JPH06271957A - Porous metallic body and its production - Google Patents

Porous metallic body and its production

Info

Publication number
JPH06271957A
JPH06271957A JP5686893A JP5686893A JPH06271957A JP H06271957 A JPH06271957 A JP H06271957A JP 5686893 A JP5686893 A JP 5686893A JP 5686893 A JP5686893 A JP 5686893A JP H06271957 A JPH06271957 A JP H06271957A
Authority
JP
Japan
Prior art keywords
phases
porous
intermetallic compound
alloy
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5686893A
Other languages
Japanese (ja)
Inventor
Tomoyuki Fujii
知之 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP5686893A priority Critical patent/JPH06271957A/en
Publication of JPH06271957A publication Critical patent/JPH06271957A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce the porous metallic body having a porous metallic layer which is uniform and has high porosity on a metallic surface and the method for producing the same. CONSTITUTION:This porous metallic body has the porous layer which is uniform and has the high porosity on the surface of an alloy having a structure of >=2 phases consisting of >=1 kinds of intermetallic compound phases and >=1 kinds of solid soln. phases. The process for production of such porous metallic body consists of a first stage for of >=1 kinds of the intermetallic compound phases and >=1 kinds of the solid soln. phases, then heat-treating the casting and a second stage for eluting only the solid soln. phases from the casting produced in the first stage by an acid or alkaline soln. As a result, the porous metallic body having intricate shapes and pores of a relatively large surface area is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多孔質金属体とその製
造方法に関する。
FIELD OF THE INVENTION The present invention relates to a porous metal body and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、例えば自動車の燃料やオイル
のろ過、人工の人骨に用いられる多孔質金属体の製造方
法として、溶湯金属中に発泡剤を直接添加して発泡さ
せる方法や、金属粉末や短繊維を焼結する粉末冶金法
(特開平4−32527に開示)等が知られている。
2. Description of the Related Art Conventionally, for example, a method of directly adding a foaming agent to a molten metal and foaming it, or a metal powder as a method of manufacturing a porous metal body used for filtering fuel and oil of automobiles and artificial human bones. A powder metallurgical method (disclosed in Japanese Patent Application Laid-Open No. 4-32527) for sintering short fibers or the like is known.

【0003】このうち、溶湯金属中に発泡剤を直接添
加して発泡させる方法は、溶湯金属の融点以下の発泡剤
を溶湯と混合させ、発泡する際に発生するガスを溶湯中
に閉じ込めてしまう方法であり、気孔率が0.8〜0.
9の発泡材料を得ることができる。気孔率が0.9のと
きFeについて考えるならば、Feの密度が7.86K
g/m3 であるので、水に浮く鉄鋼材料を作成すること
さえ可能となる。
Among these methods, the method of directly adding a foaming agent to the molten metal to foam it is to mix a foaming agent having a melting point of the molten metal or less with the molten metal and confine the gas generated during foaming in the molten metal. The method has a porosity of 0.8 to 0.
It is possible to obtain 9 foam materials. If Fe is considered when the porosity is 0.9, the density of Fe is 7.86K.
Since it is g / m 3, it is even possible to create a steel material that floats in water.

【0004】これに対し、金属粉末や短繊維を焼結す
る粉末冶金法は、Ti、Co−Cr−Mo、ステンレス
鋼線を成形圧縮後に焼結して作製する方法であり、人体
の骨の修復等のバイオマテリアル材料として研究されて
いる。この材料では骨との直接結合が可能であり、軽量
かつ機械的特性に優れているという特徴をもつ。一方、
金属間化合物は、一般に耐熱性、耐摩耗性、耐食性の優
れた材料として、知られている。例えば発電用タービン
材料として開発中のNi3 Al等がある。そして、金属
間化合物の粉末を上記のようみ焼結することにより、金
属間化合物から構成される多孔質体を製造することは可
能である。
On the other hand, the powder metallurgical method for sintering metal powder or short fibers is a method of producing Ti, Co-Cr-Mo, and stainless steel wire after molding and compression, and sintering, which is a method for producing bone of a human body. It is being researched as a biomaterial material for restoration. This material is characterized in that it can be directly bonded to bone, is lightweight and has excellent mechanical properties. on the other hand,
The intermetallic compound is generally known as a material having excellent heat resistance, wear resistance and corrosion resistance. For example, there is Ni 3 Al which is under development as a turbine material for power generation. Then, it is possible to manufacture a porous body composed of an intermetallic compound by sintering the powder of the intermetallic compound as described above.

【0005】[0005]

【発明が解決しようとする課題】しかし、前記溶湯金属
中に発泡剤を直接添加して発泡させる方法では、発泡材
料がガスになる際の溶融金属の粘性に注意しないと、泡
同士が合体することがある。均質な気孔を得るという点
では問題がある。またこの方法を鉄鋼材料や鋳鉄に応用
することも試みられているが、融点が高いことや発泡材
料の選定に問題があり、水に浮く鉄鋼材料の完成には至
っていない。
However, in the method of foaming by directly adding a foaming agent to the molten metal, bubbles are united unless attention is paid to the viscosity of the molten metal when the foamed material becomes gas. Sometimes. There is a problem in obtaining uniform pores. Further, it has been attempted to apply this method to steel materials and cast iron, but there is a problem in that the melting point is high and the foam material is selected, and thus steel materials floating in water have not been completed.

【0006】また、金属粉末や短繊維を焼結する粉末冶
金法では、すでにステンレス鋼短繊維やAl短繊維によ
って作製された材料は、工業材料として広く用いられて
いるが、従来の方法では多孔質金属体を作った後、必要
な形状に加工するため、複雑な形状ができないという問
題がある。さらに部分的に多孔質金属体を使う場合、多
孔質金属体の鋳ぐるみ等の方法に頼ってきたが、この方
法では接合強度が弱く、信頼性に欠けるという欠点があ
る。
Further, in the powder metallurgy method of sintering metal powder and short fibers, materials already made of stainless steel short fibers and Al short fibers are widely used as industrial materials, but in the conventional method, they are porous. There is a problem that a complicated shape cannot be formed because the metal body is formed into a required shape after being formed. Further, when the porous metal body is partially used, it has been relied on a method such as cast molding of the porous metal body, but this method has a drawback that the bonding strength is weak and the reliability is low.

【0007】また、このように粉末冶金を利用して製造
された多孔質金属体はバルク全体が多孔質であるため強
度が低いという問題点があり、多孔質性と強度のバラン
スをとることが重要である。さらに、元来、脆性材料で
ある金属間化合物においては、該多孔質性と強度のバラ
ンスをとることが非常に困難である。本発明が解決しよ
うとする第1の課題は、高強度の多孔質金属体を提供す
ることである。
Further, the porous metal body manufactured by using powder metallurgy as described above has a problem that the strength is low because the whole bulk is porous, so that the porosity and the strength can be balanced. is important. Further, it is very difficult to balance the porosity and strength of an intermetallic compound which is a brittle material. A first problem to be solved by the present invention is to provide a high-strength porous metal body.

【0008】本発明が解決しようとする第2の課題は、
複雑な形状の前記多孔質金属体を、容易に製造可能な多
孔質金属体の製造方法を提供することにある。
A second problem to be solved by the present invention is
It is an object of the present invention to provide a method for producing a porous metal body which can easily produce the porous metal body having a complicated shape.

【0009】[0009]

【課題を解決するための手段】前記第1の課題を解決す
るため、本発明による多孔質体は、本体のバルク部分が
1種類以上の固溶体相と1種類以上の金属間化合物相か
ら成る2相以上の組織をもつ合金であり、該バルク表面
に該金属間化合物相のみから構成される多孔質層を有す
ることを特徴とする。すなわち、機能的には強度は該バ
ルク部分が担い、多孔質性は該バルク表面の多孔質層が
担うことを特徴とする。
In order to solve the first problem, in the porous body according to the present invention, the bulk portion of the main body is composed of one or more kinds of solid solution phase and one or more kinds of intermetallic compound phase. It is an alloy having a structure of at least a phase, and is characterized by having a porous layer composed of only the intermetallic compound phase on the bulk surface. That is, functionally, the bulk portion bears the strength, and the porous layer on the bulk surface bears the porosity.

【0010】第2の課題を解決するための本発明による
多孔質金属体の製造方法は、次の各工程からなることを
特徴とする。 (A)1種以上の金属間化合物相と1種以上の固溶体相
から成る2相以上の組織をもつ合金を鋳造後、熱処理す
る第1工程。 (B)第1工程で得られた鋳造体を酸またはアルカリ溶
液で固溶体相のみを溶出させる第2工程。
A method of manufacturing a porous metal body according to the present invention for solving the second problem is characterized by comprising the following steps. (A) The first step of heat treating after casting an alloy having a structure of two or more phases consisting of one or more intermetallic compound phases and one or more solid solution phases. (B) A second step in which only the solid solution phase of the cast body obtained in the first step is eluted with an acid or alkali solution.

【0011】具体的には、Ti、Zr、Crの群から選
ばれる少なくとも1種以上の元素を含有するAl基金属
間化合物相とAl固溶体相の2相以上の組織をもつAl
合金を溶湯炉で溶融後、金型に注湯し、鋳造、熱処理し
鋳造体を作製する第1工程。前記鋳造体はAl基金属間
化合物相と固溶体相が混在した状態であり、必要があれ
ば加工する。次に、鋳造体を酸またはアルカリ溶液の入
った容器の中に漬け、Al固溶体相のみを溶出させ多孔
質金属体を得る第2工程からなる。多孔質層の厚さは溶
出液の種類、溶出液の濃度、溶出時間および溶出温度に
よって調整する。Al合金の例を表1に示す。
Specifically, Al having a structure of two or more phases of an Al-based intermetallic compound phase containing at least one element selected from the group of Ti, Zr and Cr and an Al solid solution phase.
The first step in which the alloy is melted in a smelting furnace, poured into a mold, cast, and heat-treated to produce a cast body. The cast body is in a state where the Al-based intermetallic compound phase and the solid solution phase are mixed, and is processed if necessary. Next, the casting process is soaked in a container containing an acid or alkali solution, and only the Al solid solution phase is eluted to obtain a porous metal body. The thickness of the porous layer is adjusted by the type of eluent, the concentration of the eluent, the elution time and the elution temperature. Table 1 shows examples of Al alloys.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【実施例】以下、本発明の実施例を説明する。 実験例1 Ti、Zr、Crの群から選ばれる少なくとも1種以上
を含有するAl合金とAl固溶体相からなる合金を、φ
40×10mmの円柱に鋳造後、熱処理を行なう。次
に、酸またはアルカリ溶液でAl固溶体相のみを溶出
し、溶出深さと重量減少率、気孔率を測定した。合金組
成、溶出液、溶出時間の各条件と測定結果を表2に示
す。なお、気孔率については、多孔質層についてのみ画
像解析法で測定した。
EXAMPLES Examples of the present invention will be described below. Experimental Example 1 An alloy consisting of an Al alloy containing at least one selected from the group consisting of Ti, Zr, and Cr and an Al solid solution phase was
After casting into a cylinder of 40 × 10 mm, heat treatment is performed. Next, only the Al solid solution phase was eluted with an acid or alkali solution, and the elution depth, weight loss rate, and porosity were measured. Table 2 shows each condition of the alloy composition, the eluate and the elution time and the measurement result. The porosity was measured by the image analysis method only for the porous layer.

【0014】[0014]

【表2】 [Table 2]

【0015】まず、組成について述べる。実施例1〜8
の合金は表1の組成範囲内でありAl固溶体相とAl基
金属間化合物相の2相合金となっていいる。一方、比較
例1、3、5の合金は表1の組成範囲外であり、Al固
溶体相のみの単相合金であるため、アルカリ溶液に対し
て溶出が容易に進行してしまい、自形が崩壊して粉末化
した。また、比較例2、4、6の合金は同じく、表1の
組成範囲外であり、Al固溶体相はなく、2種類のAl
基金属間化合物相となっているため、酸に浸漬しても溶
出は生じなかった。また、実施例1〜8の合金はAl量
が多き程Al合金に占めるAl固溶体相の割合が増える
ため、気孔率が大きくなる。また、実施例9〜11は3
元系合金である。
First, the composition will be described. Examples 1-8
Is within the composition range shown in Table 1 and is a two-phase alloy of an Al solid solution phase and an Al-based intermetallic compound phase. On the other hand, the alloys of Comparative Examples 1, 3, and 5 are out of the composition range shown in Table 1 and are single-phase alloys containing only the Al solid solution phase. It disintegrated and became a powder. Further, the alloys of Comparative Examples 2, 4, and 6 were also out of the composition range shown in Table 1, and there was no Al solid solution phase, and two types of Al were used.
Since it was a base intermetallic compound phase, no elution occurred even when immersed in an acid. Further, in the alloys of Examples 1 to 8, as the amount of Al increases, the proportion of the Al solid solution phase in the Al alloy increases, so that the porosity increases. In addition, Examples 9 to 11 are 3
It is a former alloy.

【0016】次に、溶出液について述べる。実験1で
は、アルカリ溶液として5%水酸化ナトリウム溶液を使
用し、酸として20%塩酸を使用したが、共に溶出が可
能であった。なお、これらより抵濃度でも溶出は可能で
ある。次に、溶出温度について述べる。実験1では、実
施例8を除いて20℃室温で溶出を行なったが、実施例
8で80℃の塩酸を用いて溶出を行なったところ、溶出
速度は約80倍に向上した。
Next, the eluate will be described. In Experiment 1, 5% sodium hydroxide solution was used as the alkaline solution and 20% hydrochloric acid was used as the acid, but both could be eluted. It should be noted that even if the concentration is lower than these, elution is possible. Next, the elution temperature will be described. In Experiment 1, except for Example 8, elution was carried out at 20 ° C. room temperature, but when Elution was carried out with 80 ° C. hydrochloric acid in Example 8, the elution rate was improved by about 80 times.

【0017】結局、表1の組成範囲内であれば、製造条
件はフレキシブルであり、目的とする多孔質層の気孔率
に応じて、合金組成を最適化し、目的とする多孔質層の
厚さに応じて、溶出液の種類、溶出液の濃度、溶出温度
および溶出時間を最適化すれば良い。 実験例2 実験例2は、鋳造体の形状を厚さ2mmの板状にし、A
l固溶体相をアルカリ溶液で溶出した。合金組成、溶出
条件と多孔質、重量減少率、気孔率の測定結果を表3に
示す。
After all, if it is within the composition range of Table 1, the manufacturing conditions are flexible, the alloy composition is optimized according to the porosity of the target porous layer, and the target porous layer thickness is obtained. The type of eluent, the concentration of the eluent, the elution temperature, and the elution time may be optimized according to the above. Experimental Example 2 In Experimental Example 2, a cast body was formed into a plate shape having a thickness of 2 mm, and
l The solid solution phase was eluted with an alkaline solution. Table 3 shows the measurement results of the alloy composition, elution conditions and porosity, weight loss rate, and porosity.

【0018】[0018]

【表3】 [Table 3]

【0019】鋳造体が板状の場合、溶出により試料全体
が多孔質化し、気孔率80%以上と優れた多孔質金属体
が得られる。
When the cast body has a plate shape, the entire sample is made porous by elution, and a porous metal body having an excellent porosity of 80% or more is obtained.

【0020】[0020]

【発明の効果】本発明の多孔質金属体の製造方法による
と、鋳造組織を生かすので、得られた多孔質金属体の気
孔の形状は複雑で比表面積の大きいものが製造できる。
また、複雑な形状品を容易に形成、製造することができ
る。さらに、本発明による製造方法で得られた多孔質金
属体は、フィルタ−、防音や防振材料になるほか、合金
や潤滑油を含浸させ、複合材料や軸受材料等の強度と耐
摩耗性が要求される製品に応用できる。例えば、複合材
料では、ピストンを鋳造し、頭部のみを部分的に多孔質
層にし、気孔部分に合金を含浸させることにより、ピス
トン頭部のみを複合強化することができるため、多孔質
金属体とマトリックス合金との境界部の割れ等の問題を
解消することができる。一方、軸受材料としては、軸受
の内部のみを多孔質金属体にし、潤滑油を加え無給油で
運転可能な軸受の作製のほか、多孔質金属体のベアリン
に潤滑油を含ませて、含油ベアリングとして使用でき
る。また、複雑な形状品を容易に形成、製造することが
できる。
According to the method for producing a porous metal body of the present invention, since the cast structure is utilized, it is possible to produce a porous metal body having a complicated pore shape and a large specific surface area.
Further, it is possible to easily form and manufacture a product having a complicated shape. Furthermore, the porous metal body obtained by the manufacturing method according to the present invention is used as a filter, a soundproofing or vibration isolating material, and is impregnated with an alloy or a lubricating oil to have strength and wear resistance of a composite material, a bearing material and the like. It can be applied to required products. For example, in a composite material, a piston is cast, only the head part is partially made into a porous layer, and the porosity part is impregnated with an alloy, so that only the piston head part can be composite-strengthened. It is possible to solve problems such as cracks at the boundary between the matrix alloy and the matrix alloy. On the other hand, as a bearing material, in addition to manufacturing a bearing that can be operated without lubrication by adding a lubricating oil to the inside of the bearing only, the bearing oil is made by adding lubricating oil to the bare metal of the porous metal body. Can be used as Further, it is possible to easily form and manufacture a product having a complicated shape.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属表面に金属間化合物相のみから構成
される多孔質層を有することを特徴とする多孔質金属
体。
1. A porous metal body having a porous layer composed only of an intermetallic compound phase on a metal surface.
【請求項2】 次の各工程からなることを特徴とする多
孔質金属体の製造方法。 (A)1種以上の金属間化合物相と1種以上の固溶体相
から成る2相以上の組織をもつ合金を鋳造後、熱処理す
る第1工程。 (B)第1工程で得られた鋳造体を酸またはアルカリ溶
液で固溶体相のみ溶出させる第2工程。
2. A method for producing a porous metal body, which comprises the following steps. (A) The first step of heat treating after casting an alloy having a structure of two or more phases consisting of one or more intermetallic compound phases and one or more solid solution phases. (B) A second step in which only the solid solution phase of the cast body obtained in the first step is eluted with an acid or alkali solution.
【請求項3】 次の各工程からなることを特徴とする多
孔質金属体の製造方法。 (A)Al基金属間化合物相とAl固溶体相から成る2
相以上の組織をもつ合金を鋳造後、熱処理する第1工
程。 (B)第1工程で得られた鋳造体を酸またはアルカリ溶
液で固溶体相のみ溶出させる第2工程。
3. A method for producing a porous metal body, comprising the following steps. (A) consisting of Al-based intermetallic compound phase and Al solid solution phase 2
The first step of heat treating after casting an alloy having a phase or higher structure. (B) A second step in which only the solid solution phase of the cast body obtained in the first step is eluted with an acid or alkali solution.
【請求項4】 Al合金がTi、Zr、Crの群から選
ばれる少なくとも1種以上の元素を含有することを特徴
とする請求項3記載の多孔質金属体の製造方法。
4. The method for producing a porous metal body according to claim 3, wherein the Al alloy contains at least one element selected from the group consisting of Ti, Zr, and Cr.
JP5686893A 1993-03-17 1993-03-17 Porous metallic body and its production Pending JPH06271957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5686893A JPH06271957A (en) 1993-03-17 1993-03-17 Porous metallic body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5686893A JPH06271957A (en) 1993-03-17 1993-03-17 Porous metallic body and its production

Publications (1)

Publication Number Publication Date
JPH06271957A true JPH06271957A (en) 1994-09-27

Family

ID=13039409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5686893A Pending JPH06271957A (en) 1993-03-17 1993-03-17 Porous metallic body and its production

Country Status (1)

Country Link
JP (1) JPH06271957A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997027395A1 (en) * 1996-01-22 1997-07-31 Klinair Environmental Technologies (Ireland) Limited A fuel filter and production process
WO1999004898A1 (en) * 1997-07-21 1999-02-04 Klinair Environmental Technologies (Ireland) Limited Treatment of fluids
KR20040011853A (en) * 2002-07-31 2004-02-11 최성조 Process method for the making micropore on the metal surface
KR20190072862A (en) * 2017-12-18 2019-06-26 주식회사 포스코 Porous metal and menufacturing method for the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997027395A1 (en) * 1996-01-22 1997-07-31 Klinair Environmental Technologies (Ireland) Limited A fuel filter and production process
AU714843B2 (en) * 1996-01-22 2000-01-13 Klinair Environmental Technologies (Ireland) Limited A fuel filter and production process
CN1075596C (en) * 1996-01-22 2001-11-28 柯丽奈尔环境技术(爱尔兰)有限公司 Fuel filter and method for manufacturing the same
WO1999004898A1 (en) * 1997-07-21 1999-02-04 Klinair Environmental Technologies (Ireland) Limited Treatment of fluids
KR20040011853A (en) * 2002-07-31 2004-02-11 최성조 Process method for the making micropore on the metal surface
KR20190072862A (en) * 2017-12-18 2019-06-26 주식회사 포스코 Porous metal and menufacturing method for the same

Similar Documents

Publication Publication Date Title
RU2329122C2 (en) Method of items production from metal alloys without melting
EP1735122B1 (en) A metal foam body having an open-porous structure as well as a method for the production thereof
US2467675A (en) Alloy of high density
Li et al. Effects of pouring temperature on microstructure, mechanical properties, and fracture behavior of Al/Mg bimetallic composites produced by lost foam casting process
KR900006613B1 (en) Process for manufacturing copper base spinodal alloy articles
JPH0617524B2 (en) Magnesium-titanium sintered alloy and method for producing the same
JP5846591B2 (en) Implant
CN102534275A (en) TiNi alloy-based composite material with near-zero thermal expansion characteristic and preparation method thereof
CN108097962A (en) A kind of preparation method of Nb toughenings titanium aluminium base alloy composite material
JPH06271957A (en) Porous metallic body and its production
JPS61257453A (en) Cam for shrinkage fit to cam shaft and sintering of said cam
JPS60145345A (en) High performance bearing material and manufacture
JPH0230790B2 (en)
US3674472A (en) Method for producing iron base sintered alloys containing copper
US20050163646A1 (en) Method of forming articles from alloys of tin and/or titanium
JPH11158570A (en) Material and its manufacture
Wang Properties of high density powder forged iron based alloy
CN113667862B (en) TiAl intermetallic compound reinforced aluminum-silicon composite material and preparation method thereof
Acimovic-Pavlovic et al. Synthesis of ZrO2 particles reinforced ZA25 alloy composites by compocasting process
JPH0330708B2 (en)
JPS62278239A (en) Manufacture of composite material
Metelnick et al. As-cast structure and the effects of temperature on an Al-Si metal matrix composite reinforced with Ni3Al-type ribbons
JPH0436410A (en) Complex sintered tungsten alloy
JP3090873B2 (en) Mold and its manufacturing method
JP2571596B2 (en) Manufacturing method of composite material composed of ceramic and metal