JPH06170232A - Catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and it use - Google Patents

Catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and it use

Info

Publication number
JPH06170232A
JPH06170232A JP4332055A JP33205592A JPH06170232A JP H06170232 A JPH06170232 A JP H06170232A JP 4332055 A JP4332055 A JP 4332055A JP 33205592 A JP33205592 A JP 33205592A JP H06170232 A JPH06170232 A JP H06170232A
Authority
JP
Japan
Prior art keywords
catalyst
selectivity
shape
center
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4332055A
Other languages
Japanese (ja)
Other versions
JP3260185B2 (en
Inventor
Toru Shiotani
徹 塩谷
Toru Kuroda
徹 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP33205592A priority Critical patent/JP3260185B2/en
Publication of JPH06170232A publication Critical patent/JPH06170232A/en
Application granted granted Critical
Publication of JP3260185B2 publication Critical patent/JP3260185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To provide a catalyst of a special shape for advantageous production of corresponding unsatd. aldehyde from propylene, isobutylene, tert. butanol or tert. butyl ether. CONSTITUTION:This catalyst is a cylindrical Mo-Bi-Fe catalyst having a through hole. One of the outer and inner circumferences of the cross section is an ellipse, the other is a circle, the center of the ellipse coincides with that of the circle and the ratio of the major axis size of the ellipse to the minor axis size is 1.2-4.0. Since this catalyst has such a shape as to minimize pressure drop even if this catalyst is broken by a shock at the time of packing, the yield of unsatd. aldehyde can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プロピレン、イソブチ
レン、第三級ブチルアルコール(以下TBAと略記す
る)又はメチル第三級ブチルエーテル(以下MTBEと
略記する)を分子状酸素と気相接触酸化により、それぞ
れに対応する不飽和アルデヒド及び不飽和カルボン酸を
合成する際に使用する触媒の形状に関するものである。
The present invention relates to propylene, isobutylene, tertiary butyl alcohol (hereinafter abbreviated as TBA) or methyl tertiary butyl ether (hereinafter abbreviated as MTBE) by molecular gas and gas phase catalytic oxidation. , The shape of the catalyst used in the synthesis of the corresponding unsaturated aldehyde and unsaturated carboxylic acid.

【0002】[0002]

【従来の技術】従来、プロピレンを気相接触酸化してア
クロレイン及びアクリル酸を製造する際に用いられる触
媒や、イソブチレン、TBA又はMTBEを気相接触酸
化してメタクロレイン及びメタクリル酸を製造する際に
用いられる触媒の形状について、数多くの提案がなされ
ている。例えば特開昭59−46132号公報等の報告
がある。
2. Description of the Related Art Conventionally, a catalyst used in the vapor phase catalytic oxidation of propylene to produce acrolein and acrylic acid, and a vapor phase catalytic oxidation of isobutylene, TBA or MTBE to produce methacrolein and methacrylic acid. Many proposals have been made regarding the shape of the catalyst used in the above. For example, there are reports such as JP-A-59-46132.

【0003】一般的に固定床における上記の気相接触酸
化では、以下のことが知られている。 (1)触媒形状及び触媒体の大きさによって、触媒堆積
物の圧力降下に影響を及ぼし、圧力降下が増加すること
により、目的とする生成物の選択性に悪影響を及ぼすこ
とは既知である。従って、貫通孔を有する形状は圧力降
下が小さいのでこの点では優れている。 (2)触媒体の内部構造(多孔度、拡散路のながさ)
は、触媒中での物質輸送及び熱輸送を決定的に定め、か
つ同時に、触媒活性物質の組成と共に選択性に対する決
定的な影響を有する。一般的に触媒体の内部構造におい
て、細孔容積及び/又は表面積の大きいものほど選択性
は優れている。
In the above-mentioned gas phase catalytic oxidation in a fixed bed, the following are generally known. (1) It is known that the shape of the catalyst and the size of the catalyst body affect the pressure drop of the catalyst deposit, and the increased pressure drop adversely affects the selectivity of the desired product. Therefore, the shape having the through hole has a small pressure drop and is excellent in this respect. (2) Internal structure of catalyst body (porosity, length of diffusion path)
Decisively determines the mass transport and heat transport in the catalyst, and at the same time has a decisive influence on the selectivity together with the composition of the catalytically active substance. Generally, in the internal structure of the catalyst body, the larger the pore volume and / or the surface area, the better the selectivity.

【0004】しかし、(1)については貫通孔を有する
形状は、貫通孔を有しない形状に比べて触媒体の機械的
強度が小さく、取扱い中又は使用中に壊れて触媒粒子の
小破片、微粉及び粉塵が増加する結果、逆に圧力降下が
増大し、選択性に悪影響を及ぼす。特に、同心円のリン
グ状構造は、取扱い中又は使用中に壊れる際図3に示す
ように四分割される場合が多い。この四分割された触媒
の小破片が圧力降下を増大させ、選択性に悪影響を及ぼ
す。また(2)については、触媒体の内部構造において
細孔容積及び/又は表面積を増大させるためには、触媒
体の密度(触媒体の重量/触媒体の容積)を小さくすれ
ば良い。しかし、モリブデン、ビスマス、鉄系の触媒に
おいては密度が小さくなれば必然的に触媒体の機械的強
度が小さくなる。このことは、(1)と同様圧力降下の
原因となる。この両者の矛盾が、現実問題として存在し
ており、これを解決することが強く望まれているのが現
状である。
With respect to (1), however, the shape having through-holes has a lower mechanical strength of the catalyst body than the shape having no through-holes, and breaks during handling or use, resulting in breakage of catalyst particles and fine particles. On the contrary, as a result of increased dust, the pressure drop is increased, which adversely affects the selectivity. In particular, the concentric ring-shaped structure is often divided into four as shown in FIG. 3 when it breaks during handling or use. The small pieces of the quartet of catalyst increase the pressure drop and adversely affect the selectivity. Regarding (2), in order to increase the pore volume and / or the surface area in the internal structure of the catalyst body, the density of the catalyst body (weight of catalyst body / volume of catalyst body) may be reduced. However, in molybdenum, bismuth, and iron-based catalysts, the lower the density, the lower the mechanical strength of the catalyst body. This causes a pressure drop as in (1). The contradiction between the two exists as a real problem, and it is currently strongly desired to solve it.

【0005】[0005]

【発明が解決しようとする課題】従来の技術において存
在する矛盾を根本的に解決することは極めて困難であ
る。また、貫通孔を有する形状の触媒を使用する際、取
扱い中又は使用中に壊れて触媒粒子の小破片が発生する
ことを予期しておかねばならない。本発明は、貫通孔を
有する形状の触媒を使用する際、取扱い中又は使用中に
壊れて触媒粒子の小破片が発生しても、圧力降下を最小
限に抑える、不飽和アルデヒド及び不飽和カルボン酸合
成用触媒の新規な触媒形状の提供を目的としている。
It is extremely difficult to fundamentally solve the contradiction existing in the prior art. Also, when using a catalyst having through holes, it must be expected that the catalyst will break during handling or use to generate small pieces of catalyst particles. The present invention provides an unsaturated aldehyde and an unsaturated carboxylic acid which, when using a catalyst having a through hole, minimizes the pressure drop even if a small particle of the catalyst particle is broken during handling or during use. The purpose of the present invention is to provide a new catalyst shape of a catalyst for acid synthesis.

【0006】[0006]

【課題を解決するための手段】同心円のリング状構造
は、断面に対して垂直方向については触媒体の機械的強
度は優れているが、側面に対して垂直方向については機
械的強度は小さい。また、この側面に対して垂直方向に
壊れる際、図3のように四分割される場合が多い。これ
は、同心円のリング状構造からくるものであり、四分割
されることで触媒間隙が減少し、かつ、小破片、微粉及
び粉塵が生じ、圧力降下を生じる。そこで、同心円のリ
ング状構造にあらかじめ構造的に弱い部分を持たせるこ
とで、側面に対して垂直方向に過剰の力がかかって壊れ
る際、二分割される場合が多くなるようにすることで、
小破片、微粉及び粉塵の発生を最小限にし、かつ、圧力
降下の増大を低減させることで、上述した矛盾を解決す
ることができると考えられる。
In the concentric ring-shaped structure, the mechanical strength of the catalyst body is excellent in the direction perpendicular to the cross section, but the mechanical strength is small in the direction perpendicular to the side surface. Moreover, when it breaks in the direction perpendicular to this side surface, it is often divided into four as shown in FIG. This comes from a concentric ring-shaped structure, and when divided into four, the catalyst gap is reduced, and small fragments, fine powder and dust are generated, resulting in a pressure drop. Therefore, by giving a structurally weak portion to the concentric ring-shaped structure in advance, by increasing excessive force in the direction perpendicular to the side surface and breaking it, it is often divided into two.
It is believed that the above contradiction can be resolved by minimizing the generation of small pieces, fines and dust and reducing the increase in pressure drop.

【0007】本発明は、プロピレン、イソブチレン、T
BA又はMTBEを分子状酸素を用いて、気相接触酸化
し、それぞれに対応する不飽和アルデヒド及び不飽和カ
ルボン酸を合成する際に用いられる、少なくともモリブ
デン、ビスマス及び鉄を含む触媒において、触媒形状
が、貫通孔を有するシリンダー状形態を有し、その断面
が外周又は内周のいずれか一方が本質的には楕円形状を
有し、他方が円であり、外周及び内周の中心が一致し、
該中心より該楕円形状上の最短距離に対する最長距離の
比が1.2〜4.0であることを特徴とする不飽和アル
デヒド及び不飽和カルボン酸合成用触媒及びその使用に
関する。また、本発明による本質的に楕円形状とは、数
学的根拠による楕円はもちろんのこと、長方形に内接し
うる本質的に楕円形状を有するもの及び菱形に外接しう
る本質的に楕円形状を有するものも含んでいる。
The present invention relates to propylene, isobutylene, T
In a catalyst containing at least molybdenum, bismuth and iron, which is used in the gas phase catalytic oxidation of BA or MTBE with molecular oxygen to synthesize the corresponding unsaturated aldehyde and unsaturated carboxylic acid, the catalyst shape Has a cylindrical shape having a through hole, and the cross section has either an outer circumference or an inner circumference having an essentially elliptical shape, and the other has a circle, and the centers of the outer circumference and the inner circumference coincide with each other. ,
The present invention relates to a catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids, characterized in that the ratio of the longest distance to the shortest distance on the elliptical shape from the center is 1.2 to 4.0 and its use. The essentially elliptical shape according to the present invention means not only an ellipse based on mathematical grounds, but also an essentially elliptical shape that can inscribe a rectangle and an essentially elliptical shape that can circumscribe a rhombus. It also includes.

【0008】本発明では、中心より本質的には楕円形状
上の最短距離に対する最長距離の比が1.2未満の場
合、同心円のリング状形態とほとんど変わらず、側面に
対して垂直方向に過剰に力が加わった場合、四分割され
る場合が多くなり、本発明の効果がない。また、同比が
4.0を超えた場合、触媒断面において貫通孔の占める
割合が低下し、圧力降下の低減あるいは拡散効率の向上
といったような貫通孔の効果が低下してしまう。
In the present invention, when the ratio of the longest distance to the shortest distance on the elliptical shape essentially from the center is less than 1.2, it is almost the same as the concentric ring-like shape and is excessive in the direction perpendicular to the side surface. When a force is applied to, there are many cases where it is divided into four, and the effect of the present invention is not obtained. On the other hand, if the ratio exceeds 4.0, the proportion of the through holes in the catalyst cross section decreases, and the effect of the through holes, such as reduction of pressure drop or improvement of diffusion efficiency, decreases.

【0009】本発明において、貫通孔を有し外周又は内
周のいずれか一方が本質的には楕円形状を有し、他方が
円であることが重要である。外周又は内周のいずれか一
方が本質的には楕円形状を有することで、側面に対して
垂直方向に過剰に力が加わった場合、構造的に弱い部分
が割れる(図1及び2)。つまり、二分割される場合が
多いため触媒間隙の減少、小破片、微粉及び粉塵の発生
を最小限に抑えることができる。
In the present invention, it is important that either the outer circumference or the inner circumference has a through hole and has an essentially elliptical shape, and the other is a circle. Either the outer circumference or the inner circumference essentially has an elliptical shape, so that when a force is excessively applied in a direction perpendicular to the side surface, a structurally weak portion is cracked (FIGS. 1 and 2). In other words, since it is often divided into two, the reduction of the catalyst gap and the generation of small fragments, fine powder and dust can be minimized.

【0010】本発明では、外周が本質的に楕円形状であ
る場合(図1)、中心より内周の半径に対する外周上の
最短距離の比が1.1〜8.0であることが好ましい。
この比が1.1未満の場合、側面に対して垂直方向の機
械的強度の低下が大きく好ましくない。また、この比が
8.0を超えた場合、触媒体断面において貫通孔の占め
る割合が低下し、圧力降下の低減あるいは拡散効率の向
上といったような貫通孔の効果が低下してしまうため好
ましくない。逆に、内周が本質的に楕円形状である場合
(図2)も中心より内周上の最長距離に対する外周の半
径の比が1.1〜8.0であるのが好ましい。この比が
1.1未満の場合、側面に対して垂直方向の機械的強度
の低下が大きく好ましくない。また、8.0を超えた場
合、触媒体の貫通孔の占める割合が低下し、圧力降下の
低減あるいは拡散効率の向上といったような中心孔の効
果が低下してしまうため好ましくない。
In the present invention, when the outer circumference is essentially elliptical (FIG. 1), the ratio of the shortest distance on the outer circumference to the radius of the inner circumference from the center is preferably 1.1 to 8.0.
If this ratio is less than 1.1, the mechanical strength in the direction perpendicular to the side surface is significantly reduced, which is not preferable. Further, if this ratio exceeds 8.0, the proportion of the through holes in the cross section of the catalyst body decreases, and the effects of the through holes such as reduction of pressure drop and improvement of diffusion efficiency are reduced, which is not preferable. . Conversely, even when the inner circumference is essentially elliptical (FIG. 2), the ratio of the radius of the outer circumference to the longest distance on the inner circumference from the center is preferably 1.1 to 8.0. If this ratio is less than 1.1, the mechanical strength in the direction perpendicular to the side surface is significantly reduced, which is not preferable. On the other hand, when it exceeds 8.0, the ratio of the through holes of the catalyst body decreases, and the effect of the central hole such as reduction of pressure drop or improvement of diffusion efficiency is reduced, which is not preferable.

【0011】本発明において、触媒体の長さ(高さ)は
中心より外周上の最短距離の1.0〜5.0倍であるこ
とが好ましい。該触媒の長さが中心より外周上の最短距
離の1.0倍未満の場合、触媒体の機械的強度が著しく
低下するため好ましくない。また、長さが中心より外周
上の最短距離の5.0倍を超えた場合、拡散効率の向上
といったような貫通孔の効果が低下してしまうため好ま
しくない。
In the present invention, the length (height) of the catalyst body is preferably 1.0 to 5.0 times the shortest distance on the outer circumference from the center. When the length of the catalyst is less than 1.0 times the shortest distance on the outer circumference from the center, the mechanical strength of the catalyst body is significantly reduced, which is not preferable. Further, if the length exceeds 5.0 times the shortest distance on the outer circumference from the center, the effect of the through hole such as the improvement of diffusion efficiency is reduced, which is not preferable.

【0012】本発明において、触媒の形状において、具
体的には触媒断面の中心より外周の最短距離が1〜10
mm、長さが2〜15mmの範囲が好ましい。本発明に
おいて、賦型する方法は特に限定されるものではなく、
打錠成型機、押出し成型機等の一般粉体用成型機を用い
て賦型できる。また、本発明においては、賦型する際に
は従来公知の添加剤、例えば、ポリビニルアルコール、
カルボキシメチルセルロース、無機ファイバー等を添加
しても差し支えない。
In the present invention, in the shape of the catalyst, specifically, the shortest distance from the center of the catalyst cross section to the outer periphery is 1 to 10.
The range of mm and the length of 2 to 15 mm is preferable. In the present invention, the method of shaping is not particularly limited,
Molding can be performed using a general powder molding machine such as a tablet molding machine or an extrusion molding machine. Further, in the present invention, conventionally known additives when shaping, for example, polyvinyl alcohol,
Carboxymethyl cellulose, inorganic fibers and the like may be added.

【0013】本発明は、一般式 Moa Bib Fec d e f g Sih i (式中Mo、Bi、Fe、Si及びOはそれぞれモリブ
デン、ビスマス、鉄、ケイ素及び酸素を示し、Aはコバ
ルト及びニッケルからなる群より選ばれた少なくとも1
種の元素を示し、Xはクロム、鉛、マンガン、カルシウ
ム、マグネシウム、ニオブ、銀、バリウム、スズ、タン
タル及び亜鉛からなる群より選ばれた少なくとも1種の
元素を示し、Yはリン、ホウ素、硫黄、セレン、テル
ル、セリウム、タングステン、アンチモン及びチタンか
らなる群より選ばれた少なくとも1種の元素を示し、Z
はリチウム、ナトリウム、カリウム、ルビジウム、セシ
ウム及びタリウムからなる群より選ばれた少なくとも1
種の元素を示す。a、b、c、d、e、f、g、h及び
iは各元素の原子比率を表し、a=12の時b=0.0
1〜3、c=0.01〜5、d=1〜12、e=0〜
8、f=0〜5、g=0.001〜2、h=0〜20で
あり、iは前記各成分の原子価を満足するのに必要な酸
素原子数である。)で表される組成を有する触媒を用い
ることができる。
The present invention has the general formula Mo a Bi b Fe c A d X e Y f Z g Si h O i (wherein Mo, Bi, Fe, Si and O are molybdenum, bismuth, iron, silicon and oxygen, respectively). And A is at least 1 selected from the group consisting of cobalt and nickel.
X represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc, and Y represents phosphorus, boron, Z represents at least one element selected from the group consisting of sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium, and Z
Is at least 1 selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium.
Indicates the element of the species. a, b, c, d, e, f, g, h and i represent the atomic ratio of each element, and when a = 12, b = 0.0
1-3, c = 0.01-5, d = 1-12, e = 0
8, f = 0 to 5, g = 0.001 to 2, h = 0 to 20 and i is the number of oxygen atoms required to satisfy the valence of each component. A catalyst having a composition represented by) can be used.

【0014】本発明に用いられる触媒を製造する方法と
しては、特殊な方法に限定する必要はなく、成分の著し
い偏在を伴わない限り、従来からよく知られている蒸発
乾固法、沈殿法、酸化物混合法等の種々の方法を用いる
ことができる。触媒成分の原料としては、各元素の酸化
物、硫酸塩、硝酸塩、炭酸塩、水酸化物、アンモニウム
塩、ハロゲン化物などを組み合わせて使用することがで
きる。例えば、モリブデン原料としてはパラモリブデン
酸アンモニウム、三酸化モリブデン等が使用できる。
The method for producing the catalyst used in the present invention does not need to be limited to a special method, and as long as there is no significant uneven distribution of the components, the well-known evaporation dryness method, precipitation method, Various methods such as an oxide mixing method can be used. As the raw material of the catalyst component, a combination of oxides, sulfates, nitrates, carbonates, hydroxides, ammonium salts, halides and the like of each element can be used. For example, as a molybdenum raw material, ammonium paramolybdate, molybdenum trioxide, or the like can be used.

【0015】本発明を実施するに際して、原料のプロピ
レン、イソブチレン又はTBAに分子状酸素を加え、前
記の触媒の存在下に気相接触酸化を行う。プロピレン、
イソブチレン又は三級ブタノール対酸素のモル比は1:
0.5〜3が好ましい。原料ガスは不活性ガスで希釈し
て用いることが好ましい。酸素源としては空気を用いる
ことが経済的であるが、必要ならば純酸素で富化した空
気も用いうる。反応圧力は常圧から数気圧までが良い。
反応温度は200〜450℃の範囲で選ぶことができる
が、特に250〜400℃の範囲が好ましい。
In carrying out the present invention, molecular oxygen is added to propylene, isobutylene or TBA as a raw material, and gas phase catalytic oxidation is carried out in the presence of the above catalyst. propylene,
The molar ratio of isobutylene or tertiary butanol to oxygen is 1:
0.5-3 is preferable. The raw material gas is preferably diluted with an inert gas before use. It is economical to use air as the oxygen source, but if necessary, air enriched with pure oxygen can also be used. The reaction pressure is preferably atmospheric pressure to several atmospheres.
The reaction temperature can be selected in the range of 200 to 450 ° C, but the range of 250 to 400 ° C is particularly preferable.

【0016】[0016]

【実施例】以下、本発明による触媒の製造法及び、それ
を用いての反応例を具体的に説明する。実施例及び比較
例中の原料オレフィン、TBA及びMTBAの反応率、
生成する不飽和アルデヒド及び不飽和カルボン酸の選択
率は以下のように定義される。
EXAMPLES The method for producing the catalyst according to the present invention and the reaction examples using the same will be specifically described below. Reaction rates of raw material olefins, TBA and MTBA in Examples and Comparative Examples,
The selectivity of the unsaturated aldehyde and unsaturated carboxylic acid produced is defined as follows.

【0017】[0017]

【数1】 [Equation 1]

【0018】また、成型触媒の充填粉化率及び形状変化
率は以下のように定義する。成型触媒100部を秤量
し、この時成型触媒の個数をX個とする。次に、水平方
向に対して垂直に設置した内径30mmφ、長さ5mか
らなるステンレス管に、秤量した成型触媒をステンレス
管上部より充填し、充填後ステンレス管下部より回収す
る。回収した触媒のうち、8メッシュのふるいを通過し
ないが触媒a部であり、かつ、この時8メッシュのふる
いを通過しなかった触媒の個数をY個とすると、充填粉
化率及び形状変化率は次のように表される。
Further, the filling powdering rate and the shape change rate of the molded catalyst are defined as follows. 100 parts of the molded catalyst is weighed, and the number of molded catalysts is X at this time. Next, a weighed molded catalyst is filled from the upper portion of the stainless steel tube into a stainless steel tube having an inner diameter of 30 mmφ and a length of 5 m installed vertically to the horizontal direction, and after the filling, the recovered catalyst is collected from the lower portion of the stainless steel tube. Of the recovered catalysts, the catalyst a part which does not pass through the 8-mesh sieve and the number of catalysts which did not pass through the 8-mesh sieve at this time is Y, and the packing powdering rate and the shape change rate are Is represented as follows.

【0019】[0019]

【数2】 [Equation 2]

【0020】以下実施例、比較例中の部は重量部であ
り、分析はガスクロマトグラフィーによった。
In the following Examples and Comparative Examples, parts are parts by weight, and analysis was by gas chromatography.

【0021】実施例1 水1000部にパラモリブデン酸アンモニウム500
部、パラタングステン酸アンモニウム43.1部及び硝
酸カリウム1.4部を加え加熱攪拌した(A液)。別に
水600部に60%硝酸41.9部を加え、均一にした
後、硝酸ビスマス114.5部を加え溶解した。これに
硝酸第二鉄95.3部、硝酸コバルト309.0部及び
硝酸亜鉛7.0部を順次加え、更に水400部を加え溶
解した(B液)。A液にB液を加え水性スラリーとした
後、三酸化アンチモン24.1部を加え、加熱攪拌した
後蒸発乾固し、ケーキ状物質を得た。得られたケーキ状
物質を130℃で乾燥させた後、空気雰囲気下300℃
で1時間焼成した。得られた焼成粉100部に対して水
35部を添加して混練りした後、押出し機にて、外周が
楕円形状で中心より最長距離が3.0mm、最短距離が
2.5mm、内径1.0mmの貫通孔を有し、平均長さ
が5.0mmの同心円のシリンダー状に押出した。該賦
型触媒を130℃で6時間乾燥し、次いで再び空気雰囲
気下500℃で6時間熱処理したものを触媒として用い
た。
Example 1 Ammonium paramolybdate 500 was added to 1000 parts of water.
Parts, 43.1 parts of ammonium paratungstate and 1.4 parts of potassium nitrate were added and heated and stirred (Liquid A). Separately, 41.9 parts of 60% nitric acid was added to 600 parts of water to make the mixture uniform, and then 114.5 parts of bismuth nitrate was added and dissolved. To this, 95.3 parts of ferric nitrate, 309.0 parts of cobalt nitrate and 7.0 parts of zinc nitrate were sequentially added, and 400 parts of water was further added and dissolved (solution B). Liquid B was added to liquid A to make an aqueous slurry, 24.1 parts of antimony trioxide was added, and the mixture was heated with stirring and then evaporated to dryness to obtain a cake-like substance. After drying the obtained cake-like substance at 130 ℃, 300 ℃ under air atmosphere
It was baked for 1 hour. After adding 35 parts of water to 100 parts of the obtained baked powder and kneading the mixture, with an extruder, the outer circumference is elliptical and the longest distance from the center is 3.0 mm, the shortest distance is 2.5 mm, and the inner diameter is 1 It was extruded into a concentric cylinder having a through hole of 0.0 mm and an average length of 5.0 mm. The shaped catalyst was dried at 130 ° C. for 6 hours and then heat-treated again at 500 ° C. for 6 hours in an air atmosphere to be used as a catalyst.

【0022】得られた触媒の酸素以外の元素の組成(以
下同じ)はMo120.3 Bi1 Fe1 Zn0.1 Co4.5
0.06Al0.1 Si5 であった。本触媒をステンレス製
反応管に充填し、プロピレン5%、酸素12%、水蒸気
10%及び窒素73%(容量%)の原料混合ガスを接触
時間3.6秒で触媒層を通過させ、310℃で反応させ
た。その結果、プロピレンの反応率99.2%、アクロ
レインの選択率90.3%、アクリル酸の選択率6.2
%であった。また、充填粉化率1.6%、形状変化率
7.1%であった。
The composition of elements other than oxygen in the obtained catalyst (the same applies hereinafter) was Mo 12 W 0.3 Bi 1 Fe 1 Zn 0.1 Co 4.5.
It was K 0.06 Al 0.1 Si 5 . This catalyst was filled in a stainless steel reaction tube, and a raw material mixed gas of propylene 5%, oxygen 12%, water vapor 10% and nitrogen 73% (volume%) was passed through the catalyst layer at a contact time of 3.6 seconds to obtain 310 ° C. It was made to react with. As a result, the reaction rate of propylene was 99.2%, the selectivity of acrolein was 90.3%, and the selectivity of acrylic acid was 6.2.
%Met. In addition, the filling powder ratio was 1.6% and the shape change ratio was 7.1%.

【0023】実施例2 実施例1において、外周が楕円形状で中心より最長距離
が2.0mm、最短距離が1.5mm、内径0.5mm
の貫通孔を有し、平均長さ5.0mmの同心円のシリン
ダー状とした点以外は実施例1と同様にして熱処理及び
反応を行った。その結果、プロピレンの反応率99.3
%、アクロレインの選択率90.4%、アクリル酸の選
択率6.3%であった。また、充填粉化率1.2%、形
状変化率6.7%であった。
Example 2 In Example 1, the outer circumference was elliptical and the longest distance from the center was 2.0 mm, the shortest distance was 1.5 mm, and the inner diameter was 0.5 mm.
The heat treatment and the reaction were performed in the same manner as in Example 1 except that the through hole was formed into a concentric circular cylinder having an average length of 5.0 mm. As a result, the reaction rate of propylene was 99.3.
%, Acrolein selectivity was 90.4%, and acrylic acid selectivity was 6.3%. In addition, the filling powder ratio was 1.2% and the shape change ratio was 6.7%.

【0024】実施例3 実施例1において、外周が楕円形状で中心より最長距離
が3.5mm、最短距離が1.0mm、内径0.5mm
の貫通孔を有し、平均長さ3.0mmの同心円のシリン
ダー状とした点以外は実施例1と同様にして熱処理及び
反応を行った。その結果、プロピレンの反応率99.2
%、アクロレインの選択率90.1%、アクリル酸の選
択率6.3%であった。また、充填粉化率1.7%、形
状変化率6.5%であった。
Example 3 In Example 1, the outer circumference is elliptical and the longest distance from the center is 3.5 mm, the shortest distance is 1.0 mm, and the inner diameter is 0.5 mm.
The heat treatment and the reaction were performed in the same manner as in Example 1 except that the through hole was formed into a concentric cylinder having an average length of 3.0 mm. As a result, the reaction rate of propylene was 99.2.
%, Acrolein selectivity was 90.1%, and acrylic acid selectivity was 6.3%. In addition, the filling powder ratio was 1.7% and the shape change ratio was 6.5%.

【0025】実施例4 実施例1において、内周が楕円形状であり、外径の半径
を2.5mm、中心より最長距離が1.5mmで最短距
離が0.5mmの貫通孔を有し、平均長さ3.0mmの
同心円のシリンダー状とした点以外は実施例1と同様に
して熱処理及び反応を行った。その結果、プロピレンの
反応率99.2%、アクロレインの選択率90.2%、
アクリル酸の選択率6.3%であった。また、充填粉化
率0.9%、形状変化率6.2%であった。
Example 4 In Example 1, the inner circumference was elliptical, the outer diameter had a radius of 2.5 mm, and the through hole had a maximum distance of 1.5 mm from the center and a minimum distance of 0.5 mm. Heat treatment and reaction were carried out in the same manner as in Example 1 except that the shape of the cylinder was concentric with an average length of 3.0 mm. As a result, the reaction rate of propylene was 99.2%, the selectivity of acrolein was 90.2%,
The selectivity of acrylic acid was 6.3%. In addition, the filling powder ratio was 0.9% and the shape change ratio was 6.2%.

【0026】実施例5 実施例1において、内周が楕円形状であり、外径の半径
を3.0mm、中心より最長距離が1.5mmで最短距
離が1.0mmの貫通孔を有し、平均長さ8.0mmの
同心円のシリンダー状とした点以外は実施例1と同様に
して熱処理及び反応を行った。その結果、プロピレンの
反応率99.2%、アクロレインの選択率90.3%、
アクリル酸の選択率6.2%であった。また、充填粉化
率1.4%、形状変化率7.4%であった。
Example 5 In Example 1, the inner circumference was elliptical, the outer diameter had a radius of 3.0 mm, and the through hole had a maximum distance of 1.5 mm from the center and a minimum distance of 1.0 mm. Heat treatment and reaction were performed in the same manner as in Example 1 except that the shape of the cylinder was concentric with an average length of 8.0 mm. As a result, the reaction rate of propylene was 99.2%, the selectivity of acrolein was 90.3%,
The selectivity of acrylic acid was 6.2%. In addition, the filling powder ratio was 1.4% and the shape change ratio was 7.4%.

【0027】実施例6 実施例1において、内周が楕円形状であり、外径の半径
を3.5mm、中心より最長距離が3.0mmで最短距
離が0.5mmの貫通孔を有し、平均長さ5.0mmの
同心円のシリンダー状とした点以外は実施例1と同様に
して熱処理及び反応を行った。その結果、プロピレンの
反応率99.3%、アクロレインの選択率90.1%、
アクリル酸の選択率6.3%であった。また、充填粉化
率1.6%、形状変化率8.0%であった。
Example 6 In Example 1, the inner circumference was elliptical, the outer diameter had a radius of 3.5 mm, and the through hole had a maximum distance of 3.0 mm from the center and a minimum distance of 0.5 mm. Heat treatment and reaction were performed in the same manner as in Example 1 except that the shape of the cylinder was concentric with an average length of 5.0 mm. As a result, the reaction rate of propylene was 99.3%, the selectivity of acrolein was 90.1%,
The selectivity of acrylic acid was 6.3%. In addition, the filling powder ratio was 1.6% and the shape change ratio was 8.0%.

【0028】比較例1 実施例1において、外周が楕円形状で中心より最長距離
が4.0mm、最短距離が3.7mm、内径0.5mm
の貫通孔を有し、平均長さ5.0mmの同心円のシリン
ダー状とした点以外は実施例1と同様にして熱処理及び
反応を行った。その結果、プロピレンの反応率98.9
%、アクロレインの選択率89.8%、アクリル酸の選
択率5.9%であった。また、充填粉化率0.5%、形
状変化率5.9%であった。
Comparative Example 1 In Example 1, the outer circumference is elliptical, the longest distance from the center is 4.0 mm, the shortest distance is 3.7 mm, and the inner diameter is 0.5 mm.
The heat treatment and the reaction were performed in the same manner as in Example 1 except that the through hole was formed into a concentric circular cylinder having an average length of 5.0 mm. As a result, the reaction rate of propylene was 98.9.
%, Acrolein selectivity was 89.8%, and acrylic acid selectivity was 5.9%. In addition, the filling powder ratio was 0.5% and the shape change ratio was 5.9%.

【0029】比較例2 実施例1において、外周の半径3.0mm、内周の半径
1.0mm、平均長さ5.0mmの同心円のリング状と
した点以外は実施例1と同様にして、熱処理及び反応を
行った。その結果、プロピレンの反応率99.0%、ア
クロレインの選択率89.7%、アクリル酸の選択率
6.0%であった。また、充填粉化率3.9%、形状変
化率10.9%であった。
Comparative Example 2 The same as Example 1 except that the outer circumference was 3.0 mm, the inner circumference was 1.0 mm, and the average length was 5.0 mm. Heat treatment and reaction were performed. As a result, the reactivity of propylene was 99.0%, the selectivity of acrolein was 89.7%, and the selectivity of acrylic acid was 6.0%. In addition, the filling powder ratio was 3.9% and the shape change ratio was 10.9%.

【0030】実施例7 水400部に60%硝酸42部を加え均一溶液とした
後、硝酸ビスマス68.7部を加え溶解した。これに硝
酸ニッケル274.5部及び三酸化アンチモン24.1
部を順次加え溶解、分散させた。この混合液に28%ア
ンモニア水165部を加え白色沈殿物と青色の溶液を得
た。これを加熱攪拌し、水の大部分を蒸発させた。得ら
れたスラリー状物質を120℃で16時間乾燥した後、
750℃で2時間熱処理し、微粉砕してビスマス−ニッ
ケル−アンチモンの微粉末を得た。
Example 7 To 400 parts of water was added 42 parts of 60% nitric acid to make a uniform solution, and then 68.7 parts of bismuth nitrate were added and dissolved. 274.5 parts of nickel nitrate and 24.1 of antimony trioxide
Parts were sequentially added and dissolved and dispersed. 165 parts of 28% ammonia water was added to this mixed solution to obtain a white precipitate and a blue solution. This was heated and stirred, and most of the water was evaporated. After drying the obtained slurry-like substance at 120 ° C. for 16 hours,
It was heat-treated at 750 ° C. for 2 hours and pulverized to obtain fine powder of bismuth-nickel-antimony.

【0031】水1000部にパラモリブテン酸アンモニ
ウム500部、パラタングステン酸アンモニウム18.
5部及び硝酸セシウム20.7部を加え、加熱攪拌した
(A液)。別に水700部に硝酸第二鉄190.7部、
硝酸コバルト137.3部及び硝酸マグネシウム12
1.0部を順次加え溶解した(B液)。A液にB液を加
えスラリー状とした後、20%シリカゾル354.5部
及び前記のビスマス−ニッケル−アンチモン化合物の微
粉末を加え加熱攪拌し、水の大部分を蒸発させた。
Ammonium paramolybdate, 500 parts, and ammonium paratungstate, in 1000 parts of water 18.
5 parts and 20.7 parts of cesium nitrate were added, and the mixture was heated and stirred (Liquid A). Separately, in 700 parts of water, 190.7 parts of ferric nitrate,
Cobalt nitrate 137.3 parts and magnesium nitrate 12
1.0 part was sequentially added and dissolved (solution B). Solution B was added to solution A to form a slurry, and then 354.5 parts of 20% silica sol and the fine powder of the bismuth-nickel-antimony compound were added and heated and stirred to evaporate most of the water.

【0032】得られたケーキ状物質を130℃で乾燥さ
せた後、空気雰囲気下300℃で1時間焼成し粉砕し
た。得られた焼成粉砕物100部に対して水30部を添
加して混練した後、押出し機にて、外周が楕円形状で中
心より最長距離が2.5mmで最短距離が2.0mm、
内径1.0mmの貫通孔を有し、平均長さが5mmの同
心円のシリンダー状に押出した。該賦型触媒を130℃
で6時間乾燥し、次いで再び空気雰囲気下500℃で6
時間熱処理したものを触媒とした用いた。
The obtained cake-like substance was dried at 130 ° C., and then calcined in an air atmosphere at 300 ° C. for 1 hour to be pulverized. After adding 30 parts of water to 100 parts of the obtained fired and pulverized product and kneading the mixture, with an extruder, the outer circumference is elliptical, the longest distance from the center is 2.5 mm, and the shortest distance is 2.0 mm.
It was extruded into a concentric cylinder having an inner diameter of 1.0 mm and an average length of 5 mm. 130 ° C. for the shaped catalyst
For 6 hours, then again under air at 500 ° C for 6 hours.
What was heat-treated for a while was used as a catalyst.

【0033】得られた触媒の元素の組成はMo120.3
Bi0.6 Fe2 Sb0.7 Ni4 Co2 Cs0.45Mg2
5 であった。本触媒をステンレス製反応管に充填し、
イソブチレン5%、酸素12%、水蒸気10%及び窒素
73%(容量%)の原料混合ガスを接触時間3.6秒で
触媒層を通過させ、360℃で反応させた。その結果、
イソブチレンの反応率97.2%、メタクロレインの選
択率89.4%、メタクリルの酸選択率3.4%であっ
た。また、充填粉化率1.4%、形状変化率7.0%で
あった。
The composition of the elements of the obtained catalyst was Mo 12 W 0.3.
Bi 0.6 Fe 2 Sb 0.7 Ni 4 Co 2 Cs 0.45 Mg 2 S
It was i 5 . Fill the stainless steel reaction tube with this catalyst,
A raw material mixed gas containing 5% of isobutylene, 12% of oxygen, 10% of steam and 73% (volume%) of nitrogen was passed through the catalyst layer at a contact time of 3.6 seconds and reacted at 360 ° C. as a result,
The reaction rate of isobutylene was 97.2%, the selectivity of methacrolein was 89.4%, and the acid selectivity of methacryl was 3.4%. In addition, the filling powder ratio was 1.4% and the shape change ratio was 7.0%.

【0034】実施例8 実施例7において、外周が楕円形状で中心より最長距離
が3.0mm、最短距離が1.5mm、内径1.0mm
の貫通孔を有し、平均長さ5.0mmの同心円のシリン
ダー状とした点以外は実施例7と同様にして熱処理及び
反応を行った。その結果、イソブチレンの反応率97.
2%、メタクロレインの選択率89.4%、メタクリル
酸の選択率3.4%であった。また、充填粉化率1.4
%、形状変化率7.0%であった。
Example 8 In Example 7, the outer circumference was elliptical and the longest distance from the center was 3.0 mm, the shortest distance was 1.5 mm, and the inner diameter was 1.0 mm.
Heat treatment and reaction were carried out in the same manner as in Example 7 except that the through hole was formed into a concentric cylinder having an average length of 5.0 mm. As a result, the reaction rate of isobutylene was 97.
The selectivity was 2%, the selectivity of methacrolein was 89.4%, and the selectivity of methacrylic acid was 3.4%. In addition, the filling powder ratio is 1.4
%, And the shape change rate was 7.0%.

【0035】実施例9 実施例7において、外周が楕円形状で中心より最長距離
が3.5mm、最短距離が1.0mm、内径0.5mm
の貫通孔を有し、平均長さ3.0mmの同心円のシリン
ダー状とした点以外は実施例7と同様にして熱処理及び
反応を行った。その結果、イソブチレンの反応率97.
4%、メタクロレインの選択率89.5%、メタクリル
酸の選択率3.4%であった。また、充填粉化率1.2
%、形状変化率6.6%であった。
Example 9 In Example 7, the outer circumference is elliptical and the longest distance from the center is 3.5 mm, the shortest distance is 1.0 mm, and the inner diameter is 0.5 mm.
Heat treatment and reaction were carried out in the same manner as in Example 7 except that the through hole was formed into a concentric cylinder having an average length of 3.0 mm. As a result, the reaction rate of isobutylene was 97.
The selectivity was 4%, the selectivity of methacrolein was 89.5%, and the selectivity of methacrylic acid was 3.4%. In addition, the filling powder ratio 1.2
%, And the shape change rate was 6.6%.

【0036】実施例10 実施例7において、内周が楕円形状であり、外径の半径
を2.5mm、中心より最長距離が1.0mmで最短距
離が0.5mmの貫通孔を有し、平均長さ5.0mmの
同心円のシリンダー状とした点以外は実施例7と同様に
して熱処理及び反応を行った。その結果、イソブチレン
の反応率97.3%、メタクロレインの選択率89.4
%、メタクリル酸の選択率3.3%であった。また、充
填粉化率1.3%、形状変化率6.8%であった。
Example 10 In Example 7, the inner circumference was elliptical, the outer diameter had a radius of 2.5 mm, and the through hole had a maximum distance of 1.0 mm from the center and a minimum distance of 0.5 mm. Heat treatment and reaction were performed in the same manner as in Example 7 except that the shape of the cylinder was concentric with an average length of 5.0 mm. As a result, the reaction rate of isobutylene was 97.3% and the selectivity of methacrolein was 89.4.
%, And the selectivity of methacrylic acid was 3.3%. Further, the filling powdering rate was 1.3% and the shape change rate was 6.8%.

【0037】実施例11 実施例7において、内周が楕円形状であり、外径の半径
を2.0mm、中心より最長距離が1.0mmで最短距
離が0.5mmの貫通孔を有し、平均長さ8.0mmの
同心円のシリンダー状とした点以外は実施例7と同様に
して熱処理及び反応を行った。その結果、イソブチレン
の反応率97.1%、メタクロレインの選択率89.2
%、メタクリル酸の選択率3.2%であった。また、充
填粉化率1.9%、形状変化率7.6%であった。
Example 11 In Example 7, the inner circumference was elliptical, the outer diameter had a radius of 2.0 mm, and the through hole had a maximum distance of 1.0 mm from the center and a minimum distance of 0.5 mm. Heat treatment and reaction were performed in the same manner as in Example 7 except that the shape of the cylinder was concentric with an average length of 8.0 mm. As a result, the conversion of isobutylene was 97.1% and the selectivity of methacrolein was 89.2.
%, And the selectivity of methacrylic acid was 3.2%. In addition, the filling powder ratio was 1.9% and the shape change ratio was 7.6%.

【0038】実施例12 実施例7において、内周が楕円形状であり、外径の半径
を3.0mm、中心より最長距離が1.5mmで最短距
離が0.5mmの貫通孔を有し、平均長さ5.0mmの
同心円のシリンダー状とした点以外は実施例7と同様に
して熱処理及び反応を行った。その結果、イソブチレン
の反応率97.4%、メタクロレインの選択率89.3
%、メタクリル酸の選択率3.5%であった。また、充
填粉化率1.1%、形状変化率6.1%であった。
Example 12 In Example 7, the inner circumference was elliptical, the outer diameter had a radius of 3.0 mm, and the through hole had a maximum distance of 1.5 mm from the center and a minimum distance of 0.5 mm. Heat treatment and reaction were performed in the same manner as in Example 7 except that the shape of the cylinder was concentric with an average length of 5.0 mm. As a result, the reaction rate of isobutylene was 97.4% and the selectivity of methacrolein was 89.3.
%, And the selectivity of methacrylic acid was 3.5%. In addition, the filling powder ratio was 1.1% and the shape change ratio was 6.1%.

【0039】比較例3 実施例7において、外周が楕円形状で中心より最長距離
が4.0mm、最短距離が3.7mm、内径2.0mm
の貫通孔を有し、平均長さ5.0mmの同心円のシリン
ダー状とした点以外は実施例7と同様にして熱処理及び
反応を行った。その結果、イソブチレンの反応率97.
0%、メタクロレインの選択率89.0%、メタクリル
酸の選択率3.0%であった。また、充填粉化率6.3
%、形状変化率14.3%であった。
Comparative Example 3 In Example 7, the outer circumference was elliptical, the longest distance from the center was 4.0 mm, the shortest distance was 3.7 mm, and the inner diameter was 2.0 mm.
Heat treatment and reaction were carried out in the same manner as in Example 7 except that the through hole was formed into a concentric cylinder having an average length of 5.0 mm. As a result, the reaction rate of isobutylene was 97.
The selectivity was 0%, methacrolein selectivity was 89.0%, and methacrylic acid selectivity was 3.0%. In addition, the filling powder ratio 6.3
%, And the shape change rate was 14.3%.

【0040】比較例4 実施例7において、外周の半径3.0mm、内周の半径
1.5mm、平均長さ5.0mmの同心円のリング状と
した点以外は実施例7と同様にして、熱処理及び反応を
行った。その結果、イソブチレンの反応率96.9%、
メタクロレインの選択率89.0%、メタクリル酸の選
択率2.9%であった。また、充填粉化率4.2%、形
状変化率11.7%であった。
Comparative Example 4 The same procedure as in Example 7 was repeated except that the outer peripheral radius was 3.0 mm, the inner peripheral radius was 1.5 mm, and the average length was 5.0 mm. Heat treatment and reaction were performed. As a result, the reaction rate of isobutylene is 96.9%,
The selectivity of methacrolein was 89.0% and the selectivity of methacrylic acid was 2.9%. In addition, the filling powder ratio was 4.2% and the shape change ratio was 11.7%.

【0041】実施例13 実施例7の触媒を用い、原料をTBAに変え、その他は
実施例7と同様にして反応を行った。その結果、TBA
反応率100%、メタクロレイン選択率87.6%、メ
タクリル酸選択率2.9%であった。
Example 13 Using the catalyst of Example 7, the raw material was changed to TBA and the reaction was carried out in the same manner as in Example 7. As a result, TBA
The reaction rate was 100%, the methacrolein selectivity was 87.6%, and the methacrylic acid selectivity was 2.9%.

【0042】実施例14 実施例10の触媒を用い、原料をTBAに変え、その他
は実施例7と同様にして反応を行った。その結果、TB
A反応率100%、メタクロレイン選択率87.7%、
メタクリル酸選択率2.9%であった。
Example 14 Using the catalyst of Example 10, the raw material was changed to TBA and the reaction was carried out in the same manner as in Example 7. As a result, TB
A reaction rate 100%, methacrolein selectivity 87.7%,
Methacrylic acid selectivity was 2.9%.

【0043】比較例5 比較例4の触媒を用い、原料をTBAに変え、その他は
実施例7と同様にして反応を行った。その結果、TBA
反応率100%、メタクロレイン選択率87.3%、メ
タクリル酸選択率2.3%であった。
Comparative Example 5 Using the catalyst of Comparative Example 4, the raw material was changed to TBA and the reaction was carried out in the same manner as in Example 7. As a result, TBA
The reaction rate was 100%, the methacrolein selectivity was 87.3%, and the methacrylic acid selectivity was 2.3%.

【0044】[0044]

【発明の効果】本発明の形状を有する触媒はプロピレ
ン、イソブチレン、TBA又はMTBEの気相酸化にお
いて対応する不飽和アルデヒド及び不飽和カルボン酸の
収率を向上する効果を有する。
The catalyst having the form of the present invention has the effect of improving the yield of the corresponding unsaturated aldehyde and unsaturated carboxylic acid in the gas phase oxidation of propylene, isobutylene, TBA or MTBE.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の触媒の横断面図FIG. 1 is a cross-sectional view of a catalyst of the present invention.

【図2】本願発明の別の触媒の横断面図FIG. 2 is a cross-sectional view of another catalyst of the present invention.

【図3】従来の触媒の横断面図FIG. 3 is a cross-sectional view of a conventional catalyst

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07C 47/22 J 7457−4H 57/05 9356−4H // C07B 61/00 300 Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location C07C 47/22 J 7457-4H 57/05 9356-4H // C07B 61/00 300

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 プロピレン、イソブチレン、第三級ブチ
ルアルコール又はメチル第三級ブチルエーテルを分子状
酸素を用いて、気相接触酸化し、それぞれに対応する不
飽和アルデヒド及び不飽和カルボン酸を製造する際に用
いられる、少なくともモリブデン、ビスマス及び鉄を含
む触媒において、触媒形状が、貫通孔を有するシリンダ
ー状形態を有し、その断面が外周又は内周のいずれか一
方が本質的には楕円形状を有し、他方が円であり、外周
及び内周の中心が一致し、中心より該楕円形状上の最短
距離に対する最長距離の比が1.2〜4.0であること
を特徴とする不飽和アルデヒド及び不飽和カルボン酸合
成用触媒。
1. When producing propylene, isobutylene, tertiary butyl alcohol or methyl tertiary butyl ether by gas phase catalytic oxidation using molecular oxygen to produce the corresponding unsaturated aldehyde and unsaturated carboxylic acid. In the catalyst containing at least molybdenum, bismuth and iron used for the catalyst, the catalyst has a cylindrical shape having a through hole, and its cross section has either an outer circumference or an inner circumference essentially an elliptical shape. However, the other is a circle, the centers of the outer circumference and the inner circumference coincide, and the ratio of the longest distance to the shortest distance on the elliptical shape from the center is 1.2 to 4.0. And a catalyst for synthesizing unsaturated carboxylic acid.
【請求項2】 少くともモリブデン、ビスマス及び鉄を
含む固体触媒であって、触媒形状が貫通孔を有するシリ
ンダー状であり、その断面が外周又は内周のいずれか一
方が本質的に楕円形状で他方が円であり、外周及び内周
の中心が一致し、該中心より該楕円形状の最短距離に対
する最長距離の比が1.2〜4.0である形状の触媒を
用いてプロピレン、イソブチレン、第三級ブチルアルコ
ール又はメチル第三級ブチルエーテルを分子状酸素を用
いて気相接触酸化し、それぞれに対応する不飽和アルデ
ヒド及び不飽和カルボン酸を製造する方法。
2. A solid catalyst containing at least molybdenum, bismuth and iron, wherein the catalyst shape is a cylindrical shape having a through hole, and the cross section thereof has either an outer circumference or an inner circumference of an essentially elliptical shape. The other is a circle, and the center of the outer circumference and the inner circumference are coincident with each other, and the ratio of the longest distance to the shortest distance of the elliptical shape from the center is 1.2 to 4.0, and propylene, isobutylene, A method for producing a corresponding unsaturated aldehyde and unsaturated carboxylic acid by subjecting tertiary butyl alcohol or methyl tertiary butyl ether to gas-phase catalytic oxidation using molecular oxygen.
JP33205592A 1992-12-11 1992-12-11 Catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and use thereof Expired - Fee Related JP3260185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33205592A JP3260185B2 (en) 1992-12-11 1992-12-11 Catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33205592A JP3260185B2 (en) 1992-12-11 1992-12-11 Catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and use thereof

Publications (2)

Publication Number Publication Date
JPH06170232A true JPH06170232A (en) 1994-06-21
JP3260185B2 JP3260185B2 (en) 2002-02-25

Family

ID=18250640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33205592A Expired - Fee Related JP3260185B2 (en) 1992-12-11 1992-12-11 Catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and use thereof

Country Status (1)

Country Link
JP (1) JP3260185B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019065A1 (en) * 1997-10-14 1999-04-22 Japan Energy Corporation Catalyst support, catalyst, reactor for hydrogenation reaction, and catalytic reaction method
FR2783439A1 (en) * 1998-09-23 2000-03-24 Air Liquide Agglomerated adsorbent particle for use in gas separation adsorbers
JP2008155126A (en) * 2006-12-22 2008-07-10 Mitsubishi Rayon Co Ltd Method for producing metal component-containing catalyst
WO2009147965A1 (en) 2008-06-02 2009-12-10 日本化薬株式会社 Catalyst and method of producing unsaturated aldehyde and unsaturated carboxylic acid
WO2010032665A1 (en) * 2008-09-22 2010-03-25 株式会社日本触媒 Fixed bed reactor and method for producing acrylic acid using the same
GB2541052A (en) * 2015-04-14 2017-02-08 Johnson Matthey Plc Shaped catalyst particle
CN111065461A (en) * 2017-09-15 2020-04-24 大金工业株式会社 Catalyst particles

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019065A1 (en) * 1997-10-14 1999-04-22 Japan Energy Corporation Catalyst support, catalyst, reactor for hydrogenation reaction, and catalytic reaction method
US6325919B1 (en) 1997-10-14 2001-12-04 Japan Energy Corportion Catalyst support, catalyst, reactor for hydrogenation reaction, and catalytic reaction method
FR2783439A1 (en) * 1998-09-23 2000-03-24 Air Liquide Agglomerated adsorbent particle for use in gas separation adsorbers
EP0997190A1 (en) * 1998-09-23 2000-05-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ellipsoidal adsorbent particles and use thereof in a method for producing gas
US6221492B1 (en) 1998-09-23 2001-04-24 L'air Liquide, Societe Anonyme Pour L'etude Et Exploitation Des Procedes Georges Claude Ellipsoidal adsorbent particles and their use in a gas production process
JP2008155126A (en) * 2006-12-22 2008-07-10 Mitsubishi Rayon Co Ltd Method for producing metal component-containing catalyst
WO2009147965A1 (en) 2008-06-02 2009-12-10 日本化薬株式会社 Catalyst and method of producing unsaturated aldehyde and unsaturated carboxylic acid
WO2010032665A1 (en) * 2008-09-22 2010-03-25 株式会社日本触媒 Fixed bed reactor and method for producing acrylic acid using the same
US8673245B2 (en) 2008-09-22 2014-03-18 Nippon Shokubai Co., Ltd. Fixed-bed reactor and process for producing acrylic acid using the reactor
GB2541052A (en) * 2015-04-14 2017-02-08 Johnson Matthey Plc Shaped catalyst particle
GB2541052B (en) * 2015-04-14 2019-10-16 Johnson Matthey Plc Shaped catalyst particle
US10913057B2 (en) 2015-04-14 2021-02-09 Johnson Matthey Public Limited Company Shaped catalyst particle
CN111065461A (en) * 2017-09-15 2020-04-24 大金工业株式会社 Catalyst particles

Also Published As

Publication number Publication date
JP3260185B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
JP3943311B2 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
KR100986898B1 (en) Multi-metal oxide catalyst and method for producing methacrylic acid by using the same
JPS6236739B2 (en)
JPS6236740B2 (en)
JP3476307B2 (en) Method for filling catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
EP2647429B1 (en) Catalyst for producing unsaturated carboxylic acids and unsaturated carboxylic acid production method using said catalyst
JP3260185B2 (en) Catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and use thereof
JP2003093882A (en) Catalyst for synthesizing unsaturated carboxylic acid, manufacturing method therefor and synthesizing method for unsaturated carboxylic acid using the catalyst
JP3321300B2 (en) Process for producing oxide catalyst containing molybdenum, bismuth and iron
JP3268900B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP3523455B2 (en) Fixed bed reactor and method for producing unsaturated carboxylic acid
JP3260186B2 (en) Molded catalyst for producing unsaturated carboxylic acid and use thereof
JPH0679666B2 (en) Catalyst for methacrylic acid synthesis and its production method with excellent reproducibility
JP3260187B2 (en) Molded catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and use thereof
JPH10258233A (en) Preparation of catalyst for synthesizing of unsaturated aldehyde and unsaturated carboxylic acid
JP2006255689A (en) Manufacturing method of molybdenum-containing solid molded catalyst
JPH06210184A (en) Catalytic molding for production of unsaturated carboxylic acid and production of unsaturated carboxylic acid using the same
JP3251641B2 (en) Process for producing catalyst for producing unsaturated aldehydes and unsaturated carboxylic acids
JPH06170239A (en) Catalytic formed body for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and its use
JPH06210183A (en) Catalytic molding for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and its use
JPH07289902A (en) Production of catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JPH07124473A (en) Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP4301484B2 (en) Method for producing methacrylic acid
JP3313968B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees