JPH0627654B2 - A device that optically detects the position and speed of a moving object - Google Patents
A device that optically detects the position and speed of a moving objectInfo
- Publication number
- JPH0627654B2 JPH0627654B2 JP63222377A JP22237788A JPH0627654B2 JP H0627654 B2 JPH0627654 B2 JP H0627654B2 JP 63222377 A JP63222377 A JP 63222377A JP 22237788 A JP22237788 A JP 22237788A JP H0627654 B2 JPH0627654 B2 JP H0627654B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- speed
- lens
- moving body
- shielding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Optical Transform (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、速度や位置制御用モータ等に使用される移動
体あるいは回転体の検出装置に係り、特に、光学的に検
出するために好適な形状と製造方法および、装置に関す
る。The present invention relates to a moving body or rotating body detecting device used for a speed or position control motor or the like, and is particularly suitable for optical detection. Shape, manufacturing method, and apparatus.
従来知られている移動体の位置や速度を検出する方法と
しては、大別すると磁気式エンコーダによる方法と、光
学エンコーダによる方法がある。本発明は、光学エンコ
ーダ法に関係する。Conventionally known methods for detecting the position and speed of a moving body are roughly classified into a method using a magnetic encoder and a method using an optical encoder. The present invention relates to optical encoder methods.
光学エンコーダ法は、投,受光部と計測用円板で構成さ
れる。計測用円板は、薄いSUS材が使用され、精密プ
レス打抜き、あるいはエツチングによつて製作されるの
が一般的であり、実開昭63−33409号公報記載のものも
これに相当する。The optical encoder method is composed of a light emitting / receiving unit and a measuring disk. A thin SUS material is used for the measuring disc, and it is generally manufactured by precision press punching or etching, and the one described in Japanese Utility Model Laid-Open No. 63-33409 corresponds to this.
上記従来技術においても、回転角度計測用円板のスリツ
ト幅やピツチが広い(大きい)場合は、プレス打抜きが
容易であり、量産性も高く、コストの面でも問題はな
い。しかし、同円板のスリツト幅や、ピツチがせまくな
ると、高精度な精密プレス金型が必要となり、さらにせ
まくなると、化学的なエツチング加工に頼らざるを得
ず、量産性は極端に低下する。Also in the above-mentioned conventional technique, when the slit width and the pitch of the disc for measuring the rotation angle are wide (large), press punching is easy, mass productivity is high, and there is no problem in cost. However, if the slit width and pitch of the disk are too narrow, a highly accurate precision press die is required, and if it is too tight, it is inevitable to rely on chemical etching, and mass productivity is extremely reduced.
従つて、当然、コスト高になるという問題があつた。Therefore, of course, there was a problem that the cost was high.
本発明の目的は、回転角度計測用円板をプラスチツク化
すると同時に、スリツト部にレンズ効果をもたせ、安価
で高精度な円板を得るための、製品形状と製造方法を確
立することにより、最適な回転角度計測装置を提供する
ことにある。The object of the present invention is to optimize the rotational angle measuring disc by establishing a product shape and a manufacturing method for plasticizing the disc for rotation angle measurement, and at the same time to give the slit part a lens effect to obtain an inexpensive and highly precise disc. To provide a simple rotation angle measuring device.
上記目的は、計測用円板の素材を安価なプラスチツクス
化すること、成形を自動化すること、スリツト部にレン
ズ効果を持たせてピツチ精度を良くすること、光の透過
と、遮光を明確にすることなどにより、達成される。The above objectives are to make the material of the measuring disc cheap plastic, to automate the molding, to improve the pitch accuracy by giving the slit part a lens effect, and to clarify the transmission of light and the blocking of light. It is achieved by doing.
具体的な1つの構成としては、投光器と、これに光学的
に対向させた受光器と、この投光器から発せられた光路
内に移動自在に置かれた移動体とから成り、この移動体
に交互に光を透過させる透光部分と光を遮ぎる遮光部分
を設け、透光部分を透過した光を前記受光器にて受け、
この受光器からの出力信号にて移動体の位置や速度を検
出するものにおいて、 前記移動体をプラスチツク製として、その両面(入出射
面)あるいはいずれか一方面に規則的なピツチで曲面
と、この曲面よりも充分に幅の狭い平面を交互に形成
し、この曲面部によつて集光された光を受光器で受け、
これを電気信号に変換し、平面部で遮光したことを特徴
とする移動体の位置や速度を光学的に検出するようにし
たものである。As one specific configuration, it comprises a light projector, a light receiver optically opposed to the light projector, and a movable body placed movably in an optical path emitted from the light projector, and the movable body alternates with the movable body. A light-transmitting portion that transmits light and a light-shielding portion that blocks light are provided, and the light transmitted through the light-transmitting portion is received by the light receiver,
In the one that detects the position and speed of the moving body by the output signal from this light receiver, the moving body is made of plastic, and its both surfaces (entrance / emission surface) or a curved surface with a regular pitch on either one of the surfaces, Alternately form a plane that is sufficiently narrower than this curved surface, and receive the light collected by this curved surface section at the light receiver,
This is converted into an electric signal, and the position and speed of the moving body is optically detected, which is characterized in that the light is shielded by the plane portion.
まず、移動体である計測用円板の素材は、SUS 材に代つ
てプラスチツク材(アクリル等)にして、円板と、取付
用のボスの一体化を図る。素材は透明な材料の場合は、
遮光を目的とした溝を膜を形成し、不透明な材料の場合
は、透過用のスリツトを設ける。First, the material of the measuring disk, which is the moving body, is made of plastic material (acrylic, etc.) instead of SUS material, and the disk and the mounting boss are integrated. If the material is transparent,
A film is formed for the purpose of shielding light, and a slit for transmission is provided in the case of an opaque material.
また、光の入,出射面は、平面だけではなく、入射した
光を所望の位置に集光させるに適した形状に成形をする
ことで、回転角度の計測精度を向上させることができ
る。Further, the light input / output surface is not limited to a flat surface, but is formed into a shape suitable for converging the incident light at a desired position, whereby the measurement accuracy of the rotation angle can be improved.
円板の形状精度を向上させるために、低圧,低歪予備成
形を前提とした加圧成形を採用した。In order to improve the precision of the shape of the disc, we adopted pressure forming, which is premised on low pressure and low strain preforming.
この成形方法は、高圧加圧時の素材の流れる距離が短
く、回転軸に対して放射状となり、精密成形に適してい
る。This molding method is suitable for precision molding because the distance that the material flows at the time of high pressure pressurization is short and it is radial with respect to the rotating shaft.
以下、本発明の実施例を、第1図〜第13図により説明
する。本発明は回転あるいは直線いずれの移動体にも適
用されるが、実施例では便宜上回転の例について説明す
る。Embodiments of the present invention will be described below with reference to FIGS. 1 to 13. The present invention is applicable to both rotating and linear moving bodies, but in the embodiments, an example of rotation will be described for convenience.
まず、第1図に速度や位置制御用のモータの回転角度計
測用として使用される、本発明による回転角度計測用円
板の一実施例を示す。First, FIG. 1 shows an embodiment of a disk for measuring a rotation angle according to the present invention, which is used for measuring a rotation angle of a motor for controlling speed and position.
モータのシヤフトに組付けるためのボス1とフランジ2
は、一体化成形されている。フランジ2には、計測レベ
ルに合わせて放射状に配置された凸面を有した細長いレ
ンズ部8が形成されている。このレンズ部8には、複数
のレンズに渡つて照射される光源3があり、出射側に
は、集光部4の光を検知する受光部5が配置されてい
る。Boss 1 and flange 2 for mounting on the motor shaft
Are integrally molded. The flange 2 is formed with an elongated lens portion 8 having a convex surface arranged radially according to the measurement level. The lens unit 8 has a light source 3 which is irradiated over a plurality of lenses, and a light receiving unit 5 which detects the light of the light collecting unit 4 is arranged on the emission side.
レンズ部8に照射された光源3は、レンズ部8の形状に
依つて集光され、マルチ集光線状となり、その光を受光
部5が検出し、モータの回転速度や位置を制御する。The light source 3 with which the lens portion 8 is irradiated is condensed according to the shape of the lens portion 8 and becomes a multi-condensing line shape, and the light receiving portion 5 detects the light and controls the rotation speed and position of the motor.
第2図に、レンズ部8の拡大図を示す。FIG. 2 shows an enlarged view of the lens unit 8.
光源3は(レンズ部8の入射面6と、出射面7を透過す
ることにより集光され、線状の焦点(集光部4)を結
ぶ。出射面7には、各レンズを独立させるためのスリツ
トがあり、光の透過を妨げる為の遮光部9がある。受光
部5は、集光部4を順次検出する。The light source 3 is condensed by passing through the incident surface 6 of the lens unit 8 and the emission surface 7 and forms a linear focus (condensing unit 4). In order to make each lens independent on the emission surface 7. There is a slit, and there is a light shielding portion 9 for preventing the transmission of light.The light receiving portion 5 sequentially detects the light collecting portion 4.
第3図の実施例は、光源3が平行光、または、平行光に
近い場合のレンズ部8の形状を示す。この場合、入射面
6は、平面であり、出射面7の凸面形状により集光部4
を得て、受光部5が検出をするものである。この場合
も、出射面7側に各レンズを独立させるためのスリツト
があり、光の透過を妨げる為の、遮光部9がある。The embodiment of FIG. 3 shows the shape of the lens portion 8 when the light source 3 is parallel light or near parallel light. In this case, the incident surface 6 is a flat surface, and the convex shape of the exit surface 7 causes the condensing portion 4
Then, the light receiving section 5 performs detection. Also in this case, there is a slit on the exit surface 7 side for making each lens independent, and there is a light shielding portion 9 for preventing the transmission of light.
第4図の実施例は、一体成形をしたボス1付の透明な円
板の上面または下面に、放射状に、等間隔に設けた溝
に、遮光用の塗料を塗布する、あるいは、その溝部に反
射膜を生成して、遮光部9と、透過部10を交互に設
け、光学的なスリツトを得た例である。上記遮光部9
は、出射面7側に設けると光の遮光が鋭くなり、検出精
度を向上させることができる。In the embodiment shown in FIG. 4, light-shielding paint is applied to grooves formed at equal intervals in a radial pattern on the upper surface or the lower surface of a transparent disk with integrally formed bosses 1, or the groove is applied to the groove. This is an example in which a reflective film is generated and the light shielding portions 9 and the transmission portions 10 are alternately provided to obtain an optical slit. The light shielding portion 9
When is provided on the side of the emission surface 7, the light is shielded sharply and the detection accuracy can be improved.
第5図の実施例は、一体成形をしたボス1付の透明な円
板の上面、または、下面に放射状に等間隔に反射膜や、
乱反射膜11を形成し、遮光部9,透過部10を交互に
設けることにより、光学的なスリツトを得た例である。
上記と同様に、遮光部9,乱反射部11は、出射面7側
に設けると光の遮光が鋭くなり、検出精度を向上させる
ことができる。In the embodiment shown in FIG. 5, a reflective film is formed on the upper surface or the lower surface of a transparent disk with integrally formed bosses 1 at equal intervals radially.
This is an example in which an optical slit is obtained by forming the irregular reflection film 11 and alternately providing the light shielding portions 9 and the transmission portions 10.
Similarly to the above, when the light shielding portion 9 and the irregular reflection portion 11 are provided on the emission surface 7 side, the light shielding becomes sharp, and the detection accuracy can be improved.
第6図の実施例は、平行光、あるいは、平行光に近い光
源3を使つたレンズ部8の形状を示す。入射面6は、平
面であり、等間隔に、放射状に溝部を設けてあり、出射
面7は、凸レンズ面となつていて、光を集光し、集光部
4を得ることができる。この集光部4を、受光部5が検
出する。この形状で、遮光部の幅(D)は下面レンズ間
の溝幅(d)より等しいか、広くすることで、均一な平
行光を得ることができる。The embodiment shown in FIG. 6 shows the shape of the lens portion 8 using the parallel light or the light source 3 close to the parallel light. The incident surface 6 is a flat surface, grooves are provided at equal intervals in a radial pattern, and the exit surface 7 serves as a convex lens surface to collect light and obtain the light collecting portion 4. The light receiving unit 5 detects the light collecting unit 4. With this shape, the width (D) of the light shielding portion is equal to or wider than the groove width (d) between the lower surface lenses, so that uniform parallel light can be obtained.
第7図の実施例は、回転円板(フランジ2)の片面に、
等間隔で、鋭角の陵線を有した三角平面を形成した。In the embodiment of FIG. 7, one side of the rotary disc (flange 2) is
Triangular planes with acute-angled ridges were formed at equal intervals.
投光部12から投光された光源3は、高反射部13の、
ある一点で、受光部5で検出される。その他の点や、低
反射部では、光源3は、受光部5へ入射しない。上記の
中で、高反射部13と低反射部14は、絶対条件ではな
く、双方共高反射面でも可である。The light source 3 projected from the light projecting unit 12 is
It is detected by the light receiving unit 5 at a certain point. At other points and in the low reflection portion, the light source 3 does not enter the light receiving portion 5. In the above description, the high reflection portion 13 and the low reflection portion 14 may be both high reflection surfaces, not an absolute condition.
第8図の実施例は、フランジ2に遮光塗料の塗布方法で
ある。ボス1端面とフランジ2の間に、塗料留り16を
設け、その凹部に遮光塗料15を滴下する。この時、フ
ランジ2は、回転させておくために、滴下された遮光塗
料15は、遠心力によつて遮光部9へ流入し、塗布を完
了する。The embodiment shown in FIG. 8 is a method of applying light-shielding paint to the flange 2. A paint residue 16 is provided between the end surface of the boss 1 and the flange 2, and the light-shielding paint 15 is dripped into the recess. At this time, since the flange 2 is kept rotating, the dropped light-shielding paint 15 flows into the light-shielding portion 9 by centrifugal force, and the application is completed.
第9図の実施例は、遮光部9および、透過部10の形状
を示している。計測用円板をモールド成形する場合の金
型の駒の加工を容易に、かつ、精度よく行なうために、
透過部10の形状は、円板の法線に対して平行にしてあ
る。The embodiment of FIG. 9 shows the shapes of the light-shielding portion 9 and the transmitting portion 10. In order to easily and accurately process the mold pieces when molding the measurement disk,
The shape of the transmissive portion 10 is parallel to the normal line of the disc.
駒の加工を、平面研磨等で加工する場合も、砥石の走り
方向も単純となり、高精度加工が容易である。ただし、
遮光部9の形状は扇状となる。Even when the piece is machined by surface polishing or the like, the running direction of the grindstone is simple, and high-precision machining is easy. However,
The shape of the light shield 9 is fan-shaped.
第10図の実施例は、計測用円板の成形方法について示
した。まず、低圧予備成形をしたブランクを金型内へ供
給し、圧縮成形をする。この方法では、ゲート(素材流
入)跡がなく、素材の流れ17は、軸中心から放射状と
なり、素材内の背向や内部歪は均一となる。The example of FIG. 10 shows a method for forming a measuring disk. First, a low-pressure preformed blank is supplied into a mold and compression molded. In this method, there is no trace of the gate (material inflow), the material flow 17 is radial from the axial center, and the back direction and internal strain in the material are uniform.
第11図の実施例は、計測用円板を、遮光素材18を使
つて成形をした例であり、光を通過させるためのスリツ
ト19を、放射状に等間隔を設けてある。The embodiment shown in FIG. 11 is an example in which a measuring disk is molded by using a light-shielding material 18, and slits 19 for allowing light to pass through are radially provided at equal intervals.
第12図の実施例は、計測用円板の集光部4と受光部5
の検出感度を調整する目的で、レンズ部8と受光部5と
の間隔を調整するように、構成した例である。この場
合、光源3と、入射面6と出射面7と、遮光部9は同一
である。In the embodiment shown in FIG. 12, the light collecting portion 4 and the light receiving portion 5 of the measuring disk are used.
This is an example in which the distance between the lens unit 8 and the light receiving unit 5 is adjusted for the purpose of adjusting the detection sensitivity of. In this case, the light source 3, the entrance surface 6, the exit surface 7, and the light blocking portion 9 are the same.
第13図の実施例は、フランジ2の面に、適当な回折格
子20を設けることにより、光源3の回折光を発生さ
せ、回折0次光21や、回折±1次光22などの多次光
を検出することにより、微細な回転角を検出,計数する
ようにした例である。In the embodiment of FIG. 13, by providing an appropriate diffraction grating 20 on the surface of the flange 2, diffracted light of the light source 3 is generated, and multi-orders such as diffracted 0th order light 21 and diffracted ± first order light 22 are generated. This is an example in which a minute rotation angle is detected and counted by detecting light.
第14図の実施例は、フランジ2の、遮光部9と透過部
10が交互に通過するところに、受光部5を設け、その
中に、正確に形成された複数の受光素子パターン23が
ある。透過部10を透過、あるいは、集光された光を順
次検出することで、微細な計数、あるいは、透過部のピ
ツチを大きくとることが可能である。この例で受光素子
パターン23をδずらしたので、分解能(最小検出ピツ
チ)はδである。In the embodiment of FIG. 14, the light receiving portion 5 is provided in the flange 2 where the light shielding portion 9 and the light transmitting portion 10 alternately pass, and the plurality of light receiving element patterns 23 accurately formed therein. . By sequentially detecting the light transmitted through the transmissive portion 10 or condensed, it is possible to make fine counting or to increase the pitch of the transmissive portion. In this example, since the light receiving element pattern 23 is shifted by δ, the resolution (minimum detection pitch) is δ.
以上説明したように本発明によれば、第1に移動体をプ
ラスチツク製として、その両面(入出射面)あるいはい
ずれか一方面に規則的なピツチで曲面と、この曲面より
も充分に幅の狭い平面を交互に形成し、この曲面部によ
つて集光された光を受光器で受け、これを電気信号に変
換し、平面部で遮光したので、正確な検出と分解能を高
めることができ、又、プラチツクでエツチング等の超精
密加工を不要としたので加工が極めて簡単になる効果が
ある。As described above, according to the present invention, firstly, the movable body is made of plastic, and a curved surface is formed on both sides (entrance / emission surface) or one of the surfaces by regular pitches, and the width is sufficiently wider than this curved surface. Narrow flat surfaces are alternately formed, and the light collected by this curved surface is received by the photoreceiver, converted into an electrical signal, and shielded by the flat surface, so accurate detection and resolution can be improved. Moreover, since the plastic does not require ultra-precision machining such as etching, the machining is extremely simple.
更に、溝部(平面部)に塗料を塗布したので、更に、透
過部と遮光部の境界を明確に区別でき、光の干渉がなく
正確に検出でき、誤動作を防止することができる。Furthermore, since the coating material is applied to the groove portion (flat surface portion), the boundary between the transmitting portion and the light shielding portion can be clearly distinguished, the light can be accurately detected without interference, and the malfunction can be prevented.
第1図は本発明の実施例の、計測用円板の斜視図、第2
図は同レンズ部の拡大斜視図、第3図は同側面図、第4
図,第5図は同平面図および、断面側面図、第6図は同
側面図、第7図は同側面図、第8図は同斜視図、第9図
は同平面図、第10図,第11図は同斜視図、第12図
は同側面図、第13図は同側面図、第14図は同平面図
である。 1……ボス、2……フランジ、3……光源、4……集光
部、5……受光部、6……入射面、7……出射面、8…
…レンズ部、9……遮光部、10……透過部、11……
乱反射部、12……投光部、13……高反射部、14…
…低反射部、15……遮光塗料、16……塗料留り、1
7……素材の流れ、18……遮光素材、19……スリツ
ト、20……回折格子、21……回折0次光、22……
回折±1次光、23……受光素子パターン。FIG. 1 is a perspective view of a measuring disk according to an embodiment of the present invention, and FIG.
The figure is an enlarged perspective view of the same lens portion, FIG. 3 is the same side view, and FIG.
5 and 5 are the same plan view and sectional side view, FIG. 6 is the same side view, FIG. 7 is the same side view, FIG. 8 is the same perspective view, FIG. 9 is the same plan view, and FIG. , FIG. 11 is the same perspective view, FIG. 12 is the same side view, FIG. 13 is the same side view, and FIG. 14 is the same plan view. 1 ... Boss, 2 ... Flange, 3 ... Light source, 4 ... Condensing section, 5 ... Light receiving section, 6 ... Injection surface, 7 ... Exit surface, 8 ...
… Lens section, 9 …… Light blocking section, 10 …… Transparent section, 11 ……
Diffuse reflection part, 12 ... Projection part, 13 ... High reflection part, 14 ...
… Low reflection part, 15 …… Shading paint, 16 …… Paint stay, 1
7 ... Material flow, 18 ... Shading material, 19 ... Slit, 20 ... Diffraction grating, 21 ... Diffraction zero-order light, 22 ...
Diffraction ± first-order light, 23 ... Light receiving element pattern.
フロントページの続き (72)発明者 藤本 勉 茨城県日立市東多賀町1丁目1番1号 株 式会社日立製作所多賀工場内 (56)参考文献 実開 昭57−26008(JP,U) 特公 昭49−534(JP,B1) 特公 昭51−3191(JP,B1)Front page continuation (72) Inventor Tsutomu Fujimoto 1-1-1, Higashi-Taga-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Taga factory (56) References: 57-26008 (JP, U) JP 49-534 (JP, B1) Japanese Patent Publication Sho 51-3191 (JP, B1)
Claims (1)
受光器5との間に移動自在に置かれる移動体とを有する
移動体の位置や速度を光学的に検出する装置において、 前記移動体は多数のレンズ部8を設けるとともにプラス
チックで形成し、レンズ部8の入射面6を平面状に、出
射面7を凸レンズ面状に形成し、各レンズ部8は放射状
に、かつ等間隔で配置し、隣接するレンズ部8の間に
は、出射面側に溝幅(d)の溝部を、入射面側に溝幅
(D)を有する溝状の遮光部9をそれぞれ設けるととも
に(D)≧(d)としたことを特徴とする移動体の位置
や速度を光学的に検出する装置。1. An apparatus for optically detecting the position and speed of a moving body, which has a light projector 12, a light receiver 5, and a moving body movably placed between the light projector 12 and the light receiver 5. The movable body is provided with a large number of lens portions 8 and is made of plastic, the incident surface 6 of the lens portion 8 is formed in a flat shape, and the emission surface 7 is formed in a convex lens surface shape. And a groove-shaped light-shielding portion 9 having a groove width (D) on the exit surface side and a groove width (D) on the incident surface side are provided between the adjacent lens portions 8 (D). ) ≧ (d), which is a device for optically detecting the position and speed of a moving body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63222377A JPH0627654B2 (en) | 1988-09-07 | 1988-09-07 | A device that optically detects the position and speed of a moving object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63222377A JPH0627654B2 (en) | 1988-09-07 | 1988-09-07 | A device that optically detects the position and speed of a moving object |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0271118A JPH0271118A (en) | 1990-03-09 |
JPH0627654B2 true JPH0627654B2 (en) | 1994-04-13 |
Family
ID=16781404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63222377A Expired - Lifetime JPH0627654B2 (en) | 1988-09-07 | 1988-09-07 | A device that optically detects the position and speed of a moving object |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0627654B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH087082B2 (en) * | 1990-09-05 | 1996-01-29 | 松下電器産業株式会社 | Optical encoder |
JPH10239108A (en) | 1997-02-21 | 1998-09-11 | Fanuc Ltd | Optical encoder |
JPWO2002023130A1 (en) * | 2000-09-13 | 2004-01-22 | 三菱電機株式会社 | Optical encoder |
US7089672B2 (en) * | 2002-02-08 | 2006-08-15 | Robert Bosch Gmbh | Optical angle and torque sensor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5239459B2 (en) * | 1972-04-18 | 1977-10-05 | ||
JPS513191A (en) * | 1974-06-25 | 1976-01-12 | Seikosha Kk | |
JPS6011456Y2 (en) * | 1980-07-18 | 1985-04-16 | 赤井電機株式会社 | rotation detection device |
JPS61148948A (en) * | 1984-12-21 | 1986-07-07 | Mitsubishi Electric Corp | Voice message talking method |
JPH04349750A (en) * | 1991-05-28 | 1992-12-04 | Nec Corp | Message recording service system |
-
1988
- 1988-09-07 JP JP63222377A patent/JPH0627654B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0271118A (en) | 1990-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7612331B2 (en) | Code disk with a plurality of tracks having different patterns | |
US4899048A (en) | Focused optical beam encoder of position | |
JPH06109484A (en) | Signal processing method and encoder using the same | |
JPH063167A (en) | Encoder | |
DE69836938T2 (en) | Apparatus for detecting displacement information | |
JP4726168B2 (en) | Optical scale and optical encoder | |
US5747797A (en) | Rotation information detecting apparatus and scale for use in the same | |
US4733071A (en) | Optical encoder with variable fiber/phase angle adjustment | |
JPS63231217A (en) | Measuring instrument for movement quantity | |
JPH0627654B2 (en) | A device that optically detects the position and speed of a moving object | |
EP0489399A2 (en) | Displacement detector | |
US5365329A (en) | Apparatus and method for measuring refractive index | |
JPH0612268B2 (en) | Optical encoder | |
JP3459755B2 (en) | Displacement information measuring device | |
JP2002277286A (en) | Device of detecting rotation displacement amount and disk | |
KR20040010022A (en) | Optical transmitter element and positioning device | |
JP3745354B2 (en) | Encoder assembly | |
JPH09126723A (en) | Displacement information detector | |
JP3116535B2 (en) | Rotary encoder and encoder | |
JPS623617A (en) | Optical scale | |
JPS62128615A (en) | Optical encoder | |
EP3527953B1 (en) | Methods to calculate the shape of a mask slots of an optical incremental encoder | |
JP3101289B2 (en) | Optical encoder | |
JPS62135724A (en) | Optical scale | |
JP2810524B2 (en) | Rotation detector |