると沈殿の濾過性が低下する。添
加量が1〜6 g/lの範囲ではpHが安定であり1μm 以
下の球形のパラジウム粉末が得られ、かつ溶液での分散
性もよい。また界面活性剤としてはノニオン系界面活性
剤が好ましい。具体的にはポリオキシエチレンアルキル
エーテルが好適に用いられる。A polymer dispersant and a surfactant are added to the palladium solution, and a reducing agent is further added to reduce palladium ions to metallic palladium. As the polymer dispersant, gelatin, gum arabic, polyethylene glycol and the like are used. The polymer dispersant acts to control the particle shape, and by adding the polymer dispersant, uniform spherical palladium particles can be obtained. The addition amount of the polymer dispersant is preferably 1 to 6 g / l. When the amount added is less than 1 g / l, the palladium particles aggregate to form particles of 1 μm or more, and when the amount added exceeds 6 g / l, the filterability of the precipitate deteriorates. When the amount added is in the range of 1 to 6 g / l, the pH is stable, spherical palladium powder of 1 μm or less is obtained, and the dispersibility in a solution is good. Further, as the surfactant, a nonionic surfactant is preferable. Specifically, polyoxyethylene alkyl ether is preferably used.
【0007】還元剤としてヒドラジン、硫酸ヒドラジン
などのヒドラジン化合物が常用される。ヒドラジン溶液
はpHを5.5〜7、好ましくは、6.5〜6.8に調
整して上記パラジウム溶液に添加される。ヒドラジン溶
液のpHが5.5未満ではパラジウム粉末の粒径が0.
1μm より微細になり、またpH7より高いとパラジウ
ム粉末の粒径が1μm より大きくなる。ヒドラジンの添
加により、金属パラジウムが沈殿するので、これを回収
する。粒径が0.1μm 未満であると充分な耐酸化性が
得られず、また1μm を越えると電極を形成したときに
電極切れを生じ易くなるので好ましくない。As a reducing agent, hydrazine compounds such as hydrazine and hydrazine sulfate are commonly used. The hydrazine solution is adjusted to pH 5.5 to 7, preferably 6.5 to 6.8 and added to the palladium solution. When the pH of the hydrazine solution is less than 5.5, the particle size of the palladium powder is 0.
If it is finer than 1 μm, and if it is higher than pH 7, the particle size of the palladium powder becomes larger than 1 μm. The addition of hydrazine precipitates metallic palladium, which is recovered. If the particle size is less than 0.1 μm, sufficient oxidation resistance cannot be obtained, and if it exceeds 1 μm, electrode breakage tends to occur when the electrode is formed, which is not preferable.
【0008】回収した金属パラジウムをオートクレーブ
に入れ、100〜300℃、1気圧以上、24〜72時
間、加熱加圧処理する。オートクレーブ処理の際、加熱
温度が100℃より低いと充分に粒子が成長せず、30
0℃を越えるとパラジウム粉末が酸化する。The recovered metallic palladium is put into an autoclave and heated and pressurized at 100 to 300 ° C., 1 atm or more for 24 to 72 hours. During autoclave treatment, if the heating temperature is lower than 100 ° C, the particles will not grow sufficiently,
Above 0 ° C, the palladium powder oxidizes.
【0009】[0009]
【実施例1】ジクロロジアミンパラジウム溶液(Pd:20
g/l)に塩化アンモニウム 40 g/lとゼラチン3 g/lを
加え1リットルの水溶液とした後、アンモニア水を加えpH6
に調整した。一方、ヒドラジン水和物 50 mlに塩酸を加
えpH7 に調整した。これらを温度 55 ℃に加温し、パラ
ジウム溶液を攪拌しながらヒドラジン水溶液を添加し、
固液分離後、洗浄乾燥して金属パラジウム粉末を得た。
このパラジウム粉末 100g をオートクレーブ(容量 300
ml)に装入し、200 ℃、72間加熱した。このパラジウム
粉末を10℃/分の昇温速度で1250℃に加熱したところ、
800 ℃での酸化による重量増が13.1%であった。一方、
市販のパラジウム粉末を同一条件下で加熱したところ、
酸化による重量増は14.9%であり、本実施例のパラジウ
ム粉末は従来の粉末に比べて酸化による重量増が約12%
少なかった。Example 1 Dichlorodiamine palladium solution (Pd: 20
ammonium chloride (40 g / l) and gelatin (3 g / l) to make a 1 liter aqueous solution, and then add aqueous ammonia to pH 6
Adjusted to. On the other hand, hydrochloric acid was added to 50 ml of hydrazine hydrate to adjust the pH to 7. These are heated to a temperature of 55 ° C., an aqueous hydrazine solution is added while stirring the palladium solution,
After solid-liquid separation, it was washed and dried to obtain metallic palladium powder.
100 g of this palladium powder was autoclaved (capacity 300
ml) and heated at 200 ° C. for 72 hours. When this palladium powder was heated to 1250 ° C at a heating rate of 10 ° C / min,
The weight increase due to oxidation at 800 ° C was 13.1%. on the other hand,
When commercially available palladium powder was heated under the same conditions,
The weight increase due to oxidation was 14.9%, and the weight increase due to oxidation of the palladium powder of this example was about 12% compared to the conventional powder.
There were few.
【0010】[0010]
【実施例2】ジクロロジアミンパラジウム溶液(Pd:20
g/l)に塩化アンモニウム 40 g/lを加え1リットルの水溶
液とした後、アンモニア水を加えpH6 に調整した後にノ
ニオン系界面活性剤(ポリオキシエチレンアルキルエー
テル)3gを添加し、このパラジウム溶液を攪拌しなが
ら、ヒドラジン水溶液を添加し、固液分離後、洗浄乾燥
して金属パラジウム粉末を得た。このパラジウム粉末 1
00g をオートクレーブ(容量 300ml)に装入し、200
℃、72時間加熱した。このパラジウム粉末を10℃/分の
昇温速度で1250℃に加熱したところ、800 ℃での酸化に
よる重量増が12.8%であり、従来の粉末に比べて酸化に
よる重量増が約14%少なかった。Example 2 Dichlorodiamine palladium solution (Pd: 20
(g / l) Ammonium chloride (40 g / l) was added to make a 1 liter aqueous solution, and then ammonia water was added to adjust the pH to 6 and 3 g of nonionic surfactant (polyoxyethylene alkyl ether) was added. While stirring, an aqueous hydrazine solution was added, and after solid-liquid separation, washing and drying were performed to obtain a metal palladium powder. This palladium powder 1
Charge 00g into an autoclave (capacity 300ml) and add 200g.
The mixture was heated at ℃ for 72 hours. When this palladium powder was heated to 1250 ° C at a heating rate of 10 ° C / min, the weight increase due to oxidation at 800 ° C was 12.8%, which was about 14% less than the conventional powder. .
【0011】[0011]
【発明の効果】本発明の製造方法によれば、耐酸化性に
優れたパラジウム粉末を容易に製造することができる。
また実施例に示す具体的な方法によれば、耐酸化性に優
れると共に電極材料として好適な均一な球形のパラジウ
ム粉末を高収率で得ることができる。According to the manufacturing method of the present invention, palladium powder having excellent oxidation resistance can be easily manufactured.
Further, according to the specific method shown in the examples, it is possible to obtain a uniform spherical palladium powder which is excellent in oxidation resistance and suitable as an electrode material in a high yield.
【図1】 本発明の製造方法のフローチャート。FIG. 1 is a flowchart of a manufacturing method of the present invention.
Claims (3)
属パラジウム沈殿を回収し、該金属パラジウムを加熱加
圧処理することにより耐酸化性パラジウム粉末を得るこ
とを特徴とするパラジウム粉末の製造方法。1. A method for producing a palladium powder, characterized in that an oxidation resistant palladium powder is obtained by reducing a palladium ion in a solution to recover a metal palladium precipitate, and subjecting the metal palladium to heat and pressure treatment.
気圧以上で加熱加圧処理する請求項1の製造方法。2. Metallic palladium at 100 to 300 ° C., 1
The method according to claim 1, wherein the heating and pressurizing treatment is performed at atmospheric pressure or higher.
ンを含む溶液のpHを5.5〜9に調整すると共に高分
子分散剤または界面活性剤を添加し、さらに還元剤の溶
液のpHを5.5〜7に調整して上記パラジウムイオン
を含む溶液に添加することを特徴とする請求項1の製造
方法。3. Before adding the reducing agent, the pH of the solution containing palladium ions is adjusted to 5.5 to 9, a polymer dispersant or a surfactant is added, and the pH of the solution of the reducing agent is further adjusted. The method according to claim 1, wherein the solution is adjusted to 5.5 to 7 and added to the solution containing the palladium ion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11109093A JPH06299211A (en) | 1993-04-14 | 1993-04-14 | Production of oxidation resistant palladium powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11109093A JPH06299211A (en) | 1993-04-14 | 1993-04-14 | Production of oxidation resistant palladium powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06299211A true JPH06299211A (en) | 1994-10-25 |
Family
ID=14552134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11109093A Withdrawn JPH06299211A (en) | 1993-04-14 | 1993-04-14 | Production of oxidation resistant palladium powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06299211A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008519156A (en) * | 2004-10-29 | 2008-06-05 | ナノダイナミクス,インク. | Preparation of ultrafine metal powder in aqueous solution |
RU2471007C1 (en) * | 2011-10-04 | 2012-12-27 | Александр Геннадьевич Тарарыкин | Extraction method of metals capable of hydrogen absorption from metals, and plant for its implementation |
CN107052362A (en) * | 2017-06-15 | 2017-08-18 | 西安宏星电子浆料科技有限责任公司 | High-specific surface area ultrafine palladium powder and preparation method thereof |
-
1993
- 1993-04-14 JP JP11109093A patent/JPH06299211A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008519156A (en) * | 2004-10-29 | 2008-06-05 | ナノダイナミクス,インク. | Preparation of ultrafine metal powder in aqueous solution |
RU2471007C1 (en) * | 2011-10-04 | 2012-12-27 | Александр Геннадьевич Тарарыкин | Extraction method of metals capable of hydrogen absorption from metals, and plant for its implementation |
WO2013051965A1 (en) * | 2011-10-04 | 2013-04-11 | Tararykin Aleksandr Gennad Evich | Method for separating metals from solutions |
CN107052362A (en) * | 2017-06-15 | 2017-08-18 | 西安宏星电子浆料科技有限责任公司 | High-specific surface area ultrafine palladium powder and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108602129B (en) | Nickel powder, method for producing nickel powder, and internal electrode paste and electronic component using nickel powder | |
KR101085265B1 (en) | Nickel powder and manufacturing method thereof | |
US20020011131A1 (en) | Metal powder, method for producing the same, conductive paste using the same, and monolithic ceramic electronic component | |
US6875252B2 (en) | Copper powder and process for producing copper powder | |
JPH0897095A (en) | Tantalum powder and electrolytic capacitor employing it | |
JP2010242143A (en) | Metallic powder and method for manufacturing the same, conductive paste, and laminated ceramic capacitor | |
JP2554213B2 (en) | Method for producing spherical nickel ultrafine powder | |
JPH11189801A (en) | Nickel super fine powder | |
JP3042224B2 (en) | Manufacturing method of multilayer ceramic capacitor | |
JPH06299211A (en) | Production of oxidation resistant palladium powder | |
US5741347A (en) | Method for producing copper powder | |
JPH06145727A (en) | Production of spheroidal palladium powder | |
JP2000313906A (en) | Nickel fine powder and its production | |
JP4940520B2 (en) | Metal powder and manufacturing method thereof, conductive paste and multilayer ceramic electronic component | |
JPH08246010A (en) | Production of metal powder | |
JPH06299212A (en) | Production of oxidation resistant palladium powder | |
JP2002231583A (en) | Niobium powder for capacitor, sintered body using the same niobium powder, and capacitor using the same sintered body | |
JP4474810B2 (en) | Metal powder manufacturing method, metal powder, conductive paste, multilayer ceramic electronic component | |
JPH04235205A (en) | Production of copper powder | |
JP5942791B2 (en) | Method for producing nickel powder | |
TWI241227B (en) | Nickel powder coated with titanium compound and conductive paste containing the nickel powder | |
US3495311A (en) | Method of producing electrical capacitors with semiconductor layer | |
JP3130676B2 (en) | Copper fine powder for filling via holes | |
JPH03215916A (en) | Method for formation of electrode and electronic part using it | |
JP2002275509A (en) | Method for manufacturing metal powder, metal powder, conductive paste which uses the same and multilayer ceramic electronic parts which use the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000704 |