JPH06198119A - Method for recovering volatile matter - Google Patents
Method for recovering volatile matterInfo
- Publication number
- JPH06198119A JPH06198119A JP4361471A JP36147192A JPH06198119A JP H06198119 A JPH06198119 A JP H06198119A JP 4361471 A JP4361471 A JP 4361471A JP 36147192 A JP36147192 A JP 36147192A JP H06198119 A JPH06198119 A JP H06198119A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- adsorption tower
- regeneration
- regeneration gas
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treating Waste Gases (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Separation Of Gases By Adsorption (AREA)
- Drying Of Gases (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、フロン(クロロフルオ
ロカーボン)などに代表される揮発性物質の回収方法に
関するものであり、特に、混合気体の成分気体として存
在する揮発性物質を分離回収する方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering volatile substances represented by Freon (chlorofluorocarbon) and the like, and more particularly, a method for separating and recovering volatile substances existing as a component gas of a mixed gas. It is about.
【0002】[0002]
【従来技術】混合気体から特定の成分気体を分離する方
法の一つとして、合成ゼオライトや活性炭などを充填し
た一対の吸着塔の一方に混合気体を通過させ、これらの
吸着剤に、特定の成分気体を吸着させて分離し、同時
に、前段の工程において、特定成分気体を吸着して捕捉
している他方の吸着塔には、温度及び/又は圧力の異な
る再生用ガスを通じて、吸着平衡条件を変化させて特定
成分気体を脱着し、該他方の吸着塔を再生する方法が行
われている。2. Description of the Related Art As one of the methods for separating a specific component gas from a mixed gas, the mixed gas is passed through one of a pair of adsorption towers filled with synthetic zeolite, activated carbon, etc. Gas is adsorbed and separated, and at the same time, the adsorption equilibrium condition is changed by passing the regeneration gas with different temperature and / or pressure to the other adsorption tower that adsorbs and captures the specific component gas in the previous step. Then, the specific component gas is desorbed, and the other adsorption tower is regenerated.
【0003】混合気体中の揮発性物質を分離回収するに
は、この揮発性物質を吸着剤から脱着して混合気体とし
て伴送する再生用ガスを揮発性物質の凝縮温度以下に冷
却して液化し回収する方法が行われる。その際に、混合
気体中に、水分が含まれていると、目的物質の捕捉効率
が低下する。また、吸着剤再生が短時間では十分に行わ
れなくなって、吸着塔の能力が低下すると共に、回収す
べき揮発性物質がフロンなどのように凝縮温度の低い物
質である場合は、凝縮器として冷凍式冷却器を用いる必
要があるが、混合気体中の水分が、該冷却器の冷却フィ
ンに着霜して、その能力を低下させてしまうおそれがあ
った。In order to separate and collect volatile substances in the mixed gas, the regeneration gas which desorbs the volatile substances from the adsorbent and carries them as a mixed gas is cooled to a temperature below the condensation temperature of the volatile substances and liquefied. Then, the method of collecting is performed. At that time, if the mixed gas contains water, the efficiency of capturing the target substance decreases. Also, if the adsorbent is not sufficiently regenerated in a short time, the capacity of the adsorption tower is reduced, and if the volatile substance to be recovered is a substance with a low condensation temperature such as CFC, it will be used as a condenser. Although it is necessary to use a refrigerating cooler, there is a possibility that the water content in the mixed gas may frost the cooling fins of the cooler and reduce its performance.
【0004】このような方法の欠点を改善する目的で、
混合気体中から水蒸気を分離する方法としては、冷却法
或いは吸着法などが一般に行われるが、装置が複雑化し
或いは吸着剤の再生処理工程が新たに必要となるなど処
理工程が輻輳する欠点がある。このような不利益のない
除湿器として、例えば、特開平2−99113に開示さ
れるような水分分離膜を隔膜とする除湿器の一側(一次
側)に湿度の高い被処理気体を通し、隔膜を隔てた他側
(二次側)に乾燥気体を通すことにより、水蒸気を一次
側から二次側に拡散移行させて分離する装置が知られて
いる。In order to improve the drawbacks of such a method,
As a method of separating water vapor from the mixed gas, a cooling method or an adsorption method is generally performed, but there is a drawback that the processing steps are congested such as a complicated apparatus or a new adsorbent regeneration processing step is required. . As a dehumidifier without such a disadvantage, for example, a high-humidity target gas is passed through one side (primary side) of a dehumidifier having a water separation membrane as a diaphragm as disclosed in JP-A-2-99113. There is known a device in which water vapor is diffused and transferred from the primary side to the secondary side by passing a dry gas through the other side (secondary side) across the diaphragm to separate the vapor.
【0005】しかしながら、この除湿装置を組み込んだ
回収装置は、除湿機構が簡単で、従来の除湿器のように
ドレンや吸着剤の再生等の処理は不要であるものの、従
来、該除湿装置の一次側には、気体圧縮機や吸着剤の加
熱再生の為に、ある程度温度上昇した再生用ガスが通過
し、一方、二次側を通過する気体として、分離工程にあ
る吸着塔を通過した乾燥排ガスをそのまま用いているの
で、該除湿装置において、隔膜を介して若干の熱交換が
行われるとしても、十分なものでなく、冷凍式冷却器に
は、過負荷が生じやすく、また、再生用ガス中の水分の
除去も十分に行なわれなかったため、冷凍機への着霜の
おそれがあり、冷却フィンの着霜及び霜取り管理が欠か
せなかった。However, a recovery device incorporating this dehumidifying device has a simple dehumidifying mechanism and does not require treatment such as regeneration of drain and adsorbent as in a conventional dehumidifier, but it is conventionally a primary dehumidifying device. On the side, the regeneration gas whose temperature has risen to a certain degree for heating and regeneration of the gas compressor and the adsorbent passes through, while as the gas passing through the secondary side, the dry exhaust gas that has passed through the adsorption tower in the separation process. Since it is used as it is, even if some heat exchange is performed through the diaphragm in the dehumidifier, it is not sufficient, and the refrigerating cooler is likely to be overloaded, and the regeneration gas Since water in the inside was not sufficiently removed, there was a risk of frost formation on the refrigerator, and frost formation on the cooling fins and defrosting management were essential.
【0006】[0006]
【発明の目的】本発明は、従来の揮発性物質の回収方法
において、目的の物質を凝縮分離した後の再生用ガス
を、そのまま大気中へ放出するなど、系外に放出してし
まっていたために、熱損失が大きかった点に注目し、再
生工程において、再生用ガスを循環して再利用すること
により、エネルギー収支の向上、水分分離膜式除湿器の
除湿能力の向上、及び、冷凍機への過負荷や着霜の防止
を実現することを目的とするものである。The object of the present invention is that, in the conventional method for recovering volatile substances, the regenerating gas after the desired substance is condensed and separated is released to the outside of the system, such as being released into the atmosphere. Attention was paid to the fact that the heat loss was large, and in the regeneration process, by circulating and reusing the regeneration gas, the energy balance was improved, the dehumidification capacity of the moisture separation membrane dehumidifier was improved, and the refrigerator was used. The purpose is to prevent overload and frost formation.
【0007】[0007]
【発明の構成】本発明の第一の要旨は、気化した揮発性
物質を含む被処理気体を、吸着活性を有する吸着塔に導
いて、揮発性物質を吸着して捕捉する分離工程と、該分
離工程を経て揮発性物質を捕捉した吸着塔に再生用ガス
を通して揮発性物質の脱着と吸着活性の再生とを行う再
生工程と、吸着塔を通過した再生用ガスを凝縮器に通し
て、再生用ガス中の揮発性物質を液化して回収する回収
工程とを含む揮発性物質の回収方法において、前記再生
工程にある吸着塔を、再生用ガスを送気する気体圧縮
機,熱交換器,水分分離膜を隔膜とする除湿器及び凝縮
器と連結して再生用ガスの循環流路を形成し、前記再生
工程にある吸着塔から出た再生用ガスが、気体圧縮機で
加圧されてから熱交換器の一次側に入り、該熱交換器に
おいて、凝縮器を通過した低温の再生用ガスと熱交換し
た後、前記除湿器の一次側に入って除湿され、次いで、
凝縮器において揮発性物質を分離してから前記熱交換器
の二次側を通って吸着塔に戻るように循環させることを
特徴とする揮発性物質の回収方法にある。The first aspect of the present invention is to provide a separation step of introducing a gas to be treated containing a vaporized volatile substance to an adsorption tower having adsorption activity to adsorb and capture the volatile substance. A regeneration process in which a regeneration gas is passed through an adsorption tower that has captured volatile substances through a separation process to desorb volatile substances and regenerate the adsorption activity, and the regeneration gas that has passed through the adsorption tower is passed through a condenser for regeneration. In a method for recovering a volatile substance, which comprises liquefying and recovering a volatile substance in a working gas, a gas compressor, a heat exchanger, which feeds the regenerating gas to the adsorption tower in the regenerating process, A circulation channel for regeneration gas is formed by connecting with a dehumidifier having a water separation membrane as a diaphragm and a condenser, and the regeneration gas discharged from the adsorption tower in the regeneration step is pressurized by a gas compressor. To the primary side of the heat exchanger, where it passes through the condenser. Low temperature after regeneration gas and heat exchange with, dehumidified enters the primary side of the dehumidifier, then
In the method for recovering a volatile substance, the volatile substance is separated in a condenser and then circulated so as to pass through the secondary side of the heat exchanger and return to the adsorption tower.
【0008】本発明の第二の要旨は、気化した揮発性物
質を含む被処理気体の供給管に切替弁を介して相互に並
列に接続する複数の吸着塔のうち、吸着活性を有する吸
着塔に前記被処理気体を導いて揮発性物質を吸着して捕
捉する分離工程と、前段における分離工程を経て揮発性
物質を捕捉した吸着塔には再生用ガスを通して揮発性物
質の脱着と吸着活性の再生とを行う再生工程とを同時に
並行して行うと共に、吸着塔を通過した再生用ガスを凝
縮器に通して、再生用ガス中の揮発性物質を液化して回
収する回収工程とを含む揮発性物質の回収方法におい
て、前記再生工程にある吸着塔を、再生用ガスを送気す
る気体圧縮機,熱交換器,水分分離膜を隔膜とする除湿
器及び凝縮器と連結して再生用ガスの循環流路を形成
し、前記再生工程にある吸着塔から出た再生用ガスが、
気体圧縮機で加圧されてから熱交換器において凝縮器を
経た低温の再生用ガスと熱交換した後前記除湿器の一次
側に入って除湿され、次いで、凝縮器において揮発性物
質を分離してから吸着塔に戻るように循環させることを
特徴とする揮発性物質の回収方法にある。A second aspect of the present invention is an adsorption tower having an adsorption activity among a plurality of adsorption towers connected in parallel to each other through a switching valve to a supply pipe of a gas to be treated containing a vaporized volatile substance. In the separation step of guiding the gas to be treated to adsorb and capture the volatile substance, the adsorption tower that has captured the volatile substance through the separation step in the previous stage passes a regeneration gas through the regeneration gas to desorb and adsorb the volatile substance. And a regeneration step of performing regeneration at the same time in parallel, and a recovery step of passing the regeneration gas that has passed through the adsorption tower through a condenser to liquefy and recover the volatile substances in the regeneration gas. In the method for recovering a volatile substance, the adsorption tower in the regeneration step is connected to a gas compressor for feeding the regeneration gas, a heat exchanger, a dehumidifier having a water separation membrane as a diaphragm, and a condenser for regeneration gas. To form a circulation flow path for Play for gas exiting from the adsorption tower,
After being pressurized with a gas compressor, the heat exchanger exchanges heat with the low-temperature regeneration gas that has passed through the condenser, then enters the primary side of the dehumidifier to be dehumidified, and then the volatile substances are separated in the condenser. A method for recovering volatile substances is characterized in that the volatile substances are circulated so as to return to the adsorption tower after the operation.
【0009】本発明の第三の要旨は、上記第一又は第二
の要旨において規定した揮発性物質の回収方法におい
て、凝縮器から熱交換器に至る再生用ガス循環流路に再
生用ガス加熱器を設け、熱交換器から除湿器に至る再生
用ガス循環流路を流れる再生用ガスの温度が、所定温度
以下になったら再生用ガス加熱器を作動させるようにす
ることを特徴とする揮発性物質の回収方法にあり、目的
物質の凝縮温度や回収装置を取り囲む雰囲気温度などに
より、凝縮器を通過して冷却された後熱交換器に入る再
生用ガスの温度が必要以上に低下することを防止するも
のである。A third aspect of the present invention is the method for recovering a volatile substance defined in the first or second aspect, wherein the regeneration gas circulation passage extending from the condenser to the heat exchanger is heated by the regeneration gas. A volatilization device is provided to activate the regeneration gas heater when the temperature of the regeneration gas flowing through the regeneration gas circulation flow path from the heat exchanger to the dehumidifier falls below a predetermined temperature. The temperature of the regenerating gas that has passed through the condenser and is cooled and then enters the heat exchanger is lowered more than necessary due to the condensation temperature of the target substance and the ambient temperature surrounding the recovery device. Is to prevent.
【0010】また、上記第一及び第二要旨において規定
された揮発性物質の回収方法において、再生用ガスが、
凝縮器を通って温度低下した後熱交換器を通過する際、
気体圧縮機で加圧された再生用ガスと熱交換して温度上
昇することにより、相対湿度が低下した乾燥再生用ガス
として、除湿器の二次側を通過するようにした回収方法
も、本発明方法に含まれる。以下、実施例に基づいて、
詳細に説明する。In the method for recovering volatile substances defined in the first and second aspects, the regeneration gas is
When passing through the heat exchanger after the temperature has dropped through the condenser,
The recovery method is also designed to pass through the secondary side of the dehumidifier as dry regeneration gas whose relative humidity has decreased by exchanging heat with the regeneration gas pressurized by the gas compressor to raise the temperature. Included in the inventive method. Hereinafter, based on the examples,
The details will be described.
【0011】[0011]
【実施例】図1及び2は、本発明にかかる方法を実施す
るための装置の一例である。図において、1は、フロン
などの揮発性溶剤を用いる洗浄槽の上端周縁や上方に開
口する被処理気体の吸入口で、ダクトを介してブロアB
に接続している。このブロアの出口管路をなす被処理気
体の供給管2には、電動3方切替弁V0を介して、一対
の主吸着塔A1,A2がつながっており、更に、これらの
吸着塔の夫々に、開閉弁の操作により、選択的に接続可
能な補助吸着塔A3が設けられて、揮発性物質の吸着分
離部を形成している。H1〜H3は、これら吸着塔に直列
につながるダクト中に電気ヒータを収納して成る気体加
熱器である。1 and 2 show an example of an apparatus for carrying out the method according to the invention. In the figure, reference numeral 1 is a suction port for the gas to be treated which is opened at the upper edge of the cleaning tank using a volatile solvent such as CFC or at the upper side, and is a blower B through a duct
Connected to. A pair of main adsorption towers A 1 and A 2 are connected to a supply pipe 2 for the gas to be treated, which is an outlet pipe line of the blower, via an electric three-way switching valve V 0. Each of them is provided with an auxiliary adsorption tower A 3 which can be selectively connected by operating the on-off valve, and forms an adsorption separation section for volatile substances. H 1 to H 3 are gas heaters each having an electric heater housed in a duct connected in series with these adsorption towers.
【0012】吸着塔には、分離回収すべき目的物質の性
状に応じて、活性炭や合成ゼオライト、シリカゲル等
の、適宜な気体吸着剤が充填される。このような吸着塔
の夫々に、切替弁を備えた管路を介して凝縮回収部が接
続している。凝縮回収部は、吸着塔を脱着再生した後の
再生用ガスと必要に応じて大気導入口6から補充される
空気とを吸入管5から吸入し、加圧再生用ガスとしてア
フタークーラーC3に向けて吐き出す気体圧縮機P、エ
アフィルタF、熱交換器E、気液分離器S1、水分分離
膜式除湿器D、冷凍式凝縮器G、気液分離器S2を、こ
の順序に結合して、前記吸着塔A1〜A3と共に、適宜に
開閉弁を備えた管路によって、気体循環流路を為すよう
に接続したものから成る。The adsorption tower is filled with an appropriate gas adsorbent such as activated carbon, synthetic zeolite or silica gel depending on the properties of the target substance to be separated and recovered. A condensation recovery unit is connected to each of these adsorption towers via a pipe line provided with a switching valve. The condensing / recovering section sucks the regeneration gas after desorption / regeneration of the adsorption tower and the air supplemented from the air introduction port 6 as necessary through the suction pipe 5, and supplies it to the aftercooler C 3 as a pressurized regeneration gas. The gas compressor P, the air filter F, the heat exchanger E, the gas-liquid separator S 1 , the moisture separation membrane type dehumidifier D, the refrigeration condenser G, and the gas-liquid separator S 2 which are discharged toward them are combined in this order. The adsorption towers A 1 to A 3 are connected to form a gas circulation flow path by a conduit provided with an opening / closing valve as appropriate.
【0013】V1〜V6,V8〜V11,V13〜V16は、夫
々、上記管路を切り替える電動開閉弁であり、V7及び
V12は、共に減圧弁である。また、3は、パージ口、4
は、回収タンク、7はドレンタンク、8は、逆止弁であ
り、C1〜C4は、ファン式のクーラーである。水分分離
膜式除湿器Eは、特開平2−99113に開示されてい
るようなパーフルオロスルホン系イオン交換膜から成る
水分分離膜を中空糸型にしたものを用い、中空糸膜内を
熱交換器の一次側流路とし、これを囲む容器内を二次側
流路としたものを用いたが、水分分離膜は、ポリイミド
系水分分離膜をはじめとして、その他の公知の水分分離
膜が用いられ得る。これらの分離膜の形状も、中空糸型
に限られず、平膜型など公知のものが採用できる。V 1 to V 6 , V 8 to V 11 , and V 13 to V 16 are electric on-off valves for switching the above-mentioned pipelines, and V 7 and V 12 are both pressure reducing valves. Further, 3 is a purge port, 4
Is a recovery tank, 7 is a drain tank, 8 is a check valve, and C 1 to C 4 are fan type coolers. As the moisture separation membrane type dehumidifier E, a hollow fiber type moisture separation membrane composed of a perfluorosulfone-based ion exchange membrane as disclosed in JP-A-2-99113 is used, and heat exchange is performed inside the hollow fiber membrane. As the primary side flow path of the vessel, the one surrounding the container was used as the secondary side flow path, but as the water separation membrane, other known water separation membranes were used, including the polyimide water separation membrane. Can be done. The shape of these separation membranes is not limited to the hollow fiber type, and a known type such as a flat membrane type can be adopted.
【0014】上述のような回収装置を用いて、本願回収
方法の一例として、フロンを回収する場合を説明する。
前段における再生工程を受けることにより、吸着活性が
再生されている吸着塔A2に、切替弁V0を通して、フロ
ンガスを含んだ被処理空気が導かれ、該吸着塔A2を通
過する際に、フロンガスは、吸着剤に捕捉され、したが
って、該吸着塔A2を通過した空気は、フロンを実質的
に含まない状態で、開閉弁V16を通ってパージ口3か
ら、大気に放出される。この時、開閉弁V9、V14及び
V15は閉じていることは言うまでもない。したがって、
今後の記述においては、煩雑を避ける為に、気体の流れ
る道筋を主として説明し、開閉弁は、予め設定された制
御プログラムによって、その流れが実現するように開閉
動作するものとする。As an example of the recovery method of the present invention using the recovery device as described above, the case of recovering CFCs will be described.
By undergoing regeneration steps in the previous stage, the adsorption tower A 2 adsorption activity is being played through the switching valve V 0, the process air is guided containing chlorofluorocarbon, in passing through the adsorption tower A 2, The chlorofluorocarbon gas is trapped by the adsorbent, so that the air that has passed through the adsorption tower A 2 is discharged to the atmosphere from the purge port 3 through the opening / closing valve V 16 in a state that the fluorocarbon gas is substantially free of chlorofluorocarbon. It goes without saying that the open / close valves V 9 , V 14 and V 15 are closed at this time. Therefore,
In the following description, in order to avoid complexity, the gas flow path will be mainly described, and the opening / closing valve will be opened / closed so as to realize the flow by a preset control program.
【0015】上記のフロンの分離工程と並行して、再生
工程の一部として、先ず、補助吸着塔A3の脱着再生と
該脱着フロンの吸着塔A1への吸着濃縮工程が行われ
る。圧縮機Pから吐き出される再生用ガス(再生用空
気)は、クーラーC3で若干温度を下げ(外気温度を2
0℃前後とすれば約60℃)、フィルタFで吸着剤等の
微粒子を除去され、熱交換器Eの一次側に入る。ここ
で、凝縮器Gを通過し回収すべき対象とするフロンの加
圧下(例えば7kg/cm2)における凝縮温度以下に
冷却された再生用ガスにより冷却(例えば10℃以下)
されて、ドレンを分離し、相対湿度が100%に近い状
態で除湿器Dの一次側に入る。As a part of the regeneration step, first, the desorption regeneration of the auxiliary adsorption column A 3 and the adsorption concentration step of the desorption CFC in the adsorption column A 1 are performed in parallel with the above-mentioned CFC separation step. The temperature of the regeneration gas (regeneration air) discharged from the compressor P is slightly lowered by the cooler C 3 (the outside air temperature is set to 2
When the temperature is around 0 ° C., the temperature is about 60 ° C.), the fine particles such as the adsorbent are removed by the filter F, and the particles enter the primary side of the heat exchanger E. Here, it is cooled (for example, 10 ° C. or less) by a regeneration gas cooled to a temperature equal to or lower than the condensation temperature under pressure (eg, 7 kg / cm 2 ) of the CFCs to be recovered that has passed through the condenser G.
Then, the drain is separated and enters the primary side of the dehumidifier D in a state where the relative humidity is close to 100%.
【0016】この除湿器の二次側には、前記熱交換器の
二次側を通過して温度上昇(40℃前後)し、更に、減
圧弁V12を通過して常圧付近に圧力低下することによ
り、相対湿度の低下した再生用ガスが、V11、クーラC
4をこの順序で経た後に、流れている。かくして、除湿
器Dの一次側を流れる再生用ガスは、極めて高い効率で
除湿乾燥される(例えば大気圧露点−35℃以下)の
で、凝縮器Gにおいて、回収すべきフロンの加圧下にお
ける凝縮温度を越えて、更に低い温度に冷却されても、
冷凍機の冷却フィンに着霜するおそれの無い状態で、冷
凍式凝縮器に入る。The secondary side of the dehumidifier passes through the secondary side of the heat exchanger to increase the temperature (around 40 ° C.), and further passes through the pressure reducing valve V 12 to reduce the pressure to near normal pressure. By doing so, the regenerating gas with a reduced relative humidity is V 11 , cooler C
After going through 4 in this order, it is flowing. Thus, the regeneration gas flowing through the primary side of the dehumidifier D is dehumidified and dried with extremely high efficiency (for example, the atmospheric pressure dew point is −35 ° C. or lower), so that the condensation temperature of the Freon to be recovered under pressure in the condenser G is increased. Even if it is cooled to a lower temperature,
Enter the refrigeration condenser with no risk of frost on the cooling fins of the refrigerator.
【0017】次に、再生用ガスは、前述のように、凝縮
器Gから熱交換器E、除湿器Dの二次側、開閉弁V8を
経て、気体加熱器H3を通って加熱されてから、補助吸
着塔に入り、該塔A3を脱着再生し、次いで、開閉弁V3
を通って主吸着塔A1に入り、脱着したフロンを主吸着
塔に吸着させて濃縮する。補助吸着塔から脱着したフロ
ンは、前段の主吸着塔A1の再生工程時に、凝縮器で完
全に凝縮分離できずに再生用ガスと共に還流してくるフ
ロンを加圧吸着によって吸着捕捉された分である。主吸
着塔A1を経た再生用ガスは、開閉弁V13を通って圧縮
機に戻り、再び同一流路を循環する。Next, the regeneration gas is heated from the condenser G through the heat exchanger E, the secondary side of the dehumidifier D, the on-off valve V 8 and the gas heater H 3 as described above. After that, the auxiliary adsorption tower is entered, the tower A 3 is desorbed and regenerated, and then the on-off valve V 3
After passing through the column, it enters the main adsorption tower A 1 , and the desorbed CFC is adsorbed on the main adsorption tower and concentrated. The CFC desorbed from the auxiliary adsorption tower was adsorbed and captured by the pressure adsorption of CFC which could not be completely condensed and separated in the condenser during the regeneration process of the main adsorption tower A 1 in the preceding stage and was refluxed together with the regeneration gas. Is. The regeneration gas passing through the main adsorption tower A 1 returns to the compressor through the on-off valve V 13 , and circulates in the same flow path again.
【0018】補助吸着塔の脱着再生が終了すると、開閉
弁が切り替わると共に、気体加熱器H3が停止し、代わ
って気体加熱器H1が作動する。再生用ガスは、図2に
おいて、太線で示すように、圧縮機P→熱交換器Eの一
次側→除湿器Dの一次側→凝縮器G→熱交換器Eの二次
側→開閉弁V4→補助吸着塔A3→クーラーC1→減圧弁
V7→開閉弁V6→除湿器Dの二次側→開閉弁V10→気体
加熱器H1→吸着塔A1→開閉弁V1→クーラーC2→圧縮
機Pの循環流路を循環する。When the desorption / regeneration of the auxiliary adsorption tower is completed, the on-off valve is switched, the gas heater H 3 is stopped, and the gas heater H 1 is operated instead. The regeneration gas is, as shown by the thick line in FIG. 2, the compressor P → the primary side of the heat exchanger E → the primary side of the dehumidifier D → the condenser G → the secondary side of the heat exchanger E → the open / close valve V. 4 → auxiliary adsorption tower A 3 → cooler C 1 → pressure reducing valve V 7 → open / close valve V 6 → secondary side of dehumidifier D → open / close valve V 10 → gas heater H 1 → adsorption tower A 1 → open / close valve V 1 → Cooler C 2 → Circulates in the circulation passage of the compressor P.
【0019】気体加熱器H1で加熱された常圧付近の再
生用ガスは、吸着塔H1を加熱して、吸着剤に濃縮され
ているフロンガスを脱着し、前記補助吸着塔の脱着再生
工程において詳述したように、これが圧縮機で加圧さ
れ、次いで、熱交換器で冷却されて、低温高湿状態で除
湿器に入り、水分分離膜を通して二次側に水蒸気を拡散
放出して、所要の低温低湿条件を獲得する。この所要条
件とは、除湿器を経た再生用ガスが、分離回収すべき揮
発性物質としてのフロンの加圧下における凝縮温度より
も、再生用ガス(空気)に含まれる水蒸気の同一圧にお
ける凝縮温度の方が低くなるように、乾燥されているこ
とである。The regeneration gas near atmospheric pressure heated by the gas heater H 1 heats the adsorption tower H 1 to desorb the fluorocarbon gas concentrated in the adsorbent, and the desorption regeneration step of the auxiliary adsorption tower. As described in detail in 1., this is pressurized by a compressor, then cooled by a heat exchanger, enters a dehumidifier in a low temperature and high humidity state, diffuses and releases water vapor to a secondary side through a moisture separation membrane, Acquire the required low temperature and low humidity conditions. This requirement is that the temperature of the regeneration gas that has passed through the dehumidifier is the condensation temperature of the steam contained in the regeneration gas (air) at the same pressure, rather than the condensation temperature of CFCs under pressure, which is the volatile substance to be separated and recovered. Is to be dried so that it is lower.
【0020】凝縮器Gを通過した気体中には、僅かでは
あるが、フロンが未分離のまま残存することは免れ得な
い。このために、熱交換器を経た再生用ガスを、高圧の
状態のままで補助吸着塔A3に導き、既に再生されてい
る吸着剤層を通過させることにより、希薄なフロンガス
の成分分圧を高めて、吸着剤に吸着させて除去する。か
くして、補助吸着塔を通過した再生用ガスのフロンの分
圧は殆ど0に等しい状態となる。再生用ガスは、補助吸
着塔において、水分の吸着も行われて乾燥されるが、更
に、減圧弁V7により常圧付近まで減圧されることによ
り、相対湿度が極めて低下した状態で除湿器Dの二次側
を通り、次いで、気体加熱器H1で加熱されて、再び、
吸着塔A1を脱着再生する。この循環が所定時間繰り返
されることにより、吸着塔A1の脱着再生工程が完了す
る。In the gas that has passed through the condenser G, it is inevitable that a small amount of CFCs remain unseparated. For this reason, the regeneration gas that has passed through the heat exchanger is guided to the auxiliary adsorption tower A 3 while maintaining a high pressure state, and is passed through the adsorbent layer that has already been regenerated, so that the partial pressure of the dilute Freon gas component is reduced. It is raised and adsorbed on an adsorbent to be removed. Thus, the partial pressure of the Freon of the regeneration gas that has passed through the auxiliary adsorption column becomes almost equal to zero. The regeneration gas is also dried by adsorbing moisture in the auxiliary adsorption tower, and is further depressurized by the decompression valve V 7 to near normal pressure, so that the dehumidifier D is in a state where the relative humidity is extremely reduced. Of the gas heater H 1 and then again,
The adsorption tower A 1 is desorbed and regenerated. By repeating this circulation for a predetermined time, the desorption / regeneration step of the adsorption tower A 1 is completed.
【0021】10は、凝縮器Gから熱交換器Eの二次側
流路に至る再生用ガス流路に設けた電気ヒーター、冷凍
式凝縮器Gからバイパスされたホットガス熱交換器等か
ら成る気体加熱器で、熱交換器の一次側流路を経て除湿
器Dに向かう再生用ガスの温度を検出する温度検出器1
1の検出信号に基づいて、該再生用ガス温度が、所定の
設定温度以下になると作動して、熱交換器の二次側に入
る再生用ガスの温度を上昇させ、熱交換器において、目
的物質が凝縮分離されるのを防止する。したがって、こ
の設定温度は、回収すべき揮発性物質の凝縮温度によっ
て決められる。この気体加熱器10は、本願装置を冬季
に運転する場合のように、装置を取り囲む雰囲気温度が
低い場合に有効である。Reference numeral 10 is an electric heater provided in the regeneration gas flow path from the condenser G to the secondary side flow path of the heat exchanger E, a hot gas heat exchanger bypassed from the refrigeration condenser G, and the like. A temperature detector 1 for detecting the temperature of the regeneration gas, which is directed to the dehumidifier D through the primary side flow path of the heat exchanger, in the gas heater 1.
On the basis of the detection signal of No. 1, when the temperature of the regeneration gas falls below a predetermined set temperature, the temperature of the regeneration gas entering the secondary side of the heat exchanger rises, Prevents material from condensing and separating. Therefore, this set temperature is determined by the condensation temperature of the volatile substance to be recovered. The gas heater 10 is effective when the ambient temperature surrounding the device is low, such as when the device of the present application is operated in winter.
【0022】吸着塔A1の再生工程が完了すると、切替
弁V0が切り替わり、それまで、分離工程に付されてい
た吸着塔A2が、補助吸着塔A3と共に、前記と全く同様
な再生工程に入り、吸着塔A1には、被処理空気が導入
され分離工程に付される。この主吸着塔A1,A2間にお
ける交替を継続することにより、気化した溶剤の回収を
継続して行うことができる。When the regeneration step of the adsorption tower A 1 is completed, the switching valve V 0 is switched, and the adsorption tower A 2 which has been subjected to the separation step until then, together with the auxiliary adsorption tower A 3 , is regenerated in exactly the same manner as described above. In the process, the air to be treated is introduced into the adsorption tower A 1 and subjected to the separation process. By continuing the exchange between the main adsorption towers A 1 and A 2 , the vaporized solvent can be continuously recovered.
【0023】上記実施例では、揮発性物質を継続して分
離回収する方法を例示したが、これは、一定時間(例え
ば、昼間の作業時間帯)は、上記実施例装置の吸着分離
部により、分離工程のみを行い、夜間など分離工程が不
要な時間帯に、凝縮回収部を作動させて吸着塔の再生と
目的物質の凝縮回収とを行うようにしてもよい。In the above-mentioned embodiment, the method of continuously separating and recovering the volatile substance is exemplified. This is because the adsorption separation section of the above-mentioned apparatus is used for a certain period of time (for example, the working hours of the day). It is also possible to perform only the separation step and operate the condensation recovery section to perform regeneration of the adsorption tower and condensation recovery of the target substance during a time period such as nighttime when the separation step is unnecessary.
【0024】[0024]
【効果】本発明にかかる揮発性物質の回収方法は、再生
用ガスとして、系外から新たに補給される気体の量は、
ごく僅かで、大部分が、系内を循環して再利用するよう
にしているので、エネルギー損失が極めて少なく、従っ
て、また、新たに、外気中の水蒸気が系内に入ってくる
機会も少ないので、吸着塔や除湿器への負担が軽減され
る。更に、熱交換器Eが、凝縮器に向かう再生用ガスの
予備冷却と水分分離膜式除湿器の除湿性能の大幅な向上
を達成することにより、冷凍式凝縮器の冷凍機への霜取
り管理が全く不要になり、メンテナンスフリーの回収装
置を提供することができる。[Effect] In the method for recovering volatile substances according to the present invention, the amount of gas newly replenished from outside the system as regeneration gas is
Very little, and most of them circulate in the system for reuse, so there is very little energy loss, and therefore, there is little opportunity for water vapor in the outside air to newly enter the system. Therefore, the load on the adsorption tower and the dehumidifier is reduced. Furthermore, the heat exchanger E achieves the pre-cooling of the regeneration gas toward the condenser and the significant improvement of the dehumidification performance of the moisture separation membrane type dehumidifier, so that the defrosting control of the refrigerator of the refrigeration type condenser can be performed. It is not necessary at all, and a maintenance-free recovery device can be provided.
【図1】本発明にかかる回収方法を実施するための装置
の一例を示す概念図で、太線で示す流路は、補助吸着塔
の再生工程における再生用ガスの循環流路を示すもので
ある。FIG. 1 is a conceptual diagram showing an example of an apparatus for carrying out a recovery method according to the present invention, and a flow path indicated by a thick line shows a circulation flow path of a regeneration gas in a regeneration process of an auxiliary adsorption tower. .
【図2】図1の概念図において、主吸着塔の再生工程に
おける流路を太線により示すものである。FIG. 2 shows a flow path in the regeneration process of the main adsorption tower by a thick line in the conceptual diagram of FIG.
A1〜A2 主吸着塔 A3 補助吸着塔 B ブロア C1〜C4 ファン式クー
ラー H1〜H3 気体加熱器 V0 切替弁 V2〜V6、V8〜V11、V12〜V16 開閉弁 P 圧縮機 E 熱交換器 D 水分分離膜式
除湿器 G 冷凍式凝縮器 1 被処理気体吸
入口 6 大気吸入口 4 回収タンクA 1 to A 2 main adsorption tower A 3 auxiliary adsorption tower B blower C 1 to C 4 fan type cooler H 1 to H 3 gas heater V 0 switching valve V 2 to V 6 , V 8 to V 11 , V 12 to V 16 Open / close valve P Compressor E Heat exchanger D Moisture separation membrane type dehumidifier G Refrigerating condenser 1 Treated gas inlet 6 Atmosphere inlet 4 Recovery tank
Claims (6)
吸着活性を有する吸着塔に導いて、揮発性物質を吸着し
て捕捉する分離工程と、該分離工程を経て揮発性物質を
捕捉した吸着塔に再生用ガスを通して揮発性物質の脱着
と吸着活性の再生とを行う再生工程と、吸着塔を通過し
た再生用ガスを凝縮器に通して、再生用ガス中の揮発性
物質を液化して回収する回収工程とを含む揮発性物質の
回収方法において、前記再生工程にある吸着塔を、再生
用ガスを送気する気体圧縮機,熱交換器,水分分離膜を
隔膜とする除湿器及び凝縮器と連結して再生用ガスの循
環流路を形成し、前記再生工程にある吸着塔から出た再
生用ガスが、気体圧縮機で加圧されてから熱交換器の一
次側に入り、該熱交換器において、凝縮器を通過した低
温の再生用ガスと熱交換した後、前記除湿器の一次側に
入って除湿され、次いで、凝縮器において揮発性物質を
分離してから前記熱交換器の二次側を通って吸着塔に戻
るように循環させることを特徴とする揮発性物質の回収
方法。1. A gas to be treated containing a vaporized volatile substance,
A separation step of guiding to an adsorption tower having adsorption activity to adsorb and capture a volatile substance, and a regeneration gas is passed through the adsorption tower capturing the volatile substance through the separation step to desorb the volatile substance and In a method for recovering a volatile substance, which includes a recovery process for performing a regeneration process, a recovery gas passing through an adsorption tower through a condenser, and a recovery process for liquefying and recovering a volatile substance in the recovery gas, The adsorption tower in the regeneration step is connected to a gas compressor for feeding the regeneration gas, a heat exchanger, a dehumidifier having a water separation membrane as a diaphragm, and a condenser to form a circulation channel for the regeneration gas. , The regeneration gas discharged from the adsorption tower in the regeneration step enters the primary side of the heat exchanger after being pressurized by the gas compressor, and in the heat exchanger, the low-temperature regeneration gas that has passed through the condenser After exchanging heat with, it enters the primary side of the dehumidifier and is dehumidified, Ide, method for recovering volatile substances, characterized in that to circulate back to the adsorption tower through the secondary side of the heat exchanger of volatiles is separated in the condenser.
給管に切替弁を介して相互に並列に接続する複数の吸着
塔のうち、吸着活性を有する吸着塔に前記被処理気体を
導いて揮発性物質を吸着して捕捉する分離工程と、前段
における分離工程を経て揮発性物質を捕捉した吸着塔に
は再生用ガスを通して揮発性物質の脱着と吸着活性の再
生とを行う再生工程とを同時に並行して行うと共に、吸
着塔を通過した再生用ガスを凝縮器に通して、再生用ガ
ス中の揮発性物質を液化して回収する回収工程とを含む
揮発性物質の回収方法において、前記再生工程にある吸
着塔を、再生用ガスを送気する気体圧縮機,熱交換器,
水分分離膜を隔膜とする除湿器及び凝縮器と連結して再
生用ガスの循環流路を形成し、前記再生工程にある吸着
塔から出た再生用ガスが、気体圧縮機で加圧されてから
熱交換器の一次側に入り、該熱交換器において凝縮器を
経た低温の再生用ガスと熱交換した後前記除湿器の一次
側に入って除湿され、次いで、凝縮器において揮発性物
質を分離してから前記熱交換器の二次側を通って吸着塔
に戻るように循環させることを特徴とする揮発性物質の
回収方法。2. The gas to be treated is introduced into an adsorption tower having adsorption activity among a plurality of adsorption towers connected in parallel to each other through a switching valve to a supply pipe for the gas to be treated containing a vaporized volatile substance. A separation step of adsorbing and capturing a volatile substance by a gas, and a regeneration step of desorbing the volatile substance and regenerating the adsorption activity through a regeneration gas through the adsorption tower that has captured the volatile substance through the separation step in the previous stage. In parallel with the above, the regeneration gas that has passed through the adsorption tower is passed through a condenser, and in a recovery method for volatile substances, including a recovery step of liquefying and recovering volatile substances in the regeneration gas, A gas compressor, a heat exchanger, for feeding a regeneration gas to the adsorption tower in the regeneration step.
A circulation channel for regeneration gas is formed by connecting with a dehumidifier having a water separation membrane as a diaphragm and a condenser, and the regeneration gas discharged from the adsorption tower in the regeneration step is pressurized by a gas compressor. To the primary side of the heat exchanger, and after heat exchange with the low temperature regeneration gas that has passed through the condenser in the heat exchanger, enters the primary side of the dehumidifier to be dehumidified, and then to remove volatile substances in the condenser. A method for recovering a volatile substance, characterized in that the volatile substance is circulated through the secondary side of the heat exchanger and back to the adsorption tower after the separation.
流路に再生用ガス加熱器を設け、熱交換器から除湿器に
至る再生用ガス循環流路を流れる再生用ガスの温度が、
所定温度以下になったら再生用ガス加熱器を作動させる
請求項1又は2の回収方法。3. A regeneration gas heater is provided in the regeneration gas circulation passage from the condenser to the heat exchanger, and the temperature of the regeneration gas flowing through the regeneration gas circulation passage from the heat exchanger to the dehumidifier is ,
The recovery method according to claim 1 or 2, wherein the regeneration gas heater is operated when the temperature becomes equal to or lower than a predetermined temperature.
主吸着塔の夫々に選択的に連通可能な補助吸着塔とから
成り、再生工程において、再生用ガスが補助吸着塔を通
過した後に主吸着塔に入るように、補助吸着塔を主吸着
塔に接続し、先ず、補助吸着塔を脱着再生して、その再
生用ガスを主吸着塔に通して脱着成分を主吸着塔に吸着
させて濃縮し、補助吸着塔の脱着再生後に行われる主吸
着塔の脱着再生時には、凝縮器で液化分離できなかった
循環再生用ガス中の揮発性物質の残留成分を補助吸着塔
に加圧吸着させてから、再生用ガスを減圧して主吸着塔
に流すようにする請求項1〜3のいずれかに記載の回収
方法。4. A plurality of adsorption towers comprises a pair of adsorption towers and an auxiliary adsorption tower that can selectively communicate with each of the pair of main adsorption towers, and the regeneration gas is used in the regeneration step. The auxiliary adsorption tower is connected to the main adsorption tower so that it enters the main adsorption tower after passing through.First, the auxiliary adsorption tower is desorbed and regenerated, and the regeneration gas is passed through the main adsorption tower to remove the desorbed components from the main adsorption tower. At the time of desorption regeneration of the main adsorption tower, which is performed after desorption regeneration of the auxiliary adsorption tower, the residual components of the volatile substances in the circulation regeneration gas that could not be liquefied and separated by the condenser were added to the auxiliary adsorption tower. The recovery method according to any one of claims 1 to 3, wherein after the pressure adsorption, the regeneration gas is decompressed and allowed to flow in the main adsorption tower.
圧縮機で加圧された再生用ガスと熱交換して相対湿度が
低下した再生用ガスを除湿器の二次側を通過させる請求
項1〜4のいずれかに記載の回収方法。5. The regeneration gas whose relative humidity has been lowered by exchanging heat with the regeneration gas pressurized by the gas compressor in the heat exchanger in the regeneration step is passed through the secondary side of the dehumidifier. The recovery method according to any one of to 4.
おいて気体圧縮機で加圧された再生用ガスと熱交換して
相対湿度が低下した再生用ガスを補助吸着塔に通して更
に乾燥させてから除湿器の二次側を通過させる請求項4
の回収方法。6. In the regeneration step of the main adsorption tower, the regeneration gas whose relative humidity is lowered by exchanging heat with the regeneration gas pressurized by the gas compressor in the heat exchanger is further dried by passing through the auxiliary adsorption tower. 5. After making it pass, the secondary side of a dehumidifier is passed.
Recovery method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4361471A JPH06198119A (en) | 1992-12-29 | 1992-12-29 | Method for recovering volatile matter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4361471A JPH06198119A (en) | 1992-12-29 | 1992-12-29 | Method for recovering volatile matter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06198119A true JPH06198119A (en) | 1994-07-19 |
Family
ID=18473727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4361471A Pending JPH06198119A (en) | 1992-12-29 | 1992-12-29 | Method for recovering volatile matter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06198119A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100375079B1 (en) * | 2000-10-17 | 2003-03-07 | 안창덕 | Method for recovery of volatile organic compounds by adsorption-condensation and apparatus therefor |
GB2398525A (en) * | 2003-06-21 | 2004-08-25 | Engineering & Design Services | Compressed gas drying system |
CN113365718A (en) * | 2019-01-31 | 2021-09-07 | 东洋纺株式会社 | Organic solvent recovery system |
-
1992
- 1992-12-29 JP JP4361471A patent/JPH06198119A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100375079B1 (en) * | 2000-10-17 | 2003-03-07 | 안창덕 | Method for recovery of volatile organic compounds by adsorption-condensation and apparatus therefor |
GB2398525A (en) * | 2003-06-21 | 2004-08-25 | Engineering & Design Services | Compressed gas drying system |
CN113365718A (en) * | 2019-01-31 | 2021-09-07 | 东洋纺株式会社 | Organic solvent recovery system |
CN113365718B (en) * | 2019-01-31 | 2023-07-25 | 东洋纺株式会社 | Organic solvent recovery system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4197713A (en) | Process and plant for the recovery of water from humid air | |
US6221130B1 (en) | Method of compressing and drying a gas and apparatus for use therein | |
KR100266344B1 (en) | How to recover volatile organics | |
JP4252668B2 (en) | Gas purification method | |
JP4671940B2 (en) | Gaseous hydrocarbon treatment and recovery apparatus and method | |
CN105682776B (en) | Compression heat dryer system | |
CN105032113B (en) | Process for capturing carbon dioxide in flue gas based on wet reclamation technology | |
JP5588163B2 (en) | Solvent recovery device | |
JPH04171019A (en) | Process for removing water content in mixed gas | |
JP2021159816A (en) | Carbon dioxide separation/collection system | |
KR100793980B1 (en) | Absorption type air drying system for both purge process and non-purge process of using compression heat | |
JP6697535B1 (en) | Radioactive gas treatment equipment, radioactive material treatment system and nuclear reactor equipment | |
JP2012011343A (en) | Apparatus for generating low dew point air | |
JPH08141353A (en) | Dehumidifier | |
JPH06198119A (en) | Method for recovering volatile matter | |
CN108636068A (en) | A kind of compressed air absorption drier control system | |
JPH09122432A (en) | Gas separator using pressure swing adsorption process | |
CN114719459A (en) | Deep dehumidification system driven by cascade heat pump and application | |
JPS58150412A (en) | Method and apparatus for recovering substantially anhydrous desorbed substance | |
CN111482164A (en) | Online adsorption material activation device and method | |
JP7266328B1 (en) | water intake device | |
JPH01130717A (en) | Method for dehumidifying compressed air | |
JPS6087830A (en) | Regenerating process of drying agent for dehumidifyer of compressed gas | |
JP3223253B2 (en) | CFC regeneration method and apparatus | |
JPH0639670Y2 (en) | Solvent recovery device |