JPH0618640A - Nucleus magnetic resonance detector - Google Patents

Nucleus magnetic resonance detector

Info

Publication number
JPH0618640A
JPH0618640A JP4176525A JP17652592A JPH0618640A JP H0618640 A JPH0618640 A JP H0618640A JP 4176525 A JP4176525 A JP 4176525A JP 17652592 A JP17652592 A JP 17652592A JP H0618640 A JPH0618640 A JP H0618640A
Authority
JP
Japan
Prior art keywords
coil
tuning
sample
circuit
sample coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4176525A
Other languages
Japanese (ja)
Other versions
JP3184849B2 (en
Inventor
Kenichi Hasegawa
長谷川憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP17652592A priority Critical patent/JP3184849B2/en
Publication of JPH0618640A publication Critical patent/JPH0618640A/en
Application granted granted Critical
Publication of JP3184849B2 publication Critical patent/JP3184849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To perform tuning at a position away from a sample coil without reducing Q and at the same time to reduce electric field loss at the sample coil for preventing generation of discharge. CONSTITUTION:In the title detector where a sample coil 30 is connected to a tuning matching circuit for resonating at a specified frequency by the tuning matching circuit, the sample circuit 30 is connected to the tuning matching circuit with a coaxial line and a resonance circuit is formed by the sample coil 30 and the coaxial line. Also, the tuning matching circuit is connected to the sample circuit 30 for high and low frequencies with the coaxial line, thus forming the resonance circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は同軸線路を用いた核磁気
共鳴(NMR)検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear magnetic resonance (NMR) detector using a coaxial line.

【0002】[0002]

【従来の技術】図7は従来のNMR検出器を示す図であ
る。図7(a)は、サンプルコイル1を引出し線2によ
り同調バリコン3、整合バリコン4に接続し目的の周波
数に共鳴させるようにしたものである。サンプルコイル
1に入れる試料は温度調整されており、引出し線2を短
くして電気部品を試料に近づけるような配置にすると温
度調整のための断熱に影響を与え、また磁場の歪みを起
こさせて共振器の性能が低下する。そこで、試料の温度
調整のための断熱への影響、磁場の歪みを防ぐためにバ
リコンをサンプルコイル1から離す必要があり、そのた
め引出し線2は省略できない。しかし、引出し線2は浮
遊容量を持つため共鳴周波数を高くできない要因とな
り、また、その抵抗のため検出器のQが低下してしま
う。そこで、従来、図7(b)に示すように、コンデン
サ5を温度調整している領域に設けてサンプルコイル1
との間で必要な共鳴を起こさせるようにし、同調バリコ
ン3で周波数を微調整するようにしていた。
2. Description of the Related Art FIG. 7 is a diagram showing a conventional NMR detector. In FIG. 7A, the sample coil 1 is connected to a tuning variable capacitor 3 and a matching variable capacitor 4 by a lead wire 2 so as to resonate at a target frequency. The temperature of the sample placed in the sample coil 1 is adjusted. If the lead wire 2 is shortened so that the electrical parts are close to the sample, the heat insulation for temperature adjustment is affected, and the magnetic field is distorted. The performance of the resonator is degraded. Therefore, it is necessary to separate the variable capacitor from the sample coil 1 in order to prevent the influence on the heat insulation for adjusting the temperature of the sample and the distortion of the magnetic field, and therefore the lead wire 2 cannot be omitted. However, the lead wire 2 has a stray capacitance, which causes a factor that the resonance frequency cannot be increased, and the resistance of the lead wire 2 lowers the Q of the detector. Therefore, conventionally, as shown in FIG. 7B, the capacitor 5 is provided in a region where the temperature is adjusted and the sample coil 1 is provided.
The required resonance was generated between the and, and the frequency was finely adjusted by the tuning variable capacitor 3.

【0003】また、図8に示すような同軸共振器を使用
したダブルチューニング回路も提案されている。この回
路は高周波(HF)に対してλ/4長を有する同軸共振
器12、13を使用し、サンプルコイル11の一端に開
放同軸共振器12を、他端に短絡同軸共振器13を接続
し、HF入出力側、低周波(LF)入出力側それぞれに
同調バリコン14、16、整合バリコン15、17を接
続したものである。HFに対して、短絡同軸共振器13
の入力端(P点)で電場が最大となり、開放同軸共振器
12の入力端(Q点)で電場は最小となり、同調バリコ
ン14で周波数調整する。このときQ点で電場が最小と
なるため、LF側へ流れるHFパワーのロスはない。ま
た、LFに対しては、終端開放の同軸共振器12はなん
ら関係なく、同軸共振器13は接地されたインダクタン
スとして作用するので、サンプルコイル1、同軸共振器
13に対して並列に接続されている同調バリコン16で
周波数調整する。こうして、HF、LFに対して独立に
周波数調整することができる。
A double tuning circuit using a coaxial resonator as shown in FIG. 8 has also been proposed. This circuit uses coaxial resonators 12 and 13 having a λ / 4 length for a high frequency (HF), and an open coaxial resonator 12 is connected to one end of the sample coil 11 and a short-circuit coaxial resonator 13 is connected to the other end. , HF input / output side and low frequency (LF) input / output side are connected with tuning capacitors 14 and 16 and matching capacitors 15 and 17, respectively. Short-circuited coaxial resonator 13 with respect to HF
The electric field is maximized at the input end (point P) of, and the electric field is minimized at the input end (point Q) of the open coaxial resonator 12, and the frequency is adjusted by the tuning variable capacitor 14. At this time, since the electric field becomes minimum at the point Q, there is no loss of HF power flowing to the LF side. Further, for the LF, the coaxial resonator 12 with an open end has nothing to do with it, and since the coaxial resonator 13 acts as an inductance that is grounded, it is connected in parallel to the sample coil 1 and the coaxial resonator 13. The frequency is adjusted by the tuning variable condenser 16 that is present. In this way, the frequency can be adjusted independently for HF and LF.

【0004】[0004]

【発明が解決しようとする課題】しかし、図7(b)に
示す回路においても、引出し線の浮遊容量のために高い
共鳴周波数を得ることは困難であるととともに、温度を
変化させると、コンデンサ5の誘電体の影響で共鳴周波
数が変化するとともに、磁場を歪ませてしまうという問
題があった。また、図7(a)、(b)においては、共
にサンプルコイルに高いRF電場が発生するため、試料
を誘電加熱してしまうとともに、サンプルコイルにおい
て放電が生じやすい。
However, even in the circuit shown in FIG. 7B, it is difficult to obtain a high resonance frequency due to the stray capacitance of the lead wire, and when the temperature is changed, the capacitor is changed. There is a problem that the resonance frequency changes due to the influence of the dielectric substance of 5 and the magnetic field is distorted. Further, in FIGS. 7A and 7B, since a high RF electric field is generated in the sample coil in both cases, the sample is dielectrically heated and discharge is likely to occur in the sample coil.

【0005】また、図8に示すダブルチューニング回路
においては、図9に示すように各電気部品(同軸共振器
12、13、バリコン14〜17)をサンプルコイル1
の設置位置から直ぐそばに配置する必要があり、このた
め試料の温度を変化させると各電気部品の温度も変化し
て回路定数が変わってしまうという問題がある。また、
図10に示すように、NMR−CT用の勾配磁場コイル
18を検出器に実装する場合は、サンプルコイル1はコ
イル18の中心部に配置する必要があるため、サンプル
コイルと各電気部品とは離れてQが低下してしまう。こ
のように、サンプルコイルと各電気部品が離せず、実装
が大変であり、またサンプルコイルにおける電場損失が
大きくなり、放電も生じ易く、また高い周波数を得にく
いという問題がある。
Further, in the double tuning circuit shown in FIG. 8, each electric component (coaxial resonators 12 and 13, variable capacitors 14 to 17) is connected to the sample coil 1 as shown in FIG.
It is necessary to dispose the device immediately next to the installation position. Therefore, if the temperature of the sample is changed, the temperature of each electric component also changes and the circuit constant changes. Also,
As shown in FIG. 10, when the gradient magnetic field coil 18 for NMR-CT is mounted on the detector, the sample coil 1 needs to be arranged in the central portion of the coil 18, so that the sample coil and each electric component are different from each other. The Q is lowered as they are separated. As described above, there are problems that the sample coil and each electric component cannot be separated from each other, mounting is difficult, electric field loss in the sample coil is large, discharge easily occurs, and it is difficult to obtain a high frequency.

【0006】本発明は上記課題を解決するためのもの
で、サンプルコイルの近い位置に同軸用コンデンサを付
ける必要がなく、離れた位置でQを低下させずに同調さ
せることができるとともに、サンプルコイルにおける電
場損失を小さくし、放電の発生を防止することができる
NMR検出器を提供することを目的とする。
The present invention is intended to solve the above-mentioned problems, and it is not necessary to attach a coaxial capacitor at a position close to the sample coil, and tuning can be performed at a distant position without lowering Q, and the sample coil can be tuned. It is an object of the present invention to provide an NMR detector capable of reducing the electric field loss in the device and preventing the occurrence of discharge.

【0007】[0007]

【課題を解決するための手段】本発明は、サンプルコイ
ルと同調整合回路を接続し、同調整合回路により所定の
周波数で共鳴させるようにした核磁気共鳴検出器におい
て、サンプルコイルと同調整合回路を同軸線路で接続
し、サンプルコイルと同軸線路で共振回路を形成するよ
うにしたことを特徴とする。また、本発明は、サンプル
コイルと高周波数用及び低周波数用の同調整合回路を接
続し、各同調整合回路によりダブルチューニングするよ
うにした核磁気共鳴検出器において、サンプルコイルと
高周波数用及び低周波数用の同調整合回路をそれぞれ同
軸線路で接続し、サンプルコイルと同軸線路で共振回路
を形成するようにしたことを特徴とする。
SUMMARY OF THE INVENTION According to the present invention, in a nuclear magnetic resonance detector in which a sample coil and a tuning matching circuit are connected and the tuning matching circuit resonates at a predetermined frequency, the sample coil and the tuning matching circuit are connected to each other. It is characterized in that a resonance circuit is formed by the coaxial line and the sample coil and the coaxial line. Further, the present invention provides a nuclear magnetic resonance detector in which a sample coil is connected to a high-frequency and low-frequency tuning matching circuit, and double tuning is performed by each tuning matching circuit. The tuning matching circuits for frequencies are connected by coaxial lines, respectively, and a resonance circuit is formed by the sample coil and the coaxial line.

【0008】[0008]

【作用】本発明はサンプルコイルと同調整合回路を同軸
線路で接続し、コイルと同軸線路で共振回路を形成して
同調を行い、また、ダブルチューニングするようにした
ので、同調整合回路がサンプルコイルから離れた位置で
Qを低下させずに目的とする周波数に共鳴させることが
できる。また、試料の温度調整によってもバリコンにお
ける温度変動が生ぜず、電気部品の実装スペースを広く
とることができるので実装が容易となる。また、NMR
に必要なのはサンプルコイルに発生するRF磁場(RF
電流がつくりだす)であって、サンプルコイルに流れる
RF電流は最大でRF電場を小さくするすることが望ま
しい。本発明では、サンプルコイルにおける電場を小さ
くすることができるので、電場損失を小さくし、放電の
発生を防止することができる。
According to the present invention, the sample coil and the tuning matching circuit are connected by the coaxial line, the resonance circuit is formed by the coil and the coaxial line to perform the tuning, and the double tuning is performed. It is possible to resonate at a target frequency without decreasing Q at a position away from. Further, even if the temperature of the sample is adjusted, the temperature fluctuation in the variable capacitor does not occur, and the mounting space for the electric component can be widened, which facilitates the mounting. Also, NMR
RF magnetic field generated in the sample coil (RF
It is desirable that the RF current flowing through the sample coil be the maximum and the RF electric field is small. In the present invention, since the electric field in the sample coil can be reduced, the electric field loss can be reduced and the occurrence of discharge can be prevented.

【0009】[0009]

【実施例】図1は本発明の一実施例を示す図で、図1
(a)は検出器を示す図、図1(b)は同軸線路におけ
るRF電場、RF電流の大きさを示す図である。図中、
30はサンプルコイル、31は内部導体、32は外部導
体、33は同調バリコン、34は整合バリコンである。
FIG. 1 is a diagram showing an embodiment of the present invention.
FIG. 1A is a diagram showing a detector, and FIG. 1B is a diagram showing magnitudes of an RF electric field and an RF current in a coaxial line. In the figure,
Reference numeral 30 is a sample coil, 31 is an inner conductor, 32 is an outer conductor, 33 is a tuning variable capacitor, and 34 is a matching variable capacitor.

【0010】内部導体31と外部導体32で同軸線路を
形成しており、外部導体32はアースされている。内部
導体31の先端にはサンプルコイルの一端を接続し、サ
ンプルコイルの他端を外部導体32のA点に接続してア
ースしている。また、内部導体の他端に同調バリコン3
3、整合バリコン34を接続してRF信号が加えられ
る。なお、内部導体31は外部導体の中心でなくてもよ
い。
The inner conductor 31 and the outer conductor 32 form a coaxial line, and the outer conductor 32 is grounded. One end of the sample coil is connected to the tip of the inner conductor 31, and the other end of the sample coil is connected to the point A of the outer conductor 32 for grounding. In addition, a tuning variable capacitor 3 is attached to the other end of the inner conductor.
3. The matching variable condenser 34 is connected and an RF signal is applied. The inner conductor 31 does not have to be the center of the outer conductor.

【0011】同軸線路は、全体でλ/4(λは波長)の
同軸共振器として動作し、同軸線路の内部導体はサンプ
ルコイルを通してアースされているので、各位置におけ
るRF電場(図の破線)、RF電流(図の実線)は図1
(b)に示すようになり、サンプルコイルの位置でRF
電場は最小、RF電流は最大となり、同調回路の接続位
置でRF電場は最大、RF電流は最小となり、バリコン
33で共鳴周波数の調整をすることができる。この検出
器においては、同軸線路が引出し線の役割を果たしてい
るので、浮遊容量は問題にならず、Qを低下させずにサ
ンプルコイルと同調回路を離すことができ、そのためス
ペースに余裕がでるので電気部品の実装が容易となり、
構造を簡単化することができる。また、サンプルコイル
の位置でRF電場は最小となるため、誘電加熱、放電の
発生を防止することができる。また、サンプルコイルに
コンデンサを付ける必要がないため、温度変化により周
波数が変化することがない。
The coaxial line operates as a λ / 4 (λ is a wavelength) coaxial resonator as a whole, and since the inner conductor of the coaxial line is grounded through the sample coil, the RF electric field at each position (broken line in the figure). , RF current (solid line in the figure) is
As shown in (b), RF at the position of the sample coil
The electric field is minimum, the RF current is maximum, the RF electric field is maximum and the RF current is minimum at the connection position of the tuning circuit, and the resonance frequency can be adjusted by the variable capacitor 33. In this detector, since the coaxial line plays the role of a lead wire, the stray capacitance does not matter, and the sample coil and the tuning circuit can be separated without lowering the Q, so there is a space available. Easy to mount electrical parts,
The structure can be simplified. Further, since the RF electric field is minimized at the position of the sample coil, it is possible to prevent dielectric heating and discharge. Further, since it is not necessary to attach a capacitor to the sample coil, the frequency does not change due to temperature change.

【0012】なお、サンプルコイルはソレノイド型コイ
ル、サドル型コイル、レゾネータ型コイルなど各種のも
のを使用することが可能であり、また、内部導体、外部
導体、サンプルコイルにより構成される同軸共振器は、
同調回路の調整により共鳴周波数を容易に広い範囲で調
整できるので必ずしもλ/4でなくてもよく、また、内
部導体、外部導体は、断面円形である必要もない。
As the sample coil, various types such as a solenoid type coil, a saddle type coil and a resonator type coil can be used, and a coaxial resonator composed of an inner conductor, an outer conductor and a sample coil is used. ,
Since the resonance frequency can be easily adjusted in a wide range by adjusting the tuning circuit, the resonance frequency does not have to be λ / 4, and the inner conductor and the outer conductor do not have to be circular in cross section.

【0013】図2〜図4は本発明の他の実施例を示す図
である。図中、40はRFコイル、41はコイル、42
は内部導体、43は外部導体、44〜46は同軸共振
器、47〜50は微調整用インダクタンス(L)、5
1、53は同調バリコン、52、54は整合バリコンで
ある。
2 to 4 are views showing another embodiment of the present invention. In the figure, 40 is an RF coil, 41 is a coil, 42
Is an inner conductor, 43 is an outer conductor, 44 to 46 are coaxial resonators, 47 to 50 are fine adjustment inductances (L), 5
Reference numerals 1 and 53 are tuning capacitors, and 52 and 54 are matching capacitors.

【0014】RFコイル40はコイル41、内部導体4
2、アースされている外部導体43で構成され、コイル
41の一端は外部導体43に接続されてアースされ、コ
イル41の他端は内部導体42の一端に接続されてい
る。RFコイル40の内部導体42の他端(a点)に
は、微調整用L47を介して同軸共振器44が接続さ
れ、同軸共振器44の他端(b点)には同調バリコン5
1、整合バリコン52が接続されてHF入出力端となっ
ている。同軸共振器44はRFコイル40の共振周波数
をHFに調整するためのものである。また、a点には微
調整用L48を介して同軸共振器45が、同軸共振器4
5の他端には微調整用L49、50を介して同軸共振器
46が接続されている。同軸共振器45、46はHF周
波数のとき、微調整用L49、50の接続点(c点)を
0インピーダンスにするためのものである。またc点に
は、同調バリコン53、整合バリコン54が接続されて
LF入出力端となっている。なお、同軸共振器45、4
6はHFの波長λに対してλ/4の長さを有し、外部導
体はそれぞれ接地されている。
The RF coil 40 includes a coil 41 and an inner conductor 4.
2. The outer conductor 43 is grounded. One end of the coil 41 is connected to the outer conductor 43 and grounded, and the other end of the coil 41 is connected to one end of the inner conductor 42. A coaxial resonator 44 is connected to the other end (point a) of the internal conductor 42 of the RF coil 40 via a fine adjustment L47, and the tuning variable capacitor 5 is connected to the other end (point b) of the coaxial resonator 44.
1. The matching variable capacitor 52 is connected to serve as an HF input / output terminal. The coaxial resonator 44 is for adjusting the resonance frequency of the RF coil 40 to HF. Further, at the point a, the coaxial resonator 45 is connected via the fine adjustment L48 to the coaxial resonator 4
A coaxial resonator 46 is connected to the other end of 5 through L49 and 50 for fine adjustment. The coaxial resonators 45 and 46 are for setting the connection point (point c) of the fine adjustment L49 and 50 to 0 impedance at the HF frequency. A tuning variable capacitor 53 and a matching variable capacitor 54 are connected to point c to serve as an LF input / output terminal. The coaxial resonators 45, 4
Reference numeral 6 has a length of λ / 4 with respect to the wavelength λ of HF, and the outer conductors are grounded.

【0015】図3によりHF周波数の同調を説明する
と、RFコイル40と同軸共振器44(図3(a))に
おける定常波の電圧、電流は、コイル41が外部導体4
3でアースされているので、アース点において電圧が最
小、電流が最大となり、また微調整用L、同軸共振器4
4によりb点(HFの同調バリコン51、整合バリコン
52の位置)で電圧が最大、電流が最小となる。このと
き、図3(c)に示す同軸共振器45、46についてみ
ると、微調整用L48、同軸共振器45、微調整用L4
9、50、同軸共振器46によって図3(d)に示すよ
うな電圧、電流分布となりc点(LFの同調バリコン5
3、整合バリコン54の位置)で電圧が0、すなわちイ
ンピーダンスが0となるので、HF側からLF側へRF
パワーが流れることはない。
The tuning of the HF frequency will be described with reference to FIG. 3. For the standing wave voltage and current in the RF coil 40 and the coaxial resonator 44 (FIG. 3A), the coil 41 is the outer conductor 4.
Since it is grounded at 3, the voltage is minimum and the current is maximum at the grounding point, and the L for fine adjustment and the coaxial resonator 4 are used.
4, the voltage becomes maximum and the current becomes minimum at point b (positions of the HF tuning variable capacitor 51 and the matching variable capacitor 52). At this time, looking at the coaxial resonators 45 and 46 shown in FIG. 3C, the fine adjustment L48, the coaxial resonator 45, and the fine adjustment L4 are shown.
9 and 50, the coaxial resonator 46 produces a voltage and current distribution as shown in FIG. 3D, and the point c (LF tuning variable capacitor 5
3, the voltage becomes 0 at the position of the matching variable capacitor 54, that is, the impedance becomes 0. Therefore, RF from the HF side to the LF side
No power flows.

【0016】図4によりLF周波数の同調を説明する
と、RFコイル40と同軸共振器44(図4(a))に
おける定常波の電圧、電流は、コイル41が外部導体4
3でアースされ、同軸共振器44はb点で開放されてお
り、同軸共振器は単に微調整用Lに接続された導体とし
て機能するので、コイル41のアース点において電圧が
最小、電流が最大となり、また微調整用L、同軸共振器
44側へはほとんど電流は流れず、また電圧も低く、L
F周波数のRFパワーはHF側に流れない。このとき、
図4(c)に示す同軸共振器45、46についてみる
と、微調整用L48、同軸共振器45、微調整用L4
9、50、同軸共振器46によって図4(d)に示すよ
うな電圧、電流分布となり、c点(LFの同調バリコン
53、整合バリコン54の位置)で電圧が大きくなるの
でLFの整合をとることができる。
The tuning of the LF frequency will be described with reference to FIG. 4. For the voltage and current of the standing wave in the RF coil 40 and the coaxial resonator 44 (FIG. 4A), the coil 41 is the outer conductor 4
3 is grounded, the coaxial resonator 44 is open at point b, and the coaxial resonator simply functions as a conductor connected to the fine adjustment L. Therefore, at the ground point of the coil 41, the voltage is minimum and the current is maximum. Also, almost no current flows to the L for fine adjustment and the coaxial resonator 44 side, and the voltage is low.
The RF power of the F frequency does not flow to the HF side. At this time,
As for the coaxial resonators 45 and 46 shown in FIG. 4C, the fine adjustment L48, the coaxial resonator 45, and the fine adjustment L4 are provided.
9 and 50, the voltage and current distribution as shown in FIG. 4D is obtained by the coaxial resonator 46, and the voltage becomes large at the point c (positions of the LF tuning variable capacitor 53 and the matching variable capacitor 54), so that LF matching is performed. be able to.

【0017】本実施例によれば、浮遊容量の影響がない
のでRFコイルから離れた位置でダブルチューニングし
ても高いQが得られ、試料の温度調整をしてもバリコン
の温度変動はない。また、バリコンなどの電気部品を実
装するスペースを広くとることができ、NMRーCTの
場合の勾配磁場コイルをプローブ内に実装する場合も容
易となる。また、分布定数回路のためRFパワーの損失
が少なくすることができる。
According to this embodiment, since there is no influence of the stray capacitance, a high Q can be obtained even by double tuning at a position away from the RF coil, and even if the temperature of the sample is adjusted, the temperature of the variable capacitor does not change. Further, a space for mounting an electric component such as a variable capacitor can be widened, and it becomes easy to mount the gradient magnetic field coil in the case of NMR-CT in the probe. Further, the distributed constant circuit can reduce the loss of RF power.

【0018】なお、同軸共振器としては、図5に示すよ
うに誘電体60上にマイクロストリップライン44´、
45´、46´を形成して構成し、これらを微調整用L
47´〜50´で接続するようにしてもよい。なお、誘
電体の裏面は全面アースするようにする。
As the coaxial resonator, as shown in FIG. 5, a microstrip line 44 'is formed on the dielectric 60.
45 ', 46' are formed and configured, and these are used for fine adjustment L
You may make it connect by 47'-50 '. The entire back surface of the dielectric is grounded.

【0019】また、微調整用Lと同軸共振器との接続関
係は、図6(a)に示すものに限らず、図6(b)に示
すように終端部分にバリコン63を接続するか、図6
(c)に示すようにバリコン63を接続して微調整用L
61を省略するか、図6(d)に示すように同軸共振器
62の中間位置にバリコン63を接続するか、また図6
(e)に示すように、同軸共振器62の中間位置にバリ
コン63を接続して微調整用L61を省略することも可
能である。
Further, the connection relationship between the fine adjustment L and the coaxial resonator is not limited to that shown in FIG. 6A, but as shown in FIG. Figure 6
As shown in (c), the variable condenser 63 is connected to the L for fine adjustment.
6 is omitted, or a variable capacitor 63 is connected to an intermediate position of the coaxial resonator 62 as shown in FIG.
As shown in (e), it is also possible to connect the variable capacitor 63 to the intermediate position of the coaxial resonator 62 and omit the fine adjustment L61.

【0020】[0020]

【発明の効果】以上のように本発明によれば、同軸線路
が引出し線の役割を果たしているので浮遊容量は問題に
ならず、Qを低下させずにサンプルコイルと同調回路を
離すことができ、分布定数回路のためRFパワーの損失
を少なくすることができる。また、スペースを広くとる
ことができるので、電気部品の実装が容易となり、構造
を簡単化できるとともに、NMRーCTの場合の勾配磁
場コイルをプローブ内に容易に実装することができる。
また、サンプルコイルの位置でRF電場は最小となるた
め、誘電加熱、放電の発生を防止することができ、サン
プルコイルにはコンデンサを付ける必要がないため温度
変化により周波数が変化することがなく、また、試料の
温度調整をしてもバリコンの温度変動は生じない。
As described above, according to the present invention, since the coaxial line plays the role of a lead wire, the stray capacitance does not become a problem, and the sample coil and the tuning circuit can be separated without reducing Q. Since it is a distributed constant circuit, the loss of RF power can be reduced. In addition, since a large space can be taken, the mounting of electric parts can be facilitated, the structure can be simplified, and the gradient magnetic field coil in the case of NMR-CT can be easily mounted in the probe.
Further, since the RF electric field is minimized at the position of the sample coil, it is possible to prevent dielectric heating and discharge from occurring, and since it is not necessary to attach a capacitor to the sample coil, the frequency does not change due to temperature change, Further, even if the temperature of the sample is adjusted, the temperature of the variable capacitor does not change.

【図面の簡単な説明】[Brief description of drawings]

【図1】 同軸共振器を用いた本発明の実施例を説明す
る図である。
FIG. 1 is a diagram for explaining an embodiment of the present invention using a coaxial resonator.

【図2】 ダブルチューニング回路を用いた本発明の実
施例を説明する図である。
FIG. 2 is a diagram for explaining an embodiment of the present invention using a double tuning circuit.

【図3】 HF側からみた定常波の電圧と電流を説明す
る図である。
FIG. 3 is a diagram illustrating a voltage and a current of a standing wave viewed from the HF side.

【図4】 LF側からみた定常波の電圧と電流を説明す
る図である。
FIG. 4 is a diagram illustrating a voltage and a current of a standing wave viewed from the LF side.

【図5】 同軸共振器の他の実施例を示す図である。FIG. 5 is a diagram showing another embodiment of the coaxial resonator.

【図6】 微調整用Lのバリコンとの併用、置換を説明
する図である。
FIG. 6 is a diagram for explaining the combined use and replacement of a fine adjustment L with a variable condenser.

【図7】 従来のNMR検出器を示す図である。FIG. 7 is a diagram showing a conventional NMR detector.

【図8】 従来のダブルチューニング回路を説明する図
である。
FIG. 8 is a diagram illustrating a conventional double tuning circuit.

【図9】 各電気部品の配置を説明する図である。FIG. 9 is a diagram for explaining the arrangement of each electric component.

【図10】 NMR−CT用の勾配磁場コイルを実装す
る場合の説明図である。
FIG. 10 is an explanatory diagram for mounting a gradient magnetic field coil for NMR-CT.

【符号の説明】[Explanation of symbols]

30…サンプルコイル、31…内部導体、32…外部導
体、33…同調バリコン、34…整合バリコン、40…
RFコイル、41…コイル、42…内部導体、43…外
部導体、44〜46…同軸共振器、47〜50…微調整
用インダクタンス、51、53…同調バリコン、52、
54…整合バリコン。
30 ... Sample coil, 31 ... Inner conductor, 32 ... Outer conductor, 33 ... Tuning variable capacitor, 34 ... Matching variable capacitor, 40 ...
RF coil, 41 ... Coil, 42 ... Inner conductor, 43 ... Outer conductor, 44-46 ... Coaxial resonator, 47-50 ... Inductance for fine adjustment, 51, 53 ... Tuning variable condenser, 52,
54 ... Matching variable condenser.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 サンプルコイルと同調整合回路を接続
し、同調整合回路により所定の周波数で共鳴させるよう
にした核磁気共鳴検出器において、サンプルコイルと同
調整合回路を同軸線路で接続し、サンプルコイルと同軸
線路で共振回路を形成するようにしたことを特徴とする
核磁気共鳴検出器。
1. A nuclear magnetic resonance detector in which a sample coil and a tuning matching circuit are connected to each other so that the sample coil and the tuning matching circuit are caused to resonate at a predetermined frequency. A nuclear magnetic resonance detector characterized in that a resonance circuit is formed with a coaxial line.
【請求項2】 サンプルコイルと高周波数用及び低周波
数用の同調整合回路を接続し、各同調整合回路によりダ
ブルチューニングするようにした核磁気共鳴検出器にお
いて、サンプルコイルと高周波数用及び低周波数用の同
調整合回路をそれぞれ同軸線路で接続し、サンプルコイ
ルと同軸線路で共振回路を形成するようにしたことを特
徴とする核磁気共鳴検出器。
2. A nuclear magnetic resonance detector in which a sample coil is connected to a tuning matching circuit for high frequency and a tuning frequency for low frequency, and double tuning is performed by each tuning matching circuit. A nuclear magnetic resonance detector characterized in that a resonance matching circuit is formed by the sample coil and the coaxial line, each of which is connected to a tuning matching circuit by a coaxial line.
JP17652592A 1992-07-03 1992-07-03 Nuclear magnetic resonance detector Expired - Fee Related JP3184849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17652592A JP3184849B2 (en) 1992-07-03 1992-07-03 Nuclear magnetic resonance detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17652592A JP3184849B2 (en) 1992-07-03 1992-07-03 Nuclear magnetic resonance detector

Publications (2)

Publication Number Publication Date
JPH0618640A true JPH0618640A (en) 1994-01-28
JP3184849B2 JP3184849B2 (en) 2001-07-09

Family

ID=16015140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17652592A Expired - Fee Related JP3184849B2 (en) 1992-07-03 1992-07-03 Nuclear magnetic resonance detector

Country Status (1)

Country Link
JP (1) JP3184849B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133797A (en) * 1988-04-06 1992-07-28 Sumitomo Chemical Company, Ltd. Coated granular fertilizer composition and its production
US5558048A (en) * 1994-03-18 1996-09-24 Toyota Jidosha Kabushiki Kaisha Cylinder block cooling arrangement
CN102971960A (en) * 2010-07-16 2013-03-13 罗伯特·博世有限公司 Method and device for determining a momentary torque of an electronically switched electric machine and for regulating the average torque
US20190301394A1 (en) * 2016-06-09 2019-10-03 Avl List Gmbh Internal combustion engine
US11504850B2 (en) 2016-12-23 2022-11-22 Gecko Robotics, Inc. Inspection robot and methods thereof for responding to inspection data in real time
US11518030B2 (en) 2016-12-23 2022-12-06 Gecko Robotics, Inc. System, apparatus and method for providing an interactive inspection map
US11865698B2 (en) 2021-04-20 2024-01-09 Gecko Robotics, Inc. Inspection robot with removeable interface plates and method for configuring payload interfaces
US11892322B2 (en) 2016-12-23 2024-02-06 Gecko Robotics, Inc. Inspection robot for horizontal tube inspection having sensor carriage
US11971389B2 (en) 2021-04-22 2024-04-30 Gecko Robotics, Inc. Systems, methods, and apparatus for ultra-sonic inspection of a surface

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133797A (en) * 1988-04-06 1992-07-28 Sumitomo Chemical Company, Ltd. Coated granular fertilizer composition and its production
US5558048A (en) * 1994-03-18 1996-09-24 Toyota Jidosha Kabushiki Kaisha Cylinder block cooling arrangement
CN102971960A (en) * 2010-07-16 2013-03-13 罗伯特·博世有限公司 Method and device for determining a momentary torque of an electronically switched electric machine and for regulating the average torque
US20190301394A1 (en) * 2016-06-09 2019-10-03 Avl List Gmbh Internal combustion engine
US11669100B2 (en) 2016-12-23 2023-06-06 Gecko Robotics, Inc. Inspection robot having a laser profiler
US11892322B2 (en) 2016-12-23 2024-02-06 Gecko Robotics, Inc. Inspection robot for horizontal tube inspection having sensor carriage
US11511427B2 (en) 2016-12-23 2022-11-29 Gecko Robotics, Inc. System, apparatus and method for providing an inspection map
US11518030B2 (en) 2016-12-23 2022-12-06 Gecko Robotics, Inc. System, apparatus and method for providing an interactive inspection map
US11518031B2 (en) 2016-12-23 2022-12-06 Gecko Robotics, Inc. System and method for traversing an obstacle with an inspection robot
US11529735B2 (en) 2016-12-23 2022-12-20 Gecko Robotics, Inc. Inspection robots with a multi-function piston connecting a drive module to a central chassis
US11565417B2 (en) 2016-12-23 2023-01-31 Gecko Robotics, Inc. System and method for configuring an inspection robot for inspecting an inspection surface
US11648671B2 (en) 2016-12-23 2023-05-16 Gecko Robotics, Inc. Systems, methods, and apparatus for tracking location of an inspection robot
US11504850B2 (en) 2016-12-23 2022-11-22 Gecko Robotics, Inc. Inspection robot and methods thereof for responding to inspection data in real time
US11511426B2 (en) 2016-12-23 2022-11-29 Gecko Robotics, Inc. System, method, and apparatus for rapid development of an inspection scheme for an inspection robot
US11865698B2 (en) 2021-04-20 2024-01-09 Gecko Robotics, Inc. Inspection robot with removeable interface plates and method for configuring payload interfaces
US11872688B2 (en) 2021-04-20 2024-01-16 Gecko Robotics, Inc. Inspection robots and methods for inspection of curved surfaces
US11904456B2 (en) 2021-04-20 2024-02-20 Gecko Robotics, Inc. Inspection robots with center encoders
US11926037B2 (en) 2021-04-20 2024-03-12 Gecko Robotics, Inc. Systems for reprogrammable inspection robots
US11964382B2 (en) 2021-04-20 2024-04-23 Gecko Robotics, Inc. Inspection robots with swappable drive modules
US11969881B2 (en) 2021-04-20 2024-04-30 Gecko Robotics, Inc. Inspection robots with independent drive module suspension
US11992935B2 (en) 2021-04-20 2024-05-28 Gecko Robotics, Inc. Methods and apparatus for verifiable inspection operations
US11971389B2 (en) 2021-04-22 2024-04-30 Gecko Robotics, Inc. Systems, methods, and apparatus for ultra-sonic inspection of a surface
US11977054B2 (en) 2021-04-22 2024-05-07 Gecko Robotics, Inc. Systems for ultrasonic inspection of a surface
US12007364B2 (en) 2021-04-22 2024-06-11 Gecko Robotics, Inc. Systems and methods for robotic inspection with simultaneous surface measurements at multiple orientations with obstacle avoidance

Also Published As

Publication number Publication date
JP3184849B2 (en) 2001-07-09

Similar Documents

Publication Publication Date Title
US5045825A (en) Coupling port for multiple capacitor, distributed inductor resonator
US7567153B2 (en) Compact bandpass filter for double conversion tuner
US6222429B1 (en) Dielectric resonator, dielectric notch filter, and dielectric filter with optimized resonator and cavity dimensions
US5321374A (en) Transverse electromagnetic mode resonator
JPH07154110A (en) Transmission line resonator and radio frequency filter using the same
KR20010013068A (en) A radio apparatus loop antenna
JPH05269104A (en) Local antenna
JP3184849B2 (en) Nuclear magnetic resonance detector
KR20010030828A (en) Multi surface coupled coaxial resonator
US20030085706A1 (en) Multiple tuning circuit and probe for NMR spectrometer
JP2002372575A (en) Double tuning circuit and probe for nuclear magnetic resonance device
USRE20189E (en) Oscillation circuit for electric
US4673894A (en) Oscillator coupled through cylindrical cavity for generating low noise microwaves
EP0703634B1 (en) Resonator and filter using it
US5543712A (en) Parasitic compensating matching circuit integral with ground breaker for MRI RF coils
US3140444A (en) Tuner
JP3201947B2 (en) High frequency oscillator
US3821655A (en) High frequency amplifier
JPH04137507A (en) Wide-band inductor
JP3487717B2 (en) Nuclear magnetic resonance detector
JP2000196337A (en) Antenna system
JP3967565B2 (en) NMR probe and method for adjusting NMR probe
JPH0993030A (en) Antenna system
US4799035A (en) Microwave diode tuning circuit
US2142313A (en) Electric oscillator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees