JPH06287666A - Heat resistant cast co-base alloy - Google Patents

Heat resistant cast co-base alloy

Info

Publication number
JPH06287666A
JPH06287666A JP7669093A JP7669093A JPH06287666A JP H06287666 A JPH06287666 A JP H06287666A JP 7669093 A JP7669093 A JP 7669093A JP 7669093 A JP7669093 A JP 7669093A JP H06287666 A JPH06287666 A JP H06287666A
Authority
JP
Japan
Prior art keywords
alloy
resistant cast
strength
high temperature
heat resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7669093A
Other languages
Japanese (ja)
Inventor
Yoichi Tsuda
陽一 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7669093A priority Critical patent/JPH06287666A/en
Publication of JPH06287666A publication Critical patent/JPH06287666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To produce a heat resistant cast Co-base alloy suitably used for gas turbine-stationary blade material and excellent in high temp. strength and fatigue strength. CONSTITUTION:This heat resistant cast Co-base alloy has a composition consisting of, by weight ratio, 0.05-0.45% C, 5-15% Ni, 15-30% Cr, 3-10% W, 1-5% Re, 0.01-1% Ti, 0.01-1% Nb, <=1% Si, <=1% Mn, <=1.5% Fe, and the balance essentially Co with inevitable impurities. The alloy can further contain prescribed amounts of Ta, Hf, B, and Al.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高温強度及び疲労強度に
優れ、特にこれらの特性が要求されるガスタービンの静
翼材として使用するのに適した耐熱鋳造Co基合金に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant cast Co-based alloy which is excellent in high temperature strength and fatigue strength and is particularly suitable for use as a stationary blade material of a gas turbine which requires these characteristics.

【0002】[0002]

【従来の技術】ガスタービンと蒸気タービンを組み合わ
せたコンバインサイクル発電プラントは蒸気タービン発
電プラントに比較し、特に起動特性に優れることから主
にピークロード用電力として使用されている。しかし、
ピークロード用として使用した場合、プラントの起動停
止が頻繁になるため、起動停止によるガスタービン各種
部材に発生する熱応力の繰り返しも頻繁となり、各部材
の構成材料に対しては非常に過酷な環境となる。
2. Description of the Related Art Combined cycle power plants combining a gas turbine and a steam turbine are mainly used as peak load power because they have particularly excellent starting characteristics as compared with steam turbine power plants. But,
When it is used for peak load, the start and stop of the plant becomes frequent, so the thermal stress generated in various parts of the gas turbine due to start and stop also becomes frequent, and the environment is extremely harsh for the constituent materials of each part. Becomes

【0003】一般に高温雰囲気にさらされるガスタービ
ンのタービンの静翼等の静止部材には高温強度、成形性
及び溶接性に優れた各種耐熱鋳造Co基合金が使用され
ている。これらの耐熱鋳造Co基合金は、従来、高温強
度特にクリープ破断強度向上を主目的に開発が進められ
てきた。
Generally, various heat-resistant cast Co-based alloys excellent in high-temperature strength, formability and weldability are used for stationary members such as turbine vanes of a gas turbine exposed to a high temperature atmosphere. Conventionally, these heat-resistant cast Co-based alloys have been developed mainly for the purpose of improving high temperature strength, especially creep rupture strength.

【0004】[0004]

【発明が解決しようとする課題】しかし、発電用ガスタ
ービンが主にピークロード用として使用されている現状
では、頻繁な起動停止により発生する熱応力が原因とす
る疲労クラック発生に対する抵抗も重要な特性となって
きている。特に、一般に拘束が大きい形状をしているガ
スタービンの静翼は、応力集中部位に疲労クラックが発
生しやすいため、静翼材には従来必要とされてきた高温
強度だけでなく、十分な疲労強度も併せて要求される。
However, under the present circumstances where the gas turbine for power generation is mainly used for peak load, resistance to fatigue crack generation due to thermal stress generated by frequent start and stop is also important. It is becoming a characteristic. In particular, gas turbine stationary blades, which are generally constrained in shape, are prone to fatigue cracks in stress concentration areas.Therefore, in addition to the high temperature strength conventionally required for stationary blade materials, sufficient fatigue Strength is also required.

【0005】本発明は、上述の観点からなされたもの
で、ガスタービンの静翼材として使用されて好適な、高
温強度及び疲労強度に優れた耐熱鋳造Co基合金を提供
することを目的とする。
The present invention has been made from the above viewpoint, and an object of the present invention is to provide a heat-resistant cast Co-based alloy excellent in high temperature strength and fatigue strength, which is suitable for use as a stationary blade material of a gas turbine. .

【0006】[0006]

【課題を解決するための手段】そこで、本発明者らは上
述の目的に合致するような、高温強度はもちろんのこ
と、特に疲労強度に優れた材料を開発すべく研究を行っ
た結果、本発明に至ったものである。
Therefore, the inventors of the present invention have conducted research to develop a material excellent not only in high temperature strength but also in fatigue strength which meets the above-mentioned object, and as a result, It was the invention.

【0007】すなわち本発明は、重量比で、C:0.05〜
0.45%,Ni:5〜15%,Cr:15〜30%,W:3〜10
%,Re:1〜5%,Ti:0.01〜1%,Nb:0.01〜
1%,Si:1%以下、Mn:1%以下,Fe: 1.5%
以下を含み、更に必要に応じて、Ta:1〜5%,H
f: 0.5〜5%,B: 0.1%以下、Al:0.05〜 0.5%
のいずれか1種以上を含み、残部が実質的にCo及び不
可避的不純物よりなることを特徴とする耐熱鋳造Co基
合金を与えるものである。
That is, in the present invention, the weight ratio of C: 0.05-
0.45%, Ni: 5-15%, Cr: 15-30%, W: 3-10
%, Re: 1 to 5%, Ti: 0.01 to 1%, Nb: 0.01 to
1%, Si: 1% or less, Mn: 1% or less, Fe: 1.5%
Including the following, if necessary, Ta: 1-5%, H
f: 0.5 to 5%, B: 0.1% or less, Al: 0.05 to 0.5%
The present invention provides a heat-resistant cast Co-based alloy characterized by containing any one or more of the above and the balance substantially consisting of Co and inevitable impurities.

【0008】[0008]

【作用】本発明の耐熱鋳造Co基合金は、優れた高温強
度を示すばかりでなく、優れた疲労強度を示し、この耐
熱鋳造Co基合金をこれらの特性が要求されるガスター
ビンの静翼材として用いると、頻繁な起動停止を行う過
酷なガスタービン環境中でも、著しく長期にわたって優
れた性能を発揮するという知見を得たのである。
The heat-resistant cast Co-based alloy of the present invention exhibits not only excellent high-temperature strength but also excellent fatigue strength, and this heat-resistant cast Co-based alloy is required to have these characteristics. As a result, it has been found that even in a severe gas turbine environment where frequent start and stop are performed, excellent performance is exhibited for a remarkably long time.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。まず、本
発明の耐熱鋳造Co基合金において組成範囲を上記の通
りに限定した理由を説明する。なお、以下の説明におい
て組成を表す「%」は特に断らない限り重量比とする。 (a)C Cは素地に固溶するほか、Cr,W,Ti及びTaと結
合して炭化物を形成し、結晶粒内及び結晶粒界を強化し
て高温強度を向上させる作用があるが、その含有量が0.
05%未満では所望の効果が得られず、一方0.45%を超え
て含有させると疲労強度を低下させるので、その含有量
を0.05〜0.45%とした。 (b)Ni NiはCrとの共存において高温強度を向上させ、更に
オーステナイト素地を安定化させる作用があるが、その
含有量が5%未満では所望の効果が得られず、一方15%
を超えて含有させると高温強度及び耐食・耐酸化性を低
下させるので、その含有量を5〜15%とした。 (c)Cr CrはCと結合して炭化物を形成し、主強化相として高
温強度を向上させ、更に優れた高温耐食・耐酸化性を確
保する上で不可欠な成分であるが、その含有量が15%未
満では所望の効果が得られず、一方30%を超えて含有さ
せるとCoとσ相を形成して合金を脆弱化させることか
ら、その含有量を15〜30%とした。 (d)W WはCと結合してMC型炭化物を形成し、高温強度を向
上させるとともに、オーステナイト素地に固溶してこれ
を強化する作用があるが、その含有量が3%未満では所
望の効果が得られず、一方10%を超えて含有させるとσ
相などの金属間化合物を形成して合金を脆弱化させるこ
とから、その含有量を3〜10%とした。 (e)Re Reはオーステナイト素地に固溶してこれを強化し、更
に高温環境中で合金中の含有元素の拡散を遅らせて、供
用中の合金の安定性を向上させる作用があるが、その含
有量が1%未満では所望の効果が得られず、一方5%を
超えて含有させると疲労特性を低下させので、その含有
量を1〜5%とした。 (f)Ti,Nb Ti,NbはともにCと結合してMC型炭化物を形成
し、粒界・粒内に均一に分散析出して、高温強度向上及
び疲労強度向上に寄与する。特に複合して添加した場合
にこの効果が大きいが、Ti,Nbそれぞれの添加量が
0.01%未満では所望の効果が得られず、一方それぞれ1
%を超えて含有させると、炭化物が過度に粒界に析出し
て逆に疲労強度を低下させるので、それぞれの含有量を
0.01〜1%とした。 (g)Si Siは一般に脱酸剤として加えるが、その含有量が1%
を超えると鋳造時の介在物形成の原因となる。また、真
空溶解、真空鋳造を行う場合は特に加える必要はないの
で、その含有量を1%とした。 (h)Mn MnはSiと同様に脱酸剤として加えるが、その含有量
が1%を超えると高温耐酸化性を低下させる。また、真
空溶解、真空鋳造を行う場合は特に加える必要はないの
で、その含有量を1%以下とした。 (i)Ta,Hf Ta,HfはともにCと結合してMC型炭化物を形成
し、主に粒内を強化して高温強度向上に寄与するため、
より優れた高温強度が必要な場合には必要に応じて加え
ることができる。Taは1%未満、Hfは 0.5%未満で
は高温強度向上の効果が得られず、一方それぞれ5%を
超えて含有させると溶接性及び疲労強度を極端に低下さ
せるので、その含有量をそれぞれ1〜5%、 0.5〜5%
とした。 (j)B Bは結晶粒界を強化して高温強度向上及び延性向上に寄
与するため、より優れたこれらの特性が必要な場合には
必要に応じて加えることができる。しかし、 0.1%を超
えて含有させると溶接性を低下させるので、その含有量
を 0.1%以下とした。 (k)Al Alは鋳造中の中子の表面にAl23 の皮膜を形成
し、中子中に含まれるSiO2 と溶湯との反応を抑制し
て、表面状態を改善するため、特に複雑な中子を使用し
て精密鋳造する場合には含有させる方が望ましい。0.05
%以下では所望の効果が得られず、一方 0.5%を超えて
含有させると鋳造性を劣化させるとともに合金を脆弱化
させるので、その含有量を0.05〜 0.5%とした。
EXAMPLES Examples of the present invention will be described below. First, the reason for limiting the composition range in the heat-resistant cast Co-based alloy of the present invention as described above will be described. In the following description, “%” representing a composition is a weight ratio unless otherwise specified. (A) CC In addition to being solid-solved in the matrix, C has the action of forming carbides by combining with Cr, W, Ti and Ta, strengthening the insides of crystal grains and the grain boundaries, and improving the high temperature strength. Its content is 0.
If it is less than 05%, the desired effect is not obtained, while if it exceeds 0.45%, the fatigue strength is reduced, so the content was made 0.05 to 0.45%. (B) Ni Ni improves the high-temperature strength in the coexistence with Cr and further stabilizes the austenite matrix, but if the content is less than 5%, the desired effect cannot be obtained, while 15%
If it is contained in excess of 10%, the high temperature strength and corrosion / oxidation resistance will be reduced, so the content was made 5 to 15%. (C) Cr Cr is an essential component to combine with C to form a carbide, improve the high temperature strength as a main strengthening phase, and ensure excellent high temperature corrosion resistance and oxidation resistance. If less than 15%, the desired effect cannot be obtained, while if more than 30% is contained, a σ phase is formed with Co to weaken the alloy, so the content was made 15 to 30%. (D) WW has an action of forming MC type carbides by combining with C to improve high temperature strength and to form a solid solution in the austenite matrix to strengthen it, but if the content is less than 3%, it is desirable. Effect is not obtained, on the other hand, if the content exceeds 10%, σ
Since an intermetallic compound such as a phase is formed to weaken the alloy, its content is set to 3 to 10%. (E) Re Re has the action of forming a solid solution in the austenite matrix to strengthen it and further delay the diffusion of the elements contained in the alloy in a high temperature environment to improve the stability of the alloy in service. If the content is less than 1%, the desired effect cannot be obtained, while if it exceeds 5%, the fatigue properties are deteriorated, so the content was made 1 to 5%. (F) Ti, Nb Ti and Nb both combine with C to form MC type carbides, which are uniformly dispersed and precipitated at grain boundaries and within grains to contribute to improvement of high temperature strength and fatigue strength. This effect is particularly great when added in combination, but the addition amounts of Ti and Nb are
If it is less than 0.01%, the desired effect cannot be obtained, while on the other hand 1
%, The carbides excessively precipitate at the grain boundaries and conversely decrease the fatigue strength.
It was set to 0.01 to 1%. (G) Si Si is generally added as a deoxidizer, but its content is 1%.
If it exceeds, it will cause the formation of inclusions during casting. Further, when performing vacuum melting or vacuum casting, it is not necessary to add it, so the content is set to 1%. (H) Mn Mn is added as a deoxidizing agent like Si, but if its content exceeds 1%, the high temperature oxidation resistance decreases. In addition, when performing vacuum melting or vacuum casting, there is no need to add it in particular, so the content was made 1% or less. (I) Ta, Hf Ta and Hf both combine with C to form MC type carbides, mainly strengthening the inside of the grains and contributing to the improvement of high temperature strength.
If higher high temperature strength is needed, it can be added as needed. If Ta is less than 1% and Hf is less than 0.5%, the effect of improving the high temperature strength cannot be obtained. On the other hand, if each of them exceeds 5%, the weldability and the fatigue strength are extremely reduced. ~ 5%, 0.5-5%
And (J) BB B strengthens the crystal grain boundary and contributes to improvement of high temperature strength and ductility, and therefore, when more excellent properties are required, they can be added as necessary. However, if the content exceeds 0.1%, the weldability deteriorates, so the content was made 0.1% or less. (K) Al Al forms a film of Al 2 O 3 on the surface of the core during casting, suppresses the reaction between SiO 2 contained in the core and the molten metal, and improves the surface condition. When precision casting is performed using a complicated core, it is preferable to contain it. 0.05
If the content is less than 0.5%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.5%, the castability deteriorates and the alloy becomes brittle, so the content was made 0.05 to 0.5%.

【0010】上記成分並びに主成分であるCoを加える
際に付随的に含まれる不純物はなるべく少ない方が望ま
しい。本発明の耐熱鋳造Co基合金は、各素材金属を真
空又は大気圧下で溶解、精錬し、それを鋳造して鋳塊と
して得られる。ガスタービンの静翼に適用する場合に
は、得られた鋳塊を再溶解し、それを静翼の形状に精密
鋳造する。
It is desirable that the impurities contained incidentally when the above-mentioned components and Co as the main component are added are as small as possible. The heat-resistant cast Co-based alloy of the present invention can be obtained as an ingot by melting and refining each material metal under vacuum or atmospheric pressure and casting the melted metal. When applied to a vane of a gas turbine, the obtained ingot is remelted and precision cast into the shape of the vane.

【0011】表1に示す組成で 150kgの真空誘導炉であ
らかじめ精錬されたマスター合金を用い、真空高周波溶
解炉にて再溶解し、ロストワックス法で作られた鋳型に
鋳造してφ14×150 lの供試材を得た。供試材1〜12は
本発明の耐熱鋳造Co基合金であり、供試材13,14は比
較材で、それぞれFSX414 及びMar−M509 という
名称で、現在のガスタービンの静翼に使用されているC
o基合金である。供試材13以外は鋳造後そのまま試験に
供した。一方、供試材13は鋳造後、1149℃×4時間の溶
体化処理後、 982℃×4時間の時効処理(炉冷)の熱処
理を行った。
Using a master alloy having the composition shown in Table 1 and having been preliminarily refined in a vacuum induction furnace of 150 kg, it was remelted in a vacuum high-frequency melting furnace and cast in a mold made by the lost wax method to obtain φ14 × 150 l. The test materials of Specimens 1 to 12 are heat-resistant cast Co-based alloys of the present invention, and specimens 13 and 14 are comparative materials, which are named FSX414 and Mar-M509, respectively, and are used for the stationary blades of current gas turbines. C
It is an o-based alloy. Except for the test material 13, the samples were used as they were after casting. On the other hand, the test material 13 was subjected to solution treatment at 1149 ° C. for 4 hours and then aging treatment (furnace cooling) at 982 ° C. for 4 hours after casting.

【0012】[0012]

【表1】 [Table 1]

【0013】次にこれらの供試材よりクリープ破断試験
片(平行部直径d=6mmφ)及び疲労試験片(平行部直
径d=8mmφ)を加工し、 816℃におけるクリープ破断
試験と 700℃及び 900℃における軸ひずみ制御疲労試験
を行った。その結果を表2に示す。
Next, a creep rupture test piece (parallel part diameter d = 6 mmφ) and a fatigue test piece (parallel part diameter d = 8 mmφ) were processed from these test materials, and a creep rupture test at 816 ° C. and 700 ° C. and 900 An axial strain control fatigue test was performed at ℃. The results are shown in Table 2.

【0014】まず比較合金である供試材13と14を比較す
る。クリープ破断試験の破断時間は供試材14の方がはる
かに長く、高温強度は供試材14の方が大幅に優れている
ことがわかる。一方、疲労試験においては 900℃では同
程度の破断繰返し数となるものの、 700℃では供試材13
の方が破断繰返し数が大きく、供試材13の方が、特に低
温側の疲労強度に優れることがわかる。すなわち供試材
13は高温強度はさほどではないものの疲労強度が優れる
合金であり、一方、供試材14は高温強度は優れるもの
の、疲労強度は決して高くない合金である。
First, sample materials 13 and 14 which are comparative alloys will be compared. It can be seen that the rupture time of the creep rupture test is much longer for the test material 14, and the high temperature strength is significantly better for the test material 14. On the other hand, in the fatigue test, although the number of repeated ruptures was about the same at 900 ° C, at 700 ° C the test material 13
It can be seen that the sample No. 13 has a larger number of repeated ruptures, and the sample material 13 is superior in fatigue strength especially at the low temperature side. That is, the test material
No. 13 is an alloy with excellent fatigue strength, although its high-temperature strength is not so severe, while sample material 14 is an alloy with excellent high-temperature strength but never high fatigue strength.

【0015】[0015]

【表2】 [Table 2]

【0016】次に本発明合金と比較合金とを比較する。
クリープ破断試験においては本発明合金である供試材1
〜12は破断時間が供試材13に比較して長く、中には高強
度の比較合金である供試材14を上回るものもあり、本発
明合金である供試材1〜12は、比較合金である供試材1
3,14に比較して同等もしくはそれ以上の十分なクリー
プ破断強度を有することがわかる。一方、疲労試験にお
いては、本発明合金である供試材1〜12はいずれも破断
繰返し数が比較合金である供試材13,14に比較してはる
かに大きく、疲労強度が、比較合金である供試材13,14
に比較して大幅に改善されていることがわかる。
Next, the alloy of the present invention will be compared with the comparative alloy.
Specimen 1 which is the alloy of the present invention in the creep rupture test
〜12 is longer than the test material 13 in the breaking time, and some of them are higher than the test material 14 which is a high-strength comparative alloy. Alloy material 1
It can be seen that it has a sufficient creep rupture strength equal to or higher than that of Nos. 3 and 14. On the other hand, in the fatigue test, each of the test materials 1 to 12 which is the alloy of the present invention has a much higher fracture repetition number than the test materials 13 and 14 which are the comparative alloys, and the fatigue strength is Certain test materials 13, 14
It can be seen that it is significantly improved compared to.

【0017】すなわち、本発明合金は、従来のガスター
ビンの静翼に使用されているCo基合金に比較しても、
同等もしくはそれ以上のクリープ破断強度を有しなが
ら、しかも疲労強度が大幅に改善されている合金であ
る。
In other words, the alloy of the present invention is superior to the Co-based alloy used in the conventional vane of a gas turbine,
This alloy has creep rupture strength equal to or higher than that, but fatigue strength is greatly improved.

【0018】[0018]

【発明の効果】本発明によれば、従来のガスタービンの
静翼に使用されているCo基合金に比較して、同等もし
くはそれ以上の高温強度を有しながら、しかも疲労強度
が大幅に改善されている合金が与えられる。このため、
ガスタービンの静翼材として用いれば、頻繁な起動停止
を行う過酷なガスタービン中でも、著しく長期にわたっ
て優れた性能を発揮し、コンバインドサイクル発電プラ
ントの信頼性が向上するなど、産業上有益な効果がもた
らされる。
According to the present invention, as compared with the Co-based alloy used for the conventional vane of a gas turbine, it has a high temperature strength equal to or higher than that, but the fatigue strength is significantly improved. Given alloy. For this reason,
If used as a vane material for a gas turbine, it will have excellent industrial performance, such as excellent performance over a long period of time and improved reliability of a combined cycle power plant even in a severe gas turbine that is frequently started and stopped. Be brought.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、C:0.05〜0.45%,Ni:5
〜15%,Cr:15〜30%,W:3〜10%,Re:1〜5
%,Ti:0.01〜1%,Nb:0.01〜1%,Si:1%
以下、Mn:1%以下,Fe: 1.5%以下を含み、残部
が実質的にCo及び不可避的不純物よりなることを特徴
とする耐熱鋳造Co基合金。
1. A weight ratio of C: 0.05 to 0.45% and Ni: 5
-15%, Cr: 15-30%, W: 3-10%, Re: 1-5
%, Ti: 0.01 to 1%, Nb: 0.01 to 1%, Si: 1%
Hereinafter, a heat-resistant cast Co-based alloy characterized by containing Mn: 1% or less and Fe: 1.5% or less, and the balance substantially consisting of Co and inevitable impurities.
【請求項2】 重量比で、Ta:1〜5%,Hf: 0.5
〜5%の少なくとも1種以上を含むことを特徴とする請
求項1に記載の耐熱鋳造Co基合金。
2. By weight ratio, Ta: 1 to 5%, Hf: 0.5
The heat-resistant cast Co-based alloy according to claim 1, containing at least one of 5% to 5%.
【請求項3】 重量比で、B: 0.1%以下を含むことを
特徴とする請求項1又は請求項2に記載の耐熱鋳造Co
基合金。
3. The heat-resistant casting Co according to claim 1 or 2, wherein B: 0.1% or less by weight is contained.
Base alloy.
【請求項4】 重量比で、Al:0.05〜 0.5%を含むこ
とを特徴とする請求項1、請求項2又は請求項3に記載
の耐熱鋳造Co基合金。
4. The heat-resistant cast Co-based alloy according to claim 1, 2 or 3, wherein Al: 0.05 to 0.5% is included in a weight ratio.
JP7669093A 1993-04-02 1993-04-02 Heat resistant cast co-base alloy Pending JPH06287666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7669093A JPH06287666A (en) 1993-04-02 1993-04-02 Heat resistant cast co-base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7669093A JPH06287666A (en) 1993-04-02 1993-04-02 Heat resistant cast co-base alloy

Publications (1)

Publication Number Publication Date
JPH06287666A true JPH06287666A (en) 1994-10-11

Family

ID=13612468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7669093A Pending JPH06287666A (en) 1993-04-02 1993-04-02 Heat resistant cast co-base alloy

Country Status (1)

Country Link
JP (1) JPH06287666A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4996468B2 (en) * 2005-09-15 2012-08-08 独立行政法人科学技術振興機構 High heat resistance, high strength Co-based alloy and method for producing the same
US20210332460A1 (en) * 2019-03-07 2021-10-28 Mitsubishi Power, Ltd. Cobalt based alloy product and cobalt based alloy article
US11613795B2 (en) 2019-03-07 2023-03-28 Mitsubishi Heavy Industries, Ltd. Cobalt based alloy product and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4996468B2 (en) * 2005-09-15 2012-08-08 独立行政法人科学技術振興機構 High heat resistance, high strength Co-based alloy and method for producing the same
US20210332460A1 (en) * 2019-03-07 2021-10-28 Mitsubishi Power, Ltd. Cobalt based alloy product and cobalt based alloy article
US11613795B2 (en) 2019-03-07 2023-03-28 Mitsubishi Heavy Industries, Ltd. Cobalt based alloy product and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP3753143B2 (en) Ni-based super heat-resistant cast alloy and turbine wheel using the same
US5942055A (en) Silicide composite with niobium-based metallic phase and silicon-modified Laves-type phase
JP2003113434A (en) Superalloy excellent in high-temperature sulfur corrosion resistance and manufacturing method therefor
JPH06287667A (en) Heat resistant cast co-base alloy
JPH07300643A (en) Heat resistant cast cobalt-base alloy
JPH09268337A (en) Forged high corrosion resistant superalloy alloy
JP2002206143A (en) High strength low thermal expansion casting steel and ring-shaped parts for blade ring of gas turbine and for seal ring holding ring consisting of the high strength low thermal expansion casting steel
JP3424314B2 (en) Heat resistant steel
JPH06287666A (en) Heat resistant cast co-base alloy
JPH07224337A (en) Heat resistant cast co-base alloy and gas turbine stator blade using the same
JPH0243813B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN
JPH083665A (en) Nickel-base superalloy for die excellent in oxidation resistance and high temperature strength
JPS60224731A (en) Heat resistant co-base alloy
US2842439A (en) High strength alloy for use at elevated temperatures
JPS6249344B2 (en)
JPH0770683A (en) Heat resistant cast co-based alloy for gas turbine
JPS613859A (en) High-strength heat-resistant co alloy for gas turbine
JPS61546A (en) High-strength heat-resistant co alloy for gas turbine
JPS59179752A (en) Heat resistant co base alloy
JPS61548A (en) Co-base high-strength heat-resistant alloy for gas turbine
JPS63162831A (en) Co-base super heat-resisting alloy for casting
JP2721723B2 (en) Heat-resistant cast alloy for gas turbine blades
JPH0243815B2 (en) GASUTAABINYOKOKYODOC0KITAINETSUGOKIN
JPS6293353A (en) Austenitic heat resisting alloy
JPH0232339B2 (en)