JPH06196169A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary batteryInfo
- Publication number
- JPH06196169A JPH06196169A JP4197677A JP19767792A JPH06196169A JP H06196169 A JPH06196169 A JP H06196169A JP 4197677 A JP4197677 A JP 4197677A JP 19767792 A JP19767792 A JP 19767792A JP H06196169 A JPH06196169 A JP H06196169A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- discharge
- battery
- charge
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は非水電解液二次電池の改
良に関するもので、正極の芯材として発泡アルミニウム
を使用することにより、高容量で、充放電サイクル寿命
の長い、高電圧タイプの非水電解液二次電池を提供する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a non-aqueous electrolyte secondary battery, which uses a foamed aluminum as a core material of a positive electrode, so that it has a high capacity, a long charge / discharge cycle life, and a high voltage type. This non-aqueous electrolyte secondary battery is provided.
【0002】[0002]
【従来の技術】近年、ラップトップコンピュータ、ワー
プロ等の携帯情報機器、カメラ一体型VTR 、液晶テレビ
等のAV機器や、携帯電話等の移動体通信機器等のよう
に、電源としての電池に対し、大電流、高出力を要求す
る機器が多種多様に発達し、より高エネルギー密度の二
次電池が要望されている。機器が薄形化、小型化するに
つれ電池も薄形化、小型化が要求され、それらの要求に
応えるべく、種々の新しい二次電池が提案されている。2. Description of the Related Art Recently, batteries such as laptop computers, word processors and other portable information devices, camera-integrated VTRs, AV devices such as LCD TVs, mobile communication devices such as mobile phones, etc. With the development of a wide variety of devices that require large current and high output, there is a demand for secondary batteries with higher energy density. As devices become thinner and smaller, batteries are also required to be thinner and smaller, and various new secondary batteries have been proposed to meet those demands.
【0003】非水電解液を使用した二次電池は、従来の
水溶液電解液を使用した電池の数倍のエネルギー密度を
有することから、その実用化が待たれている。非水電解
液は、非プロトン性の有機溶媒に電解質となる金属塩を
溶解させたものである。例えば、リチウム塩に関して
は、 LiClO4 、LiPF6 、LiBF4 、 LiAsF6 、LiCF3 SO3
等をプロピレンカーボネート、エチレンカーボネート、
1,2-ジメトキシエタン、γ- ブチロラクトン、ジオキソ
ラン、2-メチルテトラヒドロフラン、ジエチルカーボネ
ート、ジメチルカーボネート、スルホラン等の単独溶
媒、あるいはこれらの混合溶媒に溶解させたものが使用
されている。これらの非水電解液は、電池容器に注入さ
れて使用されるが、多孔質のセパレータに含浸したり、
高分子量の樹脂を添加して高粘性にしたり、ゲル化させ
て流動性をなくした状態で使用されることもある。Secondary batteries using non-aqueous electrolytes have energy densities several times higher than those of batteries using conventional aqueous electrolytes, and therefore practical application is awaited. The non-aqueous electrolytic solution is a solution of a metal salt serving as an electrolyte in an aprotic organic solvent. For example, for lithium salts, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3
Propylene carbonate, ethylene carbonate, etc.
A single solvent such as 1,2-dimethoxyethane, γ-butyrolactone, dioxolane, 2-methyltetrahydrofuran, diethyl carbonate, dimethyl carbonate, sulfolane, or a mixture thereof is used. These non-aqueous electrolytes are used by injecting into a battery container, but impregnating a porous separator,
It may be used in the state where it is made to have a high viscosity by adding a high molecular weight resin or is made into a gel to lose fluidity.
【0004】非水電解液電池の負極活物質として、従来
より様々な物質が検討されてきたが、高エネルギー密度
が期待されるものとして、リチウム系の負極が注目を浴
びている。特に非水電解液二次電池の負極として、リチ
ウム金属、リチウム合金、リチウムイオンを保持させた
炭素等が検討されている。Various materials have been studied as a negative electrode active material for a non-aqueous electrolyte battery, but a lithium-based negative electrode has been attracting attention because it is expected to have a high energy density. Particularly, as a negative electrode of a non-aqueous electrolyte secondary battery, lithium metal, lithium alloy, carbon having lithium ions retained, and the like have been studied.
【0005】リチウム金属は高い起電力を有し、高エネ
ルギー密度が期待できるが、その高い反応性のために電
池の安全性に問題があり、充電反応において微粒子状の
金属リチウムが発生しやすく、内部短絡や充放電効率の
低下等が起こるという大きな問題を抱えている。Lithium metal has a high electromotive force and can be expected to have a high energy density, but due to its high reactivity, there is a problem in the safety of the battery, and particulate lithium metal is likely to be generated in the charging reaction. It has a big problem that internal short circuit and charge / discharge efficiency decrease.
【0006】リチウム合金は、このような放電反応に関
与しない金属リチウムの発生を防止することができる
が、特性上合金の電位がリチウム電位に対して貴方向に
シフトし、放電電圧が低下するという欠点があった。ま
た成分に金属リチウムを含有しているために、安全性に
は問題を残していた。Lithium alloys can prevent the generation of metallic lithium that is not involved in the discharge reaction, but due to the characteristics, the potential of the alloy shifts in a noble direction relative to the lithium potential, and the discharge voltage decreases. There was a flaw. Further, since the component contains metallic lithium, there was a problem in safety.
【0007】安全性の問題を改善するために、リチウム
イオンを保持するホスト物質として、炭素負極が検討さ
れている。充電された炭素負極は、結晶格子の層間にリ
チウムイオンを保持しており、放電反応により容易にリ
チウムイオンを放出する。炭素負極は、金属リチウムを
使用しないので安全性に優れ、充放電による劣化も少な
く、長寿命の有機電解液二次電池が可能となった。In order to improve the safety problem, a carbon negative electrode has been studied as a host material holding lithium ions. The charged carbon negative electrode holds lithium ions between the layers of the crystal lattice, and easily discharges lithium ions by the discharge reaction. The carbon negative electrode is excellent in safety because it does not use metallic lithium, and is less likely to deteriorate due to charge / discharge, making it possible to provide a long-life organic electrolyte secondary battery.
【0008】ホスト物質として炭素を使用することによ
り、リチウム以外のアルカリ金属のイオンも使用するこ
とが可能である。カリウムやナトリウムはリチウムより
安価であり、イオン状態で使用するかぎり安定であり、
危険性はない。By using carbon as the host material, it is possible to use alkali metal ions other than lithium. Potassium and sodium are cheaper than lithium and are stable as long as they are used in the ionic state,
There is no danger.
【0009】非水電解液二次電池の正極活物質として、
リチウムコバルト複合酸化物( LiCoO2 )やリチウムニ
ッケル複合酸化物( LiNiO2 )、リチウムマンガン複合
酸化物(LiMn2 O4 )等の単独、あるいはこれらの混合
物やその成分の一部を他の金属で置換したものが、最適
なものと考えられている。これらの活物質を用いた電池
は平均作動電圧が3.6V程度と、ニッケル−カドミウム電
池の1.2Vと比較して約3 倍の高い電圧を持つことから、
電池のより一層の高エネルギー密度化及び小型化が可能
である。As a positive electrode active material for a non-aqueous electrolyte secondary battery,
Lithium-cobalt composite oxide (LiCoO 2 ), lithium-nickel composite oxide (LiNiO 2 ), lithium-manganese composite oxide (LiMn 2 O 4 ), etc., alone, or as a mixture or part of their components with other metals. The replacement is considered the best one. Batteries using these active materials have an average operating voltage of about 3.6 V, which is about three times higher than the 1.2 V of nickel-cadmium batteries.
It is possible to further increase the energy density and downsize the battery.
【0010】[0010]
【発明が解決しようとする課題】LiCoO2 や LiNiO2 、L
iMn2 O4 のような正極活物質を用いた場合、充電末期
に端子電圧が4Vを越えることがあり、その高い電圧の
為、電極芯材も制限を受け、鉄やニッケル、ステンレス
等を用いることはできず、高い電圧でも安定なアルミニ
ウムを用いる必要があった。アルミニウムはその表面が
薄い酸化物の皮膜で覆われており、リチウム電位に対し
て4.5V以上の電位においても耐食性がある。[Problems to be Solved by the Invention] LiCoO 2 , LiNiO 2 , L
When a positive electrode active material such as iMn 2 O 4 is used, the terminal voltage may exceed 4 V at the end of charging, and due to the high voltage, the electrode core material is also limited, and iron, nickel, stainless steel, etc. are used. However, it is necessary to use aluminum that is stable even at high voltage. The surface of aluminum is covered with a thin oxide film and is corrosion resistant even at a potential of 4.5 V or more with respect to the lithium potential.
【0011】従来、アルミニウムをシート状のまま、あ
るいはパンチング加工を施したものを正極の芯材として
用い、接着用のバインダを含んだペースト状の正極合剤
をその両面に塗布した電極が用いられている。Conventionally, an electrode in which aluminum is used as a sheet or punched is used as a core material of a positive electrode and a paste-like positive electrode mixture containing a binder for adhesion is applied to both surfaces thereof is used. ing.
【0012】しかしながら、正極合剤とアルミニウム芯
材との接触は充分ではなく、放電容量や充放電サイクル
寿命に問題を残していた。電池の充電、放電を繰り返す
と、正極へのリチウムの挿入、脱離にともない正極活物
質の膨張、収縮がおこり、塗布した正極合剤が電極芯材
から剥離するために長寿命の二次電池を得ることができ
なかった。バインダの添加量を増加すれば、電極芯材へ
の接着性は向上するが電極自体の電導性が悪くなり、電
極の厚さが増すにつれて、活物質の利用率が低下した。However, the contact between the positive electrode mixture and the aluminum core material is not sufficient, and there remains a problem in discharge capacity and charge / discharge cycle life. When the battery is repeatedly charged and discharged, the positive electrode active material expands and contracts as lithium is inserted into and removed from the positive electrode, and the applied positive electrode mixture peels off from the electrode core material, resulting in a long-life secondary battery. Couldn't get When the amount of the binder added was increased, the adhesion to the electrode core material was improved, but the electrical conductivity of the electrode itself deteriorated, and the utilization rate of the active material decreased as the thickness of the electrode increased.
【0013】また、アルミニウム表面の酸化皮膜は、優
れた耐食性を示す理由であるが、正極活物質からの集電
効果を妨げる原因にもなっている。アルミニウム芯材と
正極活物質との界面における抵抗は大きく、本質的に高
率放電は不可能であった。Further, the oxide film on the surface of aluminum is the reason why it exhibits excellent corrosion resistance, but it is also a cause of hindering the current collecting effect from the positive electrode active material. The resistance at the interface between the aluminum core material and the positive electrode active material was large, and high rate discharge was essentially impossible.
【0014】[0014]
【課題を解決するための手段】本発明は、充電可能な負
極と、アルカリ金属イオンを含む非水電解液と、充電可
能な正極とを具備する非水電解液二次電池において、発
泡アルミニウムを正極の芯材に使用することを特徴とす
るものである。The present invention provides a non-aqueous electrolyte secondary battery comprising a rechargeable negative electrode, a non-aqueous electrolyte containing an alkali metal ion, and a rechargeable positive electrode. It is characterized by being used as a core material of a positive electrode.
【0015】正極芯材として、単位体積当りの表面積の
大きな発泡アルミニウムを用いることにより、高率放電
が可能で、単位面積当たりの放電容量が大きく、充放電
サイクル寿命の長い非水電解液二次電池が可能となっ
た。By using foamed aluminum having a large surface area per unit volume as the positive electrode core material, a high rate discharge is possible, the discharge capacity per unit area is large, and the non-aqueous electrolyte secondary battery has a long charge / discharge cycle life. Batteries are now available.
【0016】[0016]
【作用】正極芯材として発泡アルミニウムを用いること
により、正極合剤は芯材の立体ネットワーク内に保持さ
れることになり、充電、放電によって活物質の体積変化
が起こっても、集電体表面からの脱落や剥離が防止され
るようになった。従来の集電金属と活物質との接着に用
いられていたバインダーは必ずしも必要でなく、その量
を減らしたり、なくすことが可能であり、電極の電導性
が増加し、大電流での充放電が可能となった。[Function] By using the foamed aluminum as the positive electrode core material, the positive electrode mixture is retained in the three-dimensional network of the core material, and even if the volume change of the active material occurs due to charging and discharging, the current collector surface It has come to be prevented from falling off and peeling. The binder used to bond the current collecting metal to the active material is not always necessary, and it is possible to reduce or eliminate the amount of the binder, increasing the electrical conductivity of the electrode, and charging / discharging with a large current. Became possible.
【0017】また、正極芯材の表面積の増加により、正
極合剤との接触面積が増加し、アルミニウム表面の酸化
皮膜の影響を減らすことが可能となった。アルミニウム
は発泡体とすることにより、その表面積はシートに対し
て、4 〜1000倍以上に増加する。Further, since the surface area of the positive electrode core material is increased, the contact area with the positive electrode mixture is increased and the influence of the oxide film on the aluminum surface can be reduced. When aluminum is used as a foam, its surface area is increased by a factor of 4 to 1000 or more compared to the sheet.
【0018】発泡アルミニウムは、連続気泡のセル(単
位胞)を有する海綿状多孔体のセル構造をアルミニウム
で置き換えたものである。発泡ウレタン樹脂のような多
孔体の表面にアルミニウムをメッキしたのち、基体の多
孔体を燃焼させて取り除いたり、石膏のような無機物質
でセル構造を写し取り、溶融アルミニウムを流し込んだ
のち、無機物質を溶解させて製造することができる。ま
た、塩化ナトリウムのような水溶性の粉末の粒子間に溶
融アルミニウムを真空含侵し、冷却後、粉末粒子を溶出
して製造することもできる。The foamed aluminum is obtained by replacing the cell structure of a spongy porous body having open-cell cells (unit cells) with aluminum. After aluminum is plated on the surface of a porous body such as urethane foam resin, the porous body of the substrate is burned and removed, or the cell structure is copied with an inorganic substance such as gypsum, and molten aluminum is poured, and then the inorganic substance Can be dissolved and manufactured. Alternatively, it can be produced by vacuum impregnating molten aluminum between particles of a water-soluble powder such as sodium chloride, cooling, and then eluting the powder particles.
【0019】発泡アルミニウムのセルの開孔径は、各種
製法により、1 μm 以下から10mm以上の大きさまで製造
可能である。使用する球状炭素の大きさに合わせて、最
適な開孔径の発泡金属を使用することができるが、開孔
径30μm から1mm の間のものが電極として取扱い易い。The open pore diameter of the foamed aluminum cell can be produced by various production methods from 1 μm or less to 10 mm or more. A foam metal with an optimum opening diameter can be used according to the size of the spherical carbon used, but an electrode with an opening diameter of 30 μm to 1 mm is easy to handle as an electrode.
【0020】[0020]
【実施例】図1は本発明の一実施例である角形電池の要
部断面図である。1 is a cross-sectional view of a main part of a prismatic battery according to an embodiment of the present invention.
【0021】1はステンレス鋼製の角形容器であり、そ
の内部に負極2と、セパレータ3、正極4を収納してい
る。負極2は発泡ニッケルに炭素粉末を保持させたもの
であり、非水電解液を含浸したポリプロピレン製の多孔
質セパレータ3を介して、発泡アルミニウムに保持した
LiCoO2 正極と交互に挿入されている。5は容器蓋であ
り、容器1の開口部に周縁部で溶接されている。容器蓋
5の中央部にはガスケット6を介してはとめ7が固定さ
れており、正極端子9が溶接されている。8は正極端子
9の内部に固定された安全弁であり、はとめ7の開口部
を封止している。10は、電池の異常時に内部圧力が上
昇し、安全弁8が作動したときの排気口である。11は
負極2の上部に設けた負極リードであり、電池蓋5の内
面に接続されている。12は正極4の上部に設けた正極
リードであり、正極接続片13を介してはとめ7と接続
している。Reference numeral 1 denotes a stainless steel rectangular container in which a negative electrode 2, a separator 3 and a positive electrode 4 are housed. The negative electrode 2 is made by holding carbon powder in foamed nickel, and is held in foamed aluminum via a polypropylene porous separator 3 impregnated with a non-aqueous electrolyte.
It is inserted alternately with LiCoO 2 positive electrodes. Reference numeral 5 denotes a container lid, which is welded to the opening of the container 1 at the peripheral edge. A stopper 7 is fixed to the center of the container lid 5 via a gasket 6, and a positive electrode terminal 9 is welded thereto. A safety valve 8 is fixed inside the positive electrode terminal 9, and seals the opening of the eyelet 7. Reference numeral 10 denotes an exhaust port when the internal pressure rises when the battery is abnormal and the safety valve 8 operates. Reference numeral 11 denotes a negative electrode lead provided on the upper portion of the negative electrode 2 and connected to the inner surface of the battery lid 5. Reference numeral 12 is a positive electrode lead provided on the positive electrode 4, and is connected to the stopper 7 through the positive electrode connecting piece 13.
【0022】本発明電池の正極4は次のようにして作製
した。正極活物質である LiCoO2 を重量比で85部と、導
電剤のアセチレンブラック10部と結着剤のPTFEデイ スパ
ージョン水溶液(ポリ四フッ化エチレン樹脂15%)20
部、ポリエチレングリコール10部、水10部を混練してペ
ースト状にし、厚さ1.0mm 、多孔度93%のアルミニウム
発泡体に塗布した後、乾燥、圧延を施して、厚さ0.5mm
の電極基板を作成した。この基板を打ち抜いて、幅14m
m、長さ52mmの短冊状正極を得た。正極1 枚中の活物質
の重量は1.05g で、90mAh の放電が可能である。The positive electrode 4 of the battery of the present invention was manufactured as follows. 85 parts by weight of the positive electrode active material, LiCoO 2 , 10 parts by weight of acetylene black as a conductive agent and an aqueous solution of PTFE dispersion as a binder (polytetrafluoroethylene resin 15%) 20
Part, polyethylene glycol 10 parts, and water 10 parts are kneaded to form a paste, which is applied to an aluminum foam having a thickness of 1.0 mm and a porosity of 93%, followed by drying and rolling to a thickness of 0.5 mm.
The electrode substrate of was prepared. This board is punched out, width 14m
A strip-shaped positive electrode having a length of m and a length of 52 mm was obtained. The weight of the active material in one positive electrode is 1.05g, and discharge of 90mAh is possible.
【0023】負極2は次のようにして作製した。負極活
物質である炭素材料98部と、結着剤のポリフッ化ビニリ
デン2 部と溶剤のN-メチル-2- ピロリドン30部を混練し
てペースト状にし、厚さ1.0mm 、多孔度98%のニッケル
発泡体に塗布した後、乾燥、圧延を施して、厚さ0.5mm
の電極基板を作成した。この電極基板を打ち抜いて、幅
14mm、長さ52mmの短冊状の負極板を得た。負極1枚当り
の活物質炭素合剤の重量は0.40g であった。ここで用い
た炭素材料は、気相成長法により作製した炭素繊維で、
X線回折法により求めた物性値は、結晶層間距離( dOO
2 )が3.36オングストローム、結晶子の長さ(Lc)が39
オングストロームであり、185mAh/gの放電容量を有して
いる。負極に使用したニッケル発泡体は、ポリウレタン
樹脂よりなる海綿状発泡体の表面に、無電解メッキ法に
よりニッケルメッキを施し、電気炉中で加熱してポリウ
レタン樹脂を燃焼させて除去することにより得たもので
ある。The negative electrode 2 was manufactured as follows. 98 parts of the carbon material that is the negative electrode active material, 2 parts of polyvinylidene fluoride as a binder and 30 parts of N-methyl-2-pyrrolidone as a solvent are kneaded into a paste, and the thickness is 1.0 mm and the porosity is 98%. After being applied to nickel foam, it is dried and rolled to a thickness of 0.5 mm.
The electrode substrate of was prepared. This electrode board is punched out and the width
A strip-shaped negative electrode plate having a length of 14 mm and a length of 52 mm was obtained. The weight of the active material carbon mixture per one negative electrode was 0.40 g. The carbon material used here is carbon fiber produced by vapor phase growth method,
The physical property values obtained by the X-ray diffraction method are the crystal interlayer distance (dOO
2 ) is 3.36 Å, and the crystallite length (Lc) is 39.
It is Angstrom and has a discharge capacity of 185 mAh / g. The nickel foam used for the negative electrode was obtained by nickel-plating the surface of a spongy foam made of polyurethane resin by electroless plating, heating in an electric furnace and burning to remove the polyurethane resin. It is a thing.
【0024】上記の正極3 枚、負極4 枚を使用して角形
の二次電池を構成した。セパレータとして、厚さ0.18m
m、目付け 50g/m2 のポリプロピレン不織布を用い、正
極板を被覆し、周囲をヒートシールした。非水電解質と
して、エチレンカーボネートとジエチルカーボネートの
1 :1 混合溶媒にLiPF6 を1 モル/リットルの割合で溶
解したものを使用した。実施例電池の寸法は、厚さ6mm
、幅16mm、高さ65mmであり、電池の公称容量は250mAh
である。A prismatic secondary battery was constructed using the above three positive electrodes and four negative electrodes. Thickness of 0.18m as a separator
A positive electrode plate was covered with a polypropylene non-woven fabric having a m and basis weight of 50 g / m 2 , and the periphery was heat-sealed. As non-aqueous electrolyte, ethylene carbonate and diethyl carbonate
LiPF 6 dissolved in a 1: 1 mixed solvent at a ratio of 1 mol / liter was used. The size of the example battery is 6 mm thick
, Width 16mm, height 65mm, the nominal capacity of the battery is 250mAh
Is.
【0025】従来例として、従来の製法による正極板を
使用した電池を作製した。正極以外の構成品は本発明実
施例と同じものを使用した。従来の正極板の作製法は次
の通りである。As a conventional example, a battery using a conventional positive electrode plate was manufactured. The components other than the positive electrode were the same as those used in the examples of the present invention. The conventional method for producing a positive electrode plate is as follows.
【0026】正極活物質である LiCoO2 85部と、導電剤
のアセチレンブラック10部と結着剤のPTFEディスパージ
ョン水溶液(ポリ四フッ化エチレン樹脂15%)34部を混
練してスラリー状とし、厚さ0.10mmのパンチング加工を
施したアルミニウム基板の両面に塗布後、乾燥、圧延を
施し、厚さ0.5mm の電極基板を作成した。この基板を打
ち抜いて、幅14mm、長さ52mmの短冊状の負極板を得た。
この正極板の1 枚当りの活物質合剤量は、1.10g であ
る。この正極板3 枚と負極板4 枚を使用して、比較例電
池を製作した。85 parts of LiCoO 2 as a positive electrode active material, 10 parts of acetylene black as a conductive agent, and 34 parts of a PTFE dispersion aqueous solution (15% of polytetrafluoroethylene resin) as a binder were kneaded to form a slurry, A 0.10 mm thick punched aluminum substrate was coated on both sides, dried and rolled to form a 0.5 mm thick electrode substrate. This substrate was punched out to obtain a strip-shaped negative electrode plate having a width of 14 mm and a length of 52 mm.
The amount of the active material mixture per sheet of this positive electrode plate was 1.10 g. A battery of a comparative example was manufactured by using the three positive electrode plates and the four negative electrode plates.
【0027】図2に電池の放電特性を示した。Aは本発
明の実施例電池であり、Bは従来の製法による正極を使
用した比較例電池である。何れも温度25℃において、電
流125mA で端子電圧4.1Vまで充電した後、同じ電流で2.
8Vまで放電したものである。FIG. 2 shows the discharge characteristics of the battery. A is an example battery of the present invention, and B is a comparative example battery using a positive electrode manufactured by a conventional method. In each case, at a temperature of 25 ° C, after charging to a terminal voltage of 4.1V with a current of 125mA, 2.
It is discharged to 8V.
【0028】本発明電池Aの正極はバインダの量が少な
く、基板の発泡アルミニウムとの接触が良いために、活
物質の利用率が高く放電容量が増加した。The positive electrode of Battery A of the present invention had a small amount of binder and good contact with the foamed aluminum of the substrate, so that the utilization rate of the active material was high and the discharge capacity was increased.
【0029】図3は充放電サイクル数と放電容量の関係
を示したものである。いずれも常温において、125mA の
電流で、2.8V〜4.1Vの電圧範囲で充放電を繰り返すこと
により、放電容量の変化を調べた。FIG. 3 shows the relationship between the number of charge / discharge cycles and the discharge capacity. In each case, the change in discharge capacity was investigated by repeating charging and discharging at a voltage of 2.8 V to 4.1 V at a current of 125 mA at room temperature.
【0030】実施例電池Aは、使用したバインダの量が
少ないにも関わらず、充放電サイクルにおける放電容量
の減少が少なかった。300 サイクル終了後に電池を解体
したところ、比較例電池Bは、正極の一部に活物質合剤
が基板から剥離しているのが認められたが、本発明電池
にはその様な剥離は観察されなかった。本発明電池にお
ける正極活物質は、発泡アルミニウムの内部に保持され
ているために本質的に脱落が少ないものである。In Example battery A, although the amount of binder used was small, the decrease in discharge capacity during the charge / discharge cycle was small. When the battery was disassembled after the completion of 300 cycles, the active material mixture was found to be peeled from the substrate in a part of the positive electrode of Comparative Battery B, but such peeling was observed in the battery of the present invention. Was not done. Since the positive electrode active material in the battery of the present invention is retained inside the foamed aluminum, the positive electrode active material essentially does not drop off.
【0031】[0031]
【発明の効果】本発明によれば、非水電解液二次電池に
おいて、正極の芯材に発泡アルミニウムを用いることに
より、充放電による正極合剤の脱落がなく、充放電サイ
クル寿命の長い電池を提供することが可能となった。EFFECTS OF THE INVENTION According to the present invention, in a non-aqueous electrolyte secondary battery, by using foamed aluminum for the core material of the positive electrode, the positive electrode mixture does not fall off due to charge and discharge, and the battery has a long charge and discharge cycle life. It has become possible to provide.
【0032】また、芯材の3 次元ネットワークにより、
活物質粒子間の接触が良好となり、バインダーの使用量
も減少し、電極の利用効率が上がり、大容量の電極の構
成や、大電流での充放電が可能となった。Further, by the three-dimensional network of core materials,
The contact between the active material particles was improved, the amount of the binder used was reduced, the utilization efficiency of the electrode was improved, and the structure of a large capacity electrode and the charging / discharging with a large current became possible.
【0033】尚、実施例では正極活物質として LiCoO2
を用いたが、LiMn2 O4 やその他の起電力が3.6Vを越え
るような高電圧系二次電池の正極活物質の芯体として、
有効に使用することができる。また、アルミニウムは軽
量で非水電解液中で安定であり、3.6V以下の二次電池に
使用しても軽量化と長寿命化の効果と得ることができ
る。In the examples, LiCoO 2 was used as the positive electrode active material.
Was used as the core of the positive electrode active material of a high voltage secondary battery such as LiMn 2 O 4 or other electromotive force exceeding 3.6 V,
It can be used effectively. In addition, aluminum is lightweight and stable in a non-aqueous electrolyte, and even when used in a secondary battery of 3.6 V or less, it is possible to obtain the effects of weight reduction and long life.
【図1】本発明の実施例における電池の構造を示す断面
図。FIG. 1 is a cross-sectional view showing a structure of a battery according to an embodiment of the present invention.
【図2】電池の放電特性を示す図。FIG. 2 is a diagram showing discharge characteristics of a battery.
【図3】充放電サイクル数と放電容量の関係を示す図。FIG. 3 is a diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity.
1 容器 2 負極 3 セパレータ 4 正極 5 容器蓋 6 ガスケット 7 はとめ 8 安全弁 9 正極端子 10 排気口 11 負極リード 12 正極リード 13 正極接続片 A 実施例電池 B 比較例電池 DESCRIPTION OF SYMBOLS 1 container 2 negative electrode 3 separator 4 positive electrode 5 container lid 6 gasket 7 stop 8 safety valve 9 positive electrode terminal 10 exhaust port 11 negative electrode lead 12 positive electrode lead 13 positive electrode connecting piece A example battery B comparative example battery
Claims (1)
含む非水電解液と、充電可能な正極とを具備する非水電
解液二次電池において、発泡アルミニウムを正極の芯材
に使用することを特徴とする非水電解液二次電池。1. A non-aqueous electrolyte secondary battery comprising a rechargeable negative electrode, a non-aqueous electrolyte containing an alkali metal ion, and a rechargeable positive electrode, wherein foamed aluminum is used as a core material of the positive electrode. A non-aqueous electrolyte secondary battery characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4197677A JPH06196169A (en) | 1992-06-30 | 1992-06-30 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4197677A JPH06196169A (en) | 1992-06-30 | 1992-06-30 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06196169A true JPH06196169A (en) | 1994-07-15 |
Family
ID=16378507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4197677A Pending JPH06196169A (en) | 1992-06-30 | 1992-06-30 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06196169A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0777288A1 (en) * | 1995-11-30 | 1997-06-04 | Asahi Glass Company Ltd. | Non-aqueous electrolyte type secondary battery |
WO1999038221A1 (en) * | 1998-01-23 | 1999-07-29 | Eltech Systems Corporation | Metal foam support, electrode and method of making same |
US6280878B1 (en) | 1997-05-30 | 2001-08-28 | Tdk Corporation | Electrode and lithium secondary battery using this electrode |
JP2004055247A (en) * | 2002-07-18 | 2004-02-19 | Nec Corp | Secondary battery and collector for it |
US6780543B2 (en) | 2001-02-14 | 2004-08-24 | Sanyo Electric Co., Ltd. | Aluminum or aluminum alloy-based lithium secondary battery |
JP2005285629A (en) * | 2004-03-30 | 2005-10-13 | Sanyo Electric Co Ltd | Nonaqueous electrolyte battery |
WO2008037154A1 (en) * | 2006-09-22 | 2008-04-03 | Xiaoping Ren | A lithium ion secondary battery using foam metal as current collect and a battery assembly using the same |
JP2010283042A (en) * | 2009-06-02 | 2010-12-16 | Mitsubishi Materials Corp | Electric double-layer capacitor electrode and method for producing the same |
JP2011023430A (en) * | 2009-07-13 | 2011-02-03 | Mitsubishi Materials Corp | Electrode for electric double-layer capacitor, and method for manufacturing the same |
JP2011049023A (en) * | 2009-08-27 | 2011-03-10 | Mitsubishi Materials Corp | Electrode for non-aqueous electrolyte secondary battery and method of manufacturing the same |
JP2011249287A (en) * | 2010-05-31 | 2011-12-08 | Sumitomo Electric Ind Ltd | Negative electrode for battery, manufacturing method thereof, and primary battery |
WO2012111736A1 (en) * | 2011-02-18 | 2012-08-23 | 住友電気工業株式会社 | Method of manufacturing electrode for electrochemical element |
JP2013140745A (en) * | 2012-01-06 | 2013-07-18 | Furukawa Sky Kk | Method for manufacturing porous aluminum current collector for nonaqueous electrolytic secondary battery, and method for manufacturing positive electrode for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery with positive electrode |
JP5876839B2 (en) * | 2011-02-18 | 2016-03-02 | 住友電気工業株式会社 | Three-dimensional network aluminum porous body for current collector, current collector using the aluminum porous body, electrode, non-aqueous electrolyte battery, capacitor, and lithium ion capacitor |
JP2021136150A (en) * | 2020-02-27 | 2021-09-13 | 学校法人早稲田大学 | Method for manufacturing positive electrode of secondary battery, and secondary battery |
-
1992
- 1992-06-30 JP JP4197677A patent/JPH06196169A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0777288A1 (en) * | 1995-11-30 | 1997-06-04 | Asahi Glass Company Ltd. | Non-aqueous electrolyte type secondary battery |
US6280878B1 (en) | 1997-05-30 | 2001-08-28 | Tdk Corporation | Electrode and lithium secondary battery using this electrode |
WO1999038221A1 (en) * | 1998-01-23 | 1999-07-29 | Eltech Systems Corporation | Metal foam support, electrode and method of making same |
US6780543B2 (en) | 2001-02-14 | 2004-08-24 | Sanyo Electric Co., Ltd. | Aluminum or aluminum alloy-based lithium secondary battery |
JP2004055247A (en) * | 2002-07-18 | 2004-02-19 | Nec Corp | Secondary battery and collector for it |
JP2005285629A (en) * | 2004-03-30 | 2005-10-13 | Sanyo Electric Co Ltd | Nonaqueous electrolyte battery |
WO2008037154A1 (en) * | 2006-09-22 | 2008-04-03 | Xiaoping Ren | A lithium ion secondary battery using foam metal as current collect and a battery assembly using the same |
JP2010283042A (en) * | 2009-06-02 | 2010-12-16 | Mitsubishi Materials Corp | Electric double-layer capacitor electrode and method for producing the same |
JP2011023430A (en) * | 2009-07-13 | 2011-02-03 | Mitsubishi Materials Corp | Electrode for electric double-layer capacitor, and method for manufacturing the same |
JP2011049023A (en) * | 2009-08-27 | 2011-03-10 | Mitsubishi Materials Corp | Electrode for non-aqueous electrolyte secondary battery and method of manufacturing the same |
JP2011249287A (en) * | 2010-05-31 | 2011-12-08 | Sumitomo Electric Ind Ltd | Negative electrode for battery, manufacturing method thereof, and primary battery |
WO2012111736A1 (en) * | 2011-02-18 | 2012-08-23 | 住友電気工業株式会社 | Method of manufacturing electrode for electrochemical element |
JP5876839B2 (en) * | 2011-02-18 | 2016-03-02 | 住友電気工業株式会社 | Three-dimensional network aluminum porous body for current collector, current collector using the aluminum porous body, electrode, non-aqueous electrolyte battery, capacitor, and lithium ion capacitor |
US9390866B2 (en) | 2011-02-18 | 2016-07-12 | Sumitomo Electric Industries, Ltd. | Three-dimensional network aluminum porous body for current collector, and current collector, electrode, nonaqueous electrolyte battery, capacitor and lithium-ion capacitor, each using aluminum porous body |
JP2013140745A (en) * | 2012-01-06 | 2013-07-18 | Furukawa Sky Kk | Method for manufacturing porous aluminum current collector for nonaqueous electrolytic secondary battery, and method for manufacturing positive electrode for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery with positive electrode |
JP2021136150A (en) * | 2020-02-27 | 2021-09-13 | 学校法人早稲田大学 | Method for manufacturing positive electrode of secondary battery, and secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5225615B2 (en) | Lithium ion storage battery containing TiO2-B as negative electrode active material | |
US6878487B2 (en) | Active material for battery and method of preparing same | |
US6800397B2 (en) | Non-aqueous electrolyte secondary battery and process for the preparation thereof | |
JP4961654B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3535454B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2002324585A (en) | Nonaqueous electrolyte secondary battery and capacity restoring method thereof | |
JPH06196169A (en) | Nonaqueous electrolyte secondary battery | |
JP2003242964A (en) | Non-aqueous electrolyte secondary battery | |
JP2014532955A (en) | Secondary battery | |
JP5279567B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3579280B2 (en) | Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode | |
JP2001236946A (en) | Pole plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP4453882B2 (en) | Flat non-aqueous electrolyte secondary battery | |
JP2006172860A (en) | Negative electrode for lithium secondary battery and its manufacturing method, and lithium secondary battery | |
CN108365171A (en) | Lithium ion secondary battery cathode and its manufacturing method and lithium rechargeable battery | |
JPH11120993A (en) | Nonaqueous electrolyte secondary battery | |
JPH06196170A (en) | Nonaqueous electrolyte secondary battery | |
WO2019107049A1 (en) | Cylindrical secondary battery | |
JP2013186972A (en) | Nonaqueous electrolyte secondary battery | |
JP2001357874A (en) | Nonaqueous electrolyte secondary battery | |
JP2003263979A (en) | Nonaqueous electrolyte secondary battery and its manufacturing method | |
JP4217290B2 (en) | Nonaqueous electrolyte battery using aluminum as negative electrode | |
JP3596225B2 (en) | Non-aqueous secondary battery and method of manufacturing the same | |
JP2000012026A (en) | Nonaqueous electrolyte secondary battery | |
JPH1154122A (en) | Lithium ion secondary battery |