JPH06140077A - Electrochemical element, lithium secondary battery and set battery and manufacture thereof - Google Patents

Electrochemical element, lithium secondary battery and set battery and manufacture thereof

Info

Publication number
JPH06140077A
JPH06140077A JP5076840A JP7684093A JPH06140077A JP H06140077 A JPH06140077 A JP H06140077A JP 5076840 A JP5076840 A JP 5076840A JP 7684093 A JP7684093 A JP 7684093A JP H06140077 A JPH06140077 A JP H06140077A
Authority
JP
Japan
Prior art keywords
battery
active material
separator
electrode
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5076840A
Other languages
Japanese (ja)
Other versions
JP3116643B2 (en
Inventor
Akira Shiragami
昭 白神
Hiroaki Urushibata
広明 漆畑
Hisashi Shioda
久 塩田
Takashi Nishimura
隆 西村
Shigeru Aihara
茂 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26417957&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06140077(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP05076840A priority Critical patent/JP3116643B2/en
Publication of JPH06140077A publication Critical patent/JPH06140077A/en
Application granted granted Critical
Publication of JP3116643B2 publication Critical patent/JP3116643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a highly reliable battery for which positioning of positive and negative electrodes becomes unnecessary, whose assembling becomes simple and whose performance failure can be reduced as well as providing a high voltage and large capacity lithium secondary battery. CONSTITUTION:A positive electrode 1 is formed on one surface of a separator 3, and a negative electrode 2 is formed on the other surface, continuously respectively so as to become smaller than separator width, and an electrode - separator integrated material is formed. This is laminated, and a battery is formed. A flexible electrode of a soft binder is adopted, and a material formed by arranging the positive electrode 1 and the negative electrode 2 oppositely to each other through the separator 3 is folded up even number times, and an electrically insulating sealing material 4 is arranged around it, and the superimposed directional both end parts are sandwiched between electrically conductive plate materials 5, and a plate-like battery is constituted and realized. A high voltage and large capacity lithium secondary battery can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気化学的にイオンを
電極に出入りさせる電気化学素子、特にリチウム二次電
池の構造及びその電極、該電池を用いた組電池並びにそ
れらの製造方法に関するものである。なお、本明細書に
おいては電気化学素子として電池を例に説明する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical element for electrochemically moving ions into and out of an electrode, particularly the structure of a lithium secondary battery and its electrode, an assembled battery using the battery and a method for producing them. Is. In the present specification, a battery will be described as an example of the electrochemical element.

【0002】[0002]

【従来の技術】電気化学的に電極にイオンを出し入れす
る電気化学素子としては、例えば電池がある。通常の電
池は、放電の際に外部回路から電子を、電解質から陽イ
オンを取り込むか、あるいは外部回路から電子を取り込
み電解質に陰イオンを放出する正極と、正極と反対の動
作をする負極が、電解質を含む、電子伝導性の無いセパ
レータと呼ばれる層を介して対向する構造になってい
る。
2. Description of the Related Art An electrochemical device for electrochemically transferring ions into and out of an electrode is, for example, a battery. In a normal battery, a positive electrode that takes in electrons from an external circuit and cations from an electrolyte or discharges electrons from an external circuit and releases anions into the electrolyte during discharge, and a negative electrode that operates opposite to the positive electrode, The structure is such that they are opposed to each other with a layer called a separator containing an electrolyte having no electron conductivity.

【0003】電極は、いわゆるマンガン乾電池であれ
ば、正極は活物質である二酸化マンガンと導電剤である
カーボンと電解液を練った正極合剤に集電用の炭素棒を
突き刺したものであり、負極は活物質である亜鉛の缶で
ある。
If the electrode is a so-called manganese dry battery, the positive electrode is a positive electrode mixture prepared by kneading manganese dioxide as an active material, carbon as a conductive agent and an electrolytic solution with a carbon rod for current collection. The negative electrode is a can of zinc, which is the active material.

【0004】このような構造の電池では、大きな電流を
取ろうとすると、電流密度が高まり集電棒近辺の活物質
ばかりが使用されることになり、実用上の電池容量が減
少していた。特に電解質の電気伝導度が小さい、リチウ
ムイオンを用いる非水電解質電池の場合にこの現象は顕
著であった。
In a battery having such a structure, when a large current is attempted to be obtained, the current density is increased and only the active material in the vicinity of the current collecting rod is used, so that the practical battery capacity is reduced. This phenomenon was particularly remarkable in the case of a non-aqueous electrolyte battery using lithium ions, which has a low electric conductivity of the electrolyte.

【0005】リチウム二次電池は軽量で高電圧が得られ
るため、携帯用小型電子機器のみならず、貯蔵用大型電
池用としても開発が盛んに行われている。
Since the lithium secondary battery is lightweight and can obtain a high voltage, it has been actively developed not only for small portable electronic devices but also for large storage batteries.

【0006】このリチウム二次電池においては、以前は
負極材料としてリチウム金属単体が用いられていたが、
リチウム金属の樹状析出により内部短絡を引き起こす等
問題があった。よって近年では負極材料として炭素を用
い、リチウムイオンを挿入、脱離させる方法が主流にな
りつつある。この電極を用いることによってリチウム金
属を用いた場合と同程度の電圧を有し、なおかつ樹状析
出のない安全性の高い電池が可能になった。この負極の
構成は熱分解炭素,カーボンブラック,コークス,グラ
ファイト等の炭素材料を用い、成形のためバインダーを
用いて結着させている。
In this lithium secondary battery, lithium metal alone was used as a negative electrode material before.
There was a problem such as an internal short circuit due to the dendritic deposition of lithium metal. Therefore, in recent years, a method of using carbon as a negative electrode material and inserting and desorbing lithium ions is becoming mainstream. By using this electrode, a battery having a voltage similar to that when using lithium metal and having high safety without dendrite was made possible. The negative electrode is composed of a carbon material such as pyrolytic carbon, carbon black, coke and graphite, and is bound by a binder for molding.

【0007】リチウム二次電池用正極材料としては高電
圧、高エネルギー密度の電池が可能で、構造を保ちつつ
リチウムイオンの挿入、脱離反応を行う物質が求められ
ており、様々な物質が提案されている。例としては、T
iS2,MnO2,V2O5,LiCoO2,LiNiO2,
LiMn2O4等が挙げられる。正極の構成材料としては
これらの正極活物質を主成分とし、導電性を向上させる
ため黒鉛等を加えており、また負極と同様に成型性を持
たせるために、バインダーを添加して接着させている。
As a positive electrode material for a lithium secondary battery, a battery having a high voltage and a high energy density is possible, and a substance capable of inserting and removing lithium ions while maintaining its structure is required, and various substances are proposed. Has been done. For example, T
iS2, MnO2, V2O5, LiCoO2, LiNiO2,
Examples thereof include LiMn2O4. As the constituent material of the positive electrode, these positive electrode active materials are the main components, and graphite or the like is added to improve conductivity. Also, in order to have moldability similar to the negative electrode, a binder is added and bonded. There is.

【0008】従来のリチウム二次電池においては、上記
両電極の間にセパレータを介在させ、電解液として非水
系有機溶媒を用いており、電池構造としてはコイン型も
しくは円筒型角型等がある。
In the conventional lithium secondary battery, a separator is interposed between the both electrodes and a non-aqueous organic solvent is used as an electrolytic solution. The battery structure is a coin type or a cylindrical type.

【0009】一般的に電池において大電流を得ようとす
る場合、電極面積を出来得る限り大きくすることが試み
られている。特にリチウム二次電池においては、電解液
として導電率の比較的低い有機溶媒を用いているので、
電極の大面積化は特に重要となる。
Generally, when trying to obtain a large current in a battery, it has been attempted to make the electrode area as large as possible. Especially in a lithium secondary battery, since an organic solvent having a relatively low conductivity is used as an electrolytic solution,
Increasing the area of the electrode is especially important.

【0010】図12は例えば「電池便覧」(電池便覧編
集委員会編、丸善平成2年発行)の124ページにしめ
された従来のコイン型電池を示す半断面側面図である。
1は正極、2は負極、3はセパレータ、4はシール材で
ある。
FIG. 12 is a half sectional side view showing a conventional coin type battery shown on page 124 of "Battery Handbook" (edited by Battery Handbook Editing Committee, published by Maruzen 1990).
Reference numeral 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, and 4 is a sealing material.

【0011】このような構造の平板状電池では電極面積
を大きくするには限りがある。そこで、電気伝導度の小
さい電解質の場合でも、大きな電流が取れるように、大
電流を取るタイプの電池として帯状の電極を巻き上げる
ことで電極面積を大きくした円筒型電池が作られてい
る。例えば特開平2ー51875号公報に記載されてい
るように、帯状の電極とセパレータを積層し巻き上げた
構造にすることで実質的電流密度を下げる工夫がされて
いた。また、帯状の電極とセパレータを別々に製造し積
層するのが通常の組立方法であった。
In the flat battery having such a structure, there is a limit in increasing the electrode area. Therefore, in order to obtain a large electric current even in the case of an electrolyte having a low electric conductivity, a cylindrical battery having a large electrode area has been produced by winding a strip-shaped electrode as a battery of a large electric current type. For example, as described in Japanese Patent Application Laid-Open No. 2-51875, it has been devised to reduce the substantial current density by forming a structure in which a strip-shaped electrode and a separator are laminated and rolled up. In addition, it has been a usual assembly method to manufacture and laminate the strip-shaped electrode and the separator separately.

【0012】また、平板状の電極を用いて大面積を得る
ためには、いわゆる短冊状の電極をつなぐ構造を採るの
が従来の方法であった。図13は同じく「電池便覧」
(電池便覧編集委員会編、丸善平成2年発行)の188
ページにしめされた従来のクラッド式鉛電池の構造を示
す分解斜視図である。短冊状の正極1と負極2は共に集
電タブと接続棒で櫛歯のようにつながれ、セパレータを
介して配置され、ひとつの容器に入れられる。
Further, in order to obtain a large area by using a flat plate-shaped electrode, the conventional method is to adopt a structure in which so-called strip-shaped electrodes are connected. Figure 13 is also the "Battery Handbook"
188 (Edited by Battery Handbook Editorial Committee, published by Maruzen 1990)
FIG. 7 is an exploded perspective view showing a structure of a conventional clad lead-acid battery shown on a page. Both the strip-shaped positive electrode 1 and the negative electrode 2 are connected like a comb by a current collecting tab and a connecting rod, arranged via a separator, and put in one container.

【0013】一方高い電圧を誇るリチウム二次電池とい
えども高々3〜4Vである。したがってそれ以上の電圧
を要求する場合、電池を直列に接続する方法が採られ
る。
On the other hand, even a lithium secondary battery boasting a high voltage is at most 3-4V. Therefore, when a higher voltage is required, a method of connecting batteries in series is adopted.

【0014】自動車用鉛電池のように例えばひとつの電
池で12V出るように見える場合、槽内を複数に区切
り、その区切り毎に正極板と負極板をセパレータを介し
て組み合わせた単電池要素と電解液が入っており、区切
り1つが単電池となってこの単電池を集電タブと集電棒
を介して直列に接続している。いわゆるパック電池のよ
うに、単電池として組み立てた円筒型電池や角型電池を
スポット溶接で直列接続したものを容器に入れるものも
ある。一方燃料電池や、電力貯蔵用のレドックスフロー
電池で見られるような、いわゆるバイポーラ構造で、単
電池を形成しつつ直列接続する方法がある。
When a battery such as a lead-acid battery for an automobile appears to output 12 V, for example, a cell is divided into a plurality of cells, and a positive electrode plate and a negative electrode plate are combined for each division via a separator and an electrolytic cell. It contains liquid, and one of the separators is a unit cell, which is connected in series via a collector tab and a collector rod. There is also a so-called pack battery in which a cylindrical battery or a square battery assembled as a single battery and connected in series by spot welding are put in a container. On the other hand, there is a method of connecting cells in series while forming a single cell with a so-called bipolar structure as seen in a fuel cell or a redox flow battery for storing electric power.

【0015】従来の二次電池では、充放電にともなって
発生した熱の除去は自然放熱に任せるのが一般的で、そ
のため電力貯蔵などで大量の電池をひとつの部屋に入れ
て使用する場合、部屋の換気や温度に注意している。
In the conventional secondary battery, it is general to remove the heat generated by charging and discharging by natural heat dissipation. Therefore, when a large number of batteries are put in one room for use such as power storage, Pay attention to ventilation and temperature in the room.

【0016】従来の密閉型の二次電池では充放電反応や
副反応にともなうガス発生による内部圧力の異常上昇が
起こった場合、内部圧力を解放するために電池容器の一
部に弱いところを設けてこの部分を破壊する方法が採ら
れている。
In a conventional sealed secondary battery, when an abnormal increase in internal pressure due to gas generation due to charge / discharge reaction or side reaction occurs, a weak portion is provided in a part of the battery container to release the internal pressure. The method of destroying the lever part is adopted.

【0017】この場合、内圧解放と共に電解液も流出す
るので電池は使いものにならなくなる。解放型の二次電
池では、常時ガスが逃げ出せるようになっているが、同
時に電解液も飛散するので、外部から適時電解液を注入
できるような構造になっている。
In this case, the electrolytic solution also flows out when the internal pressure is released, so that the battery becomes useless. In the open-type secondary battery, the gas can always escape, but since the electrolytic solution also scatters at the same time, the electrolytic solution can be injected from the outside in a timely manner.

【0018】[0018]

【発明が解決しようとする課題】従来の実用的な二次電
池は、そのほとんどが電解液が水系のものであるので、
電解液のイオン伝導抵抗も小さく、また空気中でも安定
な電極を使用している。一方リチウム二次電池は、水分
を充分に除去した内部環境で初めてその性能が引き出さ
れるものである。すなわち、従来の二次電池に採用され
ていた構造、材料では、安定で高性能なリチウム二次電
池を作ることはできないという問題点があった。
Since most of the conventional practical secondary batteries have an aqueous electrolyte,
The ionic conductivity resistance of the electrolyte is small, and the electrode is stable even in the air. On the other hand, the performance of the lithium secondary battery is brought out only in an internal environment in which moisture is sufficiently removed. That is, there is a problem in that a stable and high-performance lithium secondary battery cannot be made with the structure and materials used in the conventional secondary battery.

【0019】例えば、同じ電極面積の鉛蓄電池から取り
出される最大電流は、リチウム二次電池の数10倍に達
する。したがってリチウム二次電池では、電極面積を数
10倍にすることで同じ電流を取り出せるようにしなけ
ればならず、そのため、大面積電極をコンパクトに電池
容器の中に詰め込む必要がある。
For example, the maximum current drawn from a lead storage battery having the same electrode area reaches several ten times that of a lithium secondary battery. Therefore, in the lithium secondary battery, it is necessary to increase the electrode area by several tens of times so that the same current can be taken out. Therefore, it is necessary to compactly pack the large area electrode in the battery container.

【0020】また、従来の方法では、電極とセパレータ
を別々に製造し積層するので、セパレータを介した正極
と負極の位置合わせが必要かつ性能上重要で、精度の高
い組立が必要であった。この位置合わせを怠ると、反応
面積の不足から、容量不足が発生する。また最悪の場
合、端部での正極と負極の接触が発生し、電池としての
機能が損なわれるという問題点があった。
Further, in the conventional method, since the electrode and the separator are separately manufactured and laminated, it is necessary to position the positive electrode and the negative electrode through the separator, which is important in terms of performance, and highly accurate assembly is required. If this alignment is neglected, the reaction area will be insufficient and the capacity will be insufficient. Further, in the worst case, there is a problem that the positive electrode and the negative electrode come into contact with each other at the end portion, and the function as a battery is impaired.

【0021】また、高電圧を得るために単電池の直列接
続をする場合、集電棒で接続したり、スポット溶接でつ
ないだりして単電池同士の接続が固定された電池では、
内部ショートのようなトラブルが発生した場合、外部回
路の切断では、電池を保護することができない。リチウ
ム二次電池の場合エネルギー密度が高いので、深刻な事
故になる恐れがあるという問題点があった。
When connecting the cells in series in order to obtain a high voltage, the cells connected by a current collector or connected by spot welding have a fixed connection between the cells.
If a trouble such as an internal short circuit occurs, the battery cannot be protected by disconnecting the external circuit. The lithium secondary battery has a high energy density, which may cause a serious accident.

【0022】またトラブルでなくても、充放電による発
熱などで電解液が分解枯渇することが考えられる。リチ
ウム二次電池は空気中の水分の浸入に弱いので、外部か
ら電解液を補給する必要が生じ無いようにしなければな
らない。
Even if there is no trouble, it is conceivable that the electrolytic solution may be decomposed and exhausted due to heat generation due to charging and discharging. Since the lithium secondary battery is vulnerable to the infiltration of moisture in the air, it is necessary to prevent the need to replenish the electrolytic solution from the outside.

【0023】本発明は、これらリチウム二次電池にかか
る諸問題を解決するために発明されたものである。
The present invention was invented in order to solve various problems associated with these lithium secondary batteries.

【0024】即ち、本発明は組立の際の正極と負極の位
置合わせをなくして組立を簡便にし、組立不良による反
応面積の低下による性能不良を少なくできる電気化学素
子、電池を提供するとともに、それに適した製造方法を
提供することを目的とする。また、安全で高電圧かつ大
容量の平板状リチウム二次電池を提供するとともに、そ
れに適した柔軟性電極、上記単電池を用いた組電池、そ
れらの製造方法を提供することを目的とする。
That is, the present invention provides an electrochemical device and a battery which can simplify the assembly by eliminating the alignment of the positive electrode and the negative electrode at the time of assembly and can reduce the defective performance due to the reduction of the reaction area due to the defective assembly. It is intended to provide a suitable manufacturing method. Another object of the present invention is to provide a safe, high-voltage, large-capacity flat-plate lithium secondary battery, a flexible electrode suitable for it, an assembled battery using the above single battery, and a manufacturing method thereof.

【0025】[0025]

【課題を解決するための手段】本発明の電気化学素子
は、イオン導電性物質を保持する多孔体を挟んで、電気
化学的にイオンを吸蔵、排出する能力を有する活物質層
からなる電子伝導性の電極が対向する構造をなすもの
で、上記活物質層を上記多孔体表面上にその縁端を除
き、その幅より狭くなるように形成し、上記活物質層の
背面(多孔体付着面と反対の面)または内部に集電体を
設けたものである。
The electrochemical device of the present invention is an electron conducting device comprising an active material layer having the ability to electrochemically store and discharge ions with a porous body holding an ion conductive substance sandwiched therebetween. Conductive electrodes are opposed to each other, and the active material layer is formed on the surface of the porous body so as to have a width narrower than the width of the active material layer except the edges thereof. The opposite side) or the one with a current collector inside.

【0026】また、本発明の電池は、リチウムイオン導
電性の電解質を保持するセパレータを有し、リチウムイ
オンを吸蔵、排出する無機酸化物を正極活物質とし、炭
素を負極活物質とするもので、上記セパレータの一方の
面に正極活物質を含む正極活物質層を、他方の面に負極
活物質を含む負極活物質層を、上記セパレータ縁端を除
いて上記セパレータ幅より狭く形成したものである。
The battery of the present invention has a separator holding a lithium ion conductive electrolyte, and uses an inorganic oxide that absorbs and discharges lithium ions as a positive electrode active material and carbon as a negative electrode active material. A positive electrode active material layer containing a positive electrode active material on one surface of the separator, a negative electrode active material layer containing a negative electrode active material on the other surface, which is formed narrower than the separator width except the separator edge. is there.

【0027】上記電気化学素子の製造に際しては、帯状
の多孔体を相対移動させ、帯状多孔体の一面と他面に電
気化学的活物質を含むペーストを塗ることにより上記多
孔体に活物質層を形成するようにした。
In the production of the electrochemical device, the band-shaped porous body is relatively moved, and a paste containing an electrochemically active material is applied to one surface and the other surface of the band-shaped porous body to form an active material layer on the porous body. To form.

【0028】また、帯状の多孔体に予めイオン導電性物
質を保持させた後、上記多孔体にペーストを塗るように
した。
Further, the band-shaped porous body is made to hold the ion conductive substance in advance, and then the paste is applied to the porous body.

【0029】また、本発明の平板状リチウム二次電池
は、セパレータを介して正極と負極を対向配置し、これ
を偶数回折り畳んで電池要素を形成し、この電池要素の
周囲に電気絶縁性のシール材を配設し、かつその重畳方
向両端部に配設する導電性板材で上記電池要素を挟んだ
構造を有するものである。
Further, in the flat lithium secondary battery of the present invention, the positive electrode and the negative electrode are arranged so as to face each other via the separator, and the battery element is formed by folding the positive and negative electrodes evenly and is surrounded by an electrically insulating material. The battery element has a structure in which a sealing material is provided and the battery elements are sandwiched by conductive plate materials provided at both ends in the overlapping direction.

【0030】また、電池外周部に放熱機構を設置したも
のである。
Further, a heat dissipation mechanism is installed on the outer periphery of the battery.

【0031】そして柔軟性電極は、バインダーにフッ素
ゴムに結晶性のフッ素樹脂をグラフト重合させた、下記
に示すモノマーユニットA,Bにより構成された軟質系
フッ素樹脂を用いるものである。 A: −CH2−CF2− B: −CFCl−CF2
The flexible electrode uses a soft fluororesin composed of the following monomer units A and B obtained by graft-polymerizing a crystalline fluororesin on fluororubber as a binder. A: -CH 2 -CF 2 - B : -CFCl-CF 2 -

【0032】また、軟質系フッ素樹脂からなるバインダ
ーの活物質に対する割合が 0.1重量%〜20重量%の
範囲で、かつ電極作成に際し、バインダー1重量部に対
し5〜30重量部の塗工溶剤に分散させるようにした。
Further, the ratio of the binder made of a soft fluororesin to the active material is in the range of 0.1% by weight to 20% by weight, and 5 to 30 parts by weight of the coating material is applied to 1 part by weight of the binder when preparing the electrode. It was made to disperse in a solvent.

【0033】また、本発明の組電池は、上記平板状リチ
ウム二次電池を積層し、積層方向に面圧をかけ、上記平
板状電池同士を互いに固定し電気的に接続するようにし
たものである。
Further, the assembled battery of the present invention is formed by stacking the flat plate-shaped lithium secondary batteries and applying a surface pressure in the stacking direction so that the flat plate-shaped batteries are fixed to each other and electrically connected to each other. is there.

【0034】また、積層する平板状電池の間にバネを挿
入し、積層方向の面圧が緩むと上記平板状電池同士の電
気的接続がはずれるように構成した。
Further, a spring is inserted between the flat plate batteries to be stacked so that the flat plates are electrically disconnected from each other when the surface pressure in the stacking direction is loosened.

【0035】また、積層する平板状電池を板バネ状に形
成し、積層方向の面圧が緩むと上記平板状電池同士の電
気的接続がはずれるように構成した。
Further, the flat battery to be stacked is formed in a leaf spring shape, and the flat batteries are electrically disconnected from each other when the surface pressure in the stacking direction is relaxed.

【0036】さらに、集熱板をリチウム二次電池、例え
ば1個もしくは数個毎に付設するとともに、組電池外周
部に放熱機構を設け、上記集熱板と放熱機構を電気的に
絶縁して接続した。
Further, a heat collecting plate is attached to each lithium secondary battery, for example, one or several lithium secondary batteries, and a heat radiating mechanism is provided on the outer periphery of the assembled battery to electrically insulate the heat collecting plate from the heat radiating mechanism. Connected

【0037】そして、組電池外周部に配設される電解液
を含有する多孔体からなる電解液リザーバ、及びこのリ
ザーバとリチウム二次電池のセパレータを接続する多孔
体からなる導液部で構成される電解液補給機構を設け
た。
An electrolyte solution reservoir made of a porous body containing an electrolyte solution is provided on the outer periphery of the assembled battery, and a liquid conducting section made of a porous body connecting the reservoir and the separator of the lithium secondary battery. An electrolytic solution replenishing mechanism is provided.

【0038】また、電解液リザーバの吸液力が電池のセ
パレータ及び電極の吸液力と同等もしくはそれ以下で、
かつ導液部の吸液力より大きくなるように形成した。
Further, the liquid absorbing power of the electrolyte reservoir is equal to or less than the liquid absorbing power of the separator and the electrode of the battery,
In addition, it was formed so as to be larger than the liquid absorbing force of the liquid conducting portion.

【0039】さらに有機溶媒にリチウム塩を溶解させた
電解質を用いるリチウム二次電池において、負極、セパ
レータ及び電解質の少なくともいずれかに炭酸リチウム
を含有させた。
Further, in a lithium secondary battery using an electrolyte in which a lithium salt is dissolved in an organic solvent, lithium carbonate is contained in at least one of the negative electrode, the separator and the electrolyte.

【0040】また、電池を収納する容器内に炭酸ガスを
含ませ、かつ負極、セパレータ及び電解質の少なくとも
いずれかに酸化リチウムを含有させた。
Carbon dioxide was contained in the container for accommodating the battery, and lithium oxide was contained in at least one of the negative electrode, the separator and the electrolyte.

【0041】そして、リチウム二次電池の製造に際し、
炭酸ガス雰囲気中、または電池部品に炭酸ガスを吹き付
けながら電池容器を密閉する工程を行うようにした。
Then, in manufacturing the lithium secondary battery,
A process of sealing the battery container was performed in a carbon dioxide atmosphere or while blowing carbon dioxide gas to the battery parts.

【0042】また、正極に炭酸塩を添加し、電池組み立
て後、充電もしくは加熱を行うことにより上記炭酸塩を
分解し炭酸ガスを発生させるようにした。
Carbonate was added to the positive electrode, and after assembling the battery, charging or heating was performed to decompose the carbonate to generate carbon dioxide gas.

【0043】[0043]

【作用】本発明の電気化学素子、例えば電池において
は、多孔体、即ちセパレータの一方の面に正極が、他方
の面に負極が連続的に位置決めされた状態で形成される
ので、組立の際の正極と負極の位置合わせが不要とな
り、組立が簡便になる。そして、このようにして形成し
た電極ーセパレータ一体物を、例えば正極面を内側にし
て1回折り畳むと内側が正極、外側が負極面となった電
池シートが得られ、この一体物となった電池シートを巻
き上げたり、積層して簡便に電池が得られる。得られた
電池は、従来の方法による電池と同様の電池反応が起こ
る。
In the electrochemical device of the present invention, for example, the battery, the positive electrode is formed on one surface of the porous body, that is, the separator, and the negative electrode is formed on the other surface of the porous body. Positioning of the positive electrode and the negative electrode is unnecessary, which simplifies the assembly. When the electrode-separator integrated body thus formed is folded once, for example, with the positive electrode surface facing inward, a battery sheet having a positive electrode inside and a negative electrode surface outside is obtained. A battery can be easily obtained by winding up or stacking. The obtained battery undergoes the same battery reaction as the battery by the conventional method.

【0044】例えば正極に活物質としてリチウムコバル
テート、負極活物質にカーボンを用いた電池では、充電
反応では、正極活物質から外部回路へ電子が出るのと同
時にリチウムイオンが電解質にとけ込む。一方負極で
は、カーボンが外部回路から電子を受け取るのと同時
に、電解質からリチウムイオンを吸い取る。放電反応
は、充電とは反対向きに反応が進行する。
For example, in a battery in which lithium cobaltate is used as the active material for the positive electrode and carbon is used as the negative electrode active material, during the charging reaction, lithium ions dissolve into the electrolyte at the same time that electrons are emitted from the positive electrode active material to the external circuit. On the other hand, at the negative electrode, carbon simultaneously absorbs electrons from an external circuit and at the same time absorbs lithium ions from the electrolyte. The discharge reaction proceeds in the opposite direction to charging.

【0045】セパレータの巾よりも、正極、負極とも狭
い巾でセパレータ上に形成されているので、巻き上げた
り、積層したときに、端面がずれても正極負極ともにセ
パレータの内側にあるので互いに接触することはなく、
電池反応の進行を妨げることはない。
Since both the positive electrode and the negative electrode are formed on the separator with a width narrower than the width of the separator, the positive electrode and the negative electrode are inside the separator even if the end faces are misaligned when they are rolled up or laminated, and thus contact each other. Never,
It does not hinder the progress of the battery reaction.

【0046】またセパレータを介して、正極活物質と負
極活物質が確実に対向しているので電極ズレにともなう
反応に寄与しない活物質の発生がなく、結果電池容量不
足がおこらない。
Further, since the positive electrode active material and the negative electrode active material are surely opposed to each other via the separator, there is no generation of an active material that does not contribute to the reaction due to the electrode displacement, and as a result, the battery capacity is not insufficient.

【0047】多孔体、即ちセパレータの一面と他面に電
気化学的活物質を含むペーストを塗ることによりセパレ
ータに正極活物質層と負極活物質層を容易に形成でき
る。
The positive electrode active material layer and the negative electrode active material layer can be easily formed on the separator by applying a paste containing an electrochemically active material to one surface and the other surface of the porous body, that is, the separator.

【0048】活物質層を形成した後から多孔体のセパレ
ータに保持させるのは困難な高分子電解質等、粘度の高
いものや固体のイオン導電性物質の場合にも、予め多孔
体のセパレータにイオン導電性物質を保持させておくこ
とにより適用できる。
Even in the case of a high-viscosity substance such as a polymer electrolyte or a solid ionic conductive substance, which is difficult to retain in the porous separator after forming the active material layer, the ions are previously added to the porous separator. It can be applied by holding a conductive substance.

【0049】また、本発明の平板状リチウム二次電池に
おいては、上記のように構成することにより、大電極面
積電極をコンパクトに電池容器内に詰め込め、大電流が
得られる高性能な電池が得られる。また、平板状であ
り、組電池の形成に適している。
Further, in the flat lithium secondary battery of the present invention, by configuring as described above, a high-performance battery can be obtained in which a large electrode area electrode can be compactly packed in a battery container and a large current can be obtained. To be Further, it has a flat plate shape and is suitable for forming an assembled battery.

【0050】電池外周部に例えば放熱用フィン、ピンの
集合体からなる放熱機構を設けたので、充放電にともな
って発生する熱の除去が速やかに行える。電池温度の過
度な上昇を下げる事ができる。
Since the heat radiating mechanism including the heat radiating fins and the pin assembly is provided on the outer peripheral portion of the battery, heat generated during charging and discharging can be quickly removed. It is possible to reduce excessive rise in battery temperature.

【0051】そして、バインダーとして上記軟質系フッ
素樹脂を用いることにより高性能で、かつ柔軟性の高い
柔軟性電極が得られるので、加工性が向上し、電極構造
の自由度が増す。円筒スパイラルや折り畳み電極の製作
が容易になる。
By using the above-mentioned soft fluororesin as the binder, a flexible electrode having high performance and high flexibility can be obtained, so that the workability is improved and the degree of freedom of the electrode structure is increased. It facilitates the production of cylindrical spirals and folding electrodes.

【0052】バインダーの活物質に対する割合を 0.1
重量%〜20重量%の範囲とすることにより電池性能が
良好となり、またバインダー1重量部に対し5〜30重
量部の塗工溶剤に分散させるようにしたので、塗工(電
極作成)が容易になる。
The ratio of binder to active material is 0.1.
By adjusting the amount to be in the range of 20% by weight to 20% by weight, the battery performance becomes good, and since it is dispersed in 5 to 30 parts by weight of the coating solvent with respect to 1 part by weight of the binder, coating (electrode preparation) is easy become.

【0053】また、本発明の組電池は上記平板状リチウ
ム二次電池を積層し、積層方向に面圧をかけ、上記平板
状電池同士を互いに固定し電気的に接続して構成してい
るので、トラブルが発生した際など、面圧をゆるめるこ
とにより容易にこの接続をきることができ、電池を保護
できる。
Further, since the battery pack of the present invention is constructed by stacking the flat plate lithium secondary batteries and applying a surface pressure in the stacking direction, the flat plate batteries are fixed to each other and electrically connected to each other. In case of trouble, the connection can be easily broken by loosening the surface pressure, and the battery can be protected.

【0054】また、積層する平板状電池の間にバネを挿
入する、積層する平板状電池を板バネ状に形成すること
により、バネの復原力により電池同士の間隔が空き、電
気的接続を速やかにきることができる。
Further, by inserting a spring between the stacked flat-plate batteries and forming the stacked flat-plate batteries in the shape of a leaf spring, the restoring force of the springs causes a gap between the batteries to facilitate electrical connection. You can come to Japan.

【0055】また、リチウム二次電池に集熱板を付設す
るとともに、組電池外周部に放熱機構を設け、上記集熱
板と放熱機構を電気的に絶縁して接続したので、電池内
部で発生する熱を除去でき、組電池表面からの自然放熱
のみで下げることが難しい組電池内の電池温度の過度な
上昇を下げることができる。
Further, since a heat collecting plate is attached to the lithium secondary battery and a heat radiating mechanism is provided on the outer peripheral portion of the assembled battery, and the heat collecting plate and the heat radiating mechanism are electrically insulated and connected, it is generated inside the battery. The heat generated can be removed, and an excessive rise in battery temperature in the assembled battery, which is difficult to reduce only by natural heat dissipation from the surface of the assembled battery, can be reduced.

【0056】そして、組電池外周部に電解液リザーバ、
このリザーバとリチウム二次電池のセパレータを接続す
る導液部で構成する電解液補給機構を設けたので、電解
液の枯渇を防ぐことができる。長寿命化できる。
Then, an electrolyte solution reservoir is provided on the outer periphery of the assembled battery.
Since the electrolytic solution replenishing mechanism including the liquid conducting section that connects the reservoir and the separator of the lithium secondary battery is provided, the exhaustion of the electrolytic solution can be prevented. The life can be extended.

【0057】また、電解液リザーバの吸液力が電池のセ
パレータ及び電極の吸液力と同等もしくはそれ以下で、
かつ導液部の吸液力より大きくなるように形成したの
で、電解液不足時に電解液が補給され、電池効率の低下
が防止できる。
Further, the liquid absorbing power of the electrolytic solution reservoir is equal to or less than the liquid absorbing power of the battery separator and the electrode,
In addition, since it is formed so as to be larger than the liquid absorption force of the liquid guiding portion, the electrolyte solution is replenished when the electrolyte solution is insufficient, and the decrease in battery efficiency can be prevented.

【0058】さらにリチウム二次電池において、負極、
セパレータ及び電解質の少なくともいずれかに炭酸リチ
ウムを含有させたので、電解液の有機溶媒の分解による
ガス発生を抑制でき、電池内圧の上昇を抑えることがで
きる。安全性が向上する。電池のような閉じた系では、
反応生成物である炭酸リチウムが系に多くあると平衡移
動が起こり、反応が進み難くなるためと考えられる。
Further, in the lithium secondary battery, the negative electrode,
Since lithium carbonate is contained in at least one of the separator and the electrolyte, it is possible to suppress gas generation due to decomposition of the organic solvent of the electrolytic solution and suppress increase in battery internal pressure. Safety is improved. In a closed system like a battery,
It is considered that when a large amount of lithium carbonate, which is a reaction product, is present in the system, equilibrium transfer occurs and the reaction becomes difficult to proceed.

【0059】また、電池を収納する容器内に炭酸ガスを
含ませ、負極、セパレータ及び電解質の少なくともいず
れかに酸化リチウムを含有させたので、ガス発生速度を
低下させることができ、電池内圧の上昇を抑えられる。
炭酸ガス、酸化リチウムと炭酸リチウムが平衡関係にあ
るため、炭酸ガス濃度が高いと炭酸リチウムが生成し、
炭酸リチウムを添加した場合と同様の効果が現れたと考
えられる。
Further, since carbon dioxide is contained in the container for accommodating the battery and lithium oxide is contained in at least one of the negative electrode, the separator and the electrolyte, the gas generation rate can be reduced and the internal pressure of the battery can be increased. Can be suppressed.
Since carbon dioxide gas, lithium oxide and lithium carbonate are in an equilibrium relationship, when the carbon dioxide concentration is high, lithium carbonate is produced,
It is considered that the same effect as when adding lithium carbonate was exhibited.

【0060】また電池製造に際し、炭酸ガス雰囲気中、
または電池部品に炭酸ガスを吹き付けながら電池容器を
密閉することにより、容器内に炭酸ガスを封入すること
ができ、電解液の分解を抑止でき、電池内圧の上昇を抑
えられる。
In the production of batteries, in a carbon dioxide gas atmosphere,
Alternatively, by sealing the battery container while blowing carbon dioxide gas to the battery parts, the carbon dioxide gas can be sealed in the container, the decomposition of the electrolytic solution can be suppressed, and the rise in the battery internal pressure can be suppressed.

【0061】また、正極に炭酸塩を添加し、電池組み立
て後、充電もしくは加熱を行うことにより上記炭酸塩を
分解し炭酸ガスを発生させるようにしたので、電池内部
の炭酸ガス濃度を電解液を分解せずに上げることがで
き、電池内圧の上昇を抑えられる。
Further, since carbonate is added to the positive electrode and the battery is assembled and then charged or heated to decompose the carbonate to generate carbon dioxide gas, the concentration of carbon dioxide gas in the battery is adjusted to the electrolytic solution. It can be raised without disassembling, and the rise in battery internal pressure can be suppressed.

【0062】[0062]

【実施例】本発明の電池は、組立の際の正極と負極の位
置合わせをなくすために、セパレータの一方の面に正極
を、他方の面に負極を連続的に形成するものである。電
極を形成する際に、正極および負極の巾はセパレータの
巾より小さくしている。このようにして形成した電極ー
セパレータ一体物を、例えば正極面を内側にして1回折
り畳むと内側が正極、外側が負極面となった電池シート
が得られる。このシートをそのまま巻き上げ、円筒型の
缶に挿入すれば、円筒型の電池が得られる。また、この
シートを短冊状のまま積層し、角型の缶に挿入すれば、
角型の電池が得られる。そして、得られた電池は従来法
による電池と同様の電池反応が起こる。以下に実施例を
挙げて具体的に説明する。
EXAMPLE The battery of the present invention is one in which a positive electrode is continuously formed on one surface of a separator and a negative electrode is continuously formed on the other surface in order to eliminate alignment between the positive electrode and the negative electrode during assembly. When forming the electrode, the width of the positive electrode and the negative electrode is made smaller than the width of the separator. When the electrode-separator integrated body thus formed is folded once, for example, with the positive electrode side facing inward, a battery sheet having a positive electrode inside and a negative electrode side outside is obtained. If this sheet is rolled up as it is and inserted into a cylindrical can, a cylindrical battery is obtained. Also, if you stack this sheet in the shape of a strip and insert it into a square can,
A prismatic battery can be obtained. Then, the obtained battery undergoes the same battery reaction as the battery by the conventional method. Specific examples will be described below with reference to examples.

【0063】実施例1.図1は本発明の一実施例に係わ
る電池シートを示す斜視図である。図において、51は
タブ付き集電網、52は正極活物質層、53は集電用銅
箔、55は負極活物質層、3はセパレータである。リチ
ウムコバルテート87wt%,黒鉛粉(ロンザ(LON
ZA)社製KS−6)8wt%、バインダー(ポリフッ
化ビニリデン)5wt%の組成に調整した正極活物質ペ
ーストをセパレータ3、この場合は多孔質ポリエチレン
フィルム(厚み50μm)の上にドクターブレード法
で、厚み200μmに調整して塗った。次に反転して、
裏面に、メソフェーズマイクロビーズカーボン(大阪ガ
ス製)95wt%、バインダー(ポリフッ化ビニリデ
ン)5wt%に調整した負極活物質ペーストを同じくド
クターブレード法で厚み200μmに塗った。なお、正
極及び負極活物質ペーストは、多孔質ポリエチレンフィ
ルム3の縁端を除いて、その幅より狭く塗布した。乾燥
後、電池シートの正極面を内側にし、タブ付き集電網5
1、この場合は集電用のタブ付きステンレス製の網を挟
むようにシートの長手方向に折り、外側に集電用銅箔5
3(厚さ20μm)をあてがってローラープレスにより
全厚みを150μmに揃え、図1に示す電池シートを作
成した。
Example 1. FIG. 1 is a perspective view showing a battery sheet according to an embodiment of the present invention. In the figure, 51 is a current collecting net with a tab, 52 is a positive electrode active material layer, 53 is a copper foil for current collection, 55 is a negative electrode active material layer, and 3 is a separator. 87 wt% lithium cobaltate, graphite powder (LON
ZA) KS-6) 8 wt%, binder (polyvinylidene fluoride) 5 wt% adjusted positive electrode active material paste on the separator 3, in this case, porous polyethylene film (thickness 50 μm) by the doctor blade method. The thickness was adjusted to 200 μm and applied. Then flip it over,
On the back surface, a negative electrode active material paste adjusted to 95 wt% of mesophase microbead carbon (manufactured by Osaka Gas) and 5 wt% of a binder (polyvinylidene fluoride) was applied to a thickness of 200 μm by the same doctor blade method. The positive electrode and negative electrode active material pastes were applied narrower than the width of the porous polyethylene film 3, excluding the edges. After drying, the positive electrode surface of the battery sheet is placed inside and the tabbed current collector 5
1. In this case, fold in the longitudinal direction of the sheet so as to sandwich a stainless steel net with a tab for current collection, and a copper foil for current collection 5 on the outside.
3 (thickness 20 μm) was applied and the total thickness was adjusted to 150 μm by a roller press to prepare the battery sheet shown in FIG.

【0064】作成した電池シートを銅製のボビンの回り
に巻き付け、ステンレス缶に挿入し、正極端子にステン
レスタブを溶接した後、エチレンカーボネートとジメト
キシエタンとベンゼンからなる混合溶媒に過塩素酸リチ
ウムを溶かした電解液を注入し、封口処理した。
The prepared battery sheet was wrapped around a copper bobbin, inserted into a stainless steel can, a stainless steel tab was welded to the positive electrode terminal, and then lithium perchlorate was dissolved in a mixed solvent of ethylene carbonate, dimethoxyethane, and benzene. The electrolyte solution was injected, and sealing treatment was performed.

【0065】以上の工程で、連続500個の電池を作成
したが、内部短絡による不良を発生したものは、皆無で
あった。本発明ではセパレータ3の一面に正極、他面に
負極を形成しており、別々に製造し積層する場合と異な
り、セパレータを介した正極と負極の位置合わせが不要
で、位置合わせに配慮をせずに組み立てても内部短絡に
よる不良を発生させることなく電池を製造できた。また
部品点数も減るので、組立工程が簡素化でき、簡便に作
成できた。また、本発明の電池は、セパレータの巾より
も、正極、負極とも狭い巾でセパレータ上に形成してお
り、巻き上げたりしたときに、端面がずれても正極負極
ともにセパレータの内側にあるので互いに接触すること
はなく、電池反応の進行を妨げることはなかった。ま
た、セパレータを介して、正極活物質と負極活物質が確
実に対向しているので電極ズレにともなう反応に寄与し
ない活物質の発生がなく、電池容量不足もおこらなかっ
た。
Through the above steps, 500 cells were continuously produced, but none of them had a defect due to an internal short circuit. In the present invention, the positive electrode is formed on one surface of the separator 3 and the negative electrode is formed on the other surface. Unlike the case of manufacturing and stacking separately, it is not necessary to position the positive electrode and the negative electrode via the separator. A battery could be manufactured without causing a defect due to an internal short circuit even if it was assembled without being assembled. Also, since the number of parts is reduced, the assembling process can be simplified and the production can be easily performed. Further, the battery of the present invention is formed on the separator with a narrower width for both the positive electrode and the negative electrode than the width of the separator. They did not come into contact with each other and did not hinder the progress of the cell reaction. Further, since the positive electrode active material and the negative electrode active material were positively opposed to each other via the separator, no active material that did not contribute to the reaction due to electrode displacement was generated, and the battery capacity was not insufficient.

【0066】実施例2.図2は本発明の他の実施例に係
わる電池シートを示す斜視図であり、54はタブ付き集
電用銅箔である。リチウムコバルテート87wt%,黒
鉛粉(ロンザ製KS−6)8wt%、バインダー(ポリ
フッ化ビニデン)5wt%の組成に調整した正極活物質
ペーストをセパレータ3の多孔質ポリエチレンフィルム
(厚み50μm)の上にドクターブレード法で、厚み2
00μmに調整して塗った。次に反転して、裏面に、メ
ソフェーズマイクロビーズカーボン(大阪ガス製)95
wt%、バインダー(ポリフッ化ビニリデン)5wt%
に調整した負極活物質ペーストを同じくドクターブレー
ド法で厚み200μmに塗った。なお、正極及び負極活
物質ペーストは、多孔質ポリエチレンフィルム3の縁端
を除いて、その幅より狭く塗布した。乾燥後、電池シー
トの正極面を内側にし、集電用のタブ付きステンレス製
の網51を挟むようにシートの長手方向に折り、外側に
タブ付き周電用銅箔53(厚さ20μm)をあてがって
ローラープレスにより全厚みを150μmに揃え、図2
に示す短冊状電池シートを作成した。
Example 2. FIG. 2 is a perspective view showing a battery sheet according to another embodiment of the present invention, and 54 is a copper foil for collecting current with a tab. A positive electrode active material paste having a composition of 87 wt% lithium cobaltate, 8 wt% graphite powder (KS-6 made by Lonza), and 5 wt% binder (polyvinylidene fluoride) was placed on the porous polyethylene film (thickness 50 μm) of the separator 3. 2 thickness by doctor blade method
It was adjusted to 00 μm and applied. Next, turn it over and, on the back surface, mesophase microbead carbon (manufactured by Osaka Gas) 95
wt%, binder (polyvinylidene fluoride) 5 wt%
The negative electrode active material paste prepared in step 1 above was also applied to a thickness of 200 μm by the doctor blade method. The positive electrode and negative electrode active material pastes were applied narrower than the width of the porous polyethylene film 3, excluding the edges. After drying, the positive electrode surface of the battery sheet is placed inside and folded in the lengthwise direction of the sheet so as to sandwich the stainless steel net 51 with tabs for current collection, and a copper foil 53 for peripheral electricity with tabs (thickness 20 μm) is provided on the outside. Applying a roller press to adjust the total thickness to 150 μm,
A strip-shaped battery sheet shown in was prepared.

【0067】作成した短冊状電池シートを束ね、正極タ
ブ同士、負極タブ同士溶接し、その後、角型缶に挿入、
電解液注入口を除いて封口処理したのち、エチレンカー
ボネートとジメトキシエタンとベンゼンからなる混合溶
媒に過塩素酸リチウムを溶かした電解液を注入し、注入
口を溶接封止した。
The prepared strip-shaped battery sheets were bundled, the positive electrode tabs were welded to each other, the negative electrode tabs were welded to each other, and then inserted into a square can.
After the sealing treatment was performed except for the electrolytic solution inlet, the electrolytic solution obtained by dissolving lithium perchlorate in a mixed solvent of ethylene carbonate, dimethoxyethane and benzene was injected, and the inlet was welded and sealed.

【0068】以上の工程で、連続500個の電池を作成
したが、内部短絡による不良を発生したものは、皆無で
あった。上記実施例と同様の効果があった。
Through the above steps, 500 cells were continuously produced, but none of them had a defect due to an internal short circuit. The same effect as that of the above embodiment was obtained.

【0069】実施例3.リチウムコバルテート87wt
%,黒鉛粉(ロンザ製KS−6)8wt%、バインダー
(ポリフッ化ビニデン)5wt%の組成に正極活物質ペ
ーストを調整し、このペースト70体積%とポリエチレ
ンオキサイドに過塩素酸リチウムを固溶させた高分子電
解質30体積%を良く混合した正極ペーストを作成し
た。同様に、メソフェーズマイクロビーズカーボン(大
阪ガス製)95wt%、バインダー(ポリフッ化ビニリ
デン)5wt%に調整した負極活物質ペースト70体積
%と高分子電解質30体積%を良く混合した負極ペース
トを作成した。予め高分子電解質をしみこませたセパレ
ータ3の多孔質ポリエチレンフィルム(厚み50μm)
の上にドクターブレード法で、正極ペーストを厚み20
0μmに調整して塗った。次に反転して、裏面に、負極
ペーストを同じくドクターブレード法で厚み200μm
に塗った。なお、正極及び負極活物質ペーストは、多孔
質ポリエチレンフィルム3の縁端を除いて、その幅より
狭く塗布した。乾燥後、電池シートの正極面を内側に
し、集電用のタブ付きステンレス製の網51を挟むよう
にシートの長手方向に折り、外側にタブ付き銅箔54
(厚さ20μm)をあてがってローラープレスにより全
厚みを150μmに揃え、図2に示す短冊状電池シート
を作成した。
Example 3. Lithium cobaltate 87wt
%, Graphite powder (KS-6 made by Lonza) 8% by weight, binder (polyvinylidene fluoride) 5% by weight, the positive electrode active material paste was adjusted, and 70% by volume of this paste and polyethylene oxide were solid-solved with lithium perchlorate. A positive electrode paste was prepared by well mixing 30% by volume of the polymer electrolyte. Similarly, a negative electrode paste in which 70% by volume of the negative electrode active material paste adjusted to 95% by weight of mesophase microbead carbon (manufactured by Osaka Gas) and 5% by weight of a binder (polyvinylidene fluoride) and 30% by volume of the polymer electrolyte were prepared. Porous polyethylene film (thickness: 50 μm) of separator 3 pre-soaked with polyelectrolyte
The thickness of the positive electrode paste is 20
It was adjusted to 0 μm and applied. Next, turn over and apply a negative electrode paste on the back side with a doctor blade method to a thickness of 200 μm.
Painted on The positive electrode and negative electrode active material pastes were applied narrower than the width of the porous polyethylene film 3, excluding the edges. After drying, the positive electrode surface of the battery sheet is placed inside and folded in the longitudinal direction of the sheet so as to sandwich a net 51 made of stainless steel with a tab for collecting current, and a copper foil with a tab 54 provided outside.
(Thickness of 20 μm) was applied to make the total thickness uniform to 150 μm by a roller press to prepare a strip-shaped battery sheet shown in FIG.

【0070】作成した短冊状電池シートを束ね、正極タ
ブ同士、負極タブ同士溶接し、その後、角型缶に挿入、
溶接封止した。
The prepared strip-shaped battery sheets were bundled, the positive electrode tabs were welded to each other, the negative electrode tabs were welded to each other, and then inserted into a square can.
Welded and sealed.

【0071】以上の工程で、連続500個の電池を作成
したが、内部短絡による不良を発生したものは、皆無で
あった。また、上記実施例と同様の効果を示した。
Through the above steps, 500 cells were continuously produced, but none of them had a defect due to an internal short circuit. Further, the same effect as that of the above-mentioned embodiment was shown.

【0072】比較例 タブ付きアルミ箔(20μm)の両面にリチウムコバル
テート87wt%,黒鉛粉(ロンザ製KS−6)8wt
%、バインダー(ポリフッ化ビニリデン)5wt%の組
成に調整した正極活物質ペーストをドクターブレード法
で形成し、乾燥後ローラープレスで厚み100μmにし
た正極を作成した。
Comparative Example 87 wt% lithium cobaltate and 8 wt% graphite powder (KS-6 made by Lonza) on both sides of an aluminum foil with a tab (20 μm).
%, A positive electrode active material paste adjusted to a composition of 5 wt% of binder (polyvinylidene fluoride) was formed by a doctor blade method, dried and then a roller press was used to form a positive electrode having a thickness of 100 μm.

【0073】タブ付き銅箔(20μm)の両面にメソフ
ェーズマイクロビーズカーボン(大阪ガス製)95wt
%、バインダー(ポリフッ化ビニリデン)5wt%に調
整した負極活物質ペーストを同じくドクターブレード法
で形成し、乾燥後ローラープレスで厚み100μmにし
た負極を作成した。
95 wt% of mesophase microbead carbon (manufactured by Osaka Gas) on both sides of the tabbed copper foil (20 μm)
%, A negative electrode active material paste adjusted to 5 wt% of binder (polyvinylidene fluoride) was similarly formed by the doctor blade method, and after drying, a negative electrode having a thickness of 100 μm was formed by a roller press.

【0074】図11の模式図に示すように正極1、帯状
の多孔質ポリエチレンフィルム(厚み25μm)セパレ
ータ3、負極2、セパレータ3の順に積層ガイド58を
通しながら積層し、ステンレス製ボビン56の回りに巻
き付け、ステンレス缶に挿入し、正極端子にステンレス
タブを溶接した後、エチレンカーボネートとジメトキシ
エタンとベンゼンからなる混合溶媒に過塩素酸リチウム
を溶かした電解液を注入し、封口処理した。57は電極
セパレータ積層巻き上げ体である。
As shown in the schematic view of FIG. 11, a positive electrode 1, a band-shaped porous polyethylene film (thickness 25 μm) separator 3, a negative electrode 2 and a separator 3 are laminated in this order by passing a laminating guide 58 around a stainless bobbin 56. It was wound around, and inserted into a stainless steel can, and after welding a stainless tab to the positive electrode terminal, an electrolytic solution in which lithium perchlorate was dissolved in a mixed solvent consisting of ethylene carbonate, dimethoxyethane and benzene was injected, and a sealing treatment was performed. 57 is an electrode separator laminated roll-up body.

【0075】以上の工程で、連続500個の電池を作成
したが、内部短絡による不良を発生したものが10個発
生した。
Through the above steps, 500 cells were continuously produced, but 10 of them were defective due to an internal short circuit.

【0076】なお、上記実施例では電気化学素子として
電池を例に説明したが、コンデンサに適用しても、同様
の効果を奏する。
In the above-mentioned embodiment, a battery was used as an example of the electrochemical element, but the same effect can be obtained by applying it to a capacitor.

【0077】一方、本発明の別のリチウム二次電池は、
高電圧、大容量の電池を実現するために、バインダーに
軟質系フッ素樹脂を用いた柔軟電極を採用して折り畳み
電極構造の平板状電池を形成するものである。また、こ
れを積層して容易に安全、高性能な組電池が得られる。
さらに、放熱機構と圧力解放機構を設け、電池内のガス
組成を炭酸ガス充分にすることで圧力上昇を抑制し、安
全性を高めている。また、電解液補給機構を設け長寿命
化を実現している。
On the other hand, another lithium secondary battery of the present invention is
In order to realize a high-voltage, large-capacity battery, a flexible electrode using a soft fluororesin as a binder is adopted to form a flat battery having a folding electrode structure. Also, by stacking these, a safe and high-performance assembled battery can be easily obtained.
Furthermore, a heat dissipation mechanism and a pressure release mechanism are provided, and the gas composition in the battery is made to be sufficient for carbon dioxide gas to suppress an increase in pressure and improve safety. In addition, an electrolyte replenishment mechanism is provided to extend the service life.

【0078】実施例4.図3は本発明の平板状リチウム
二次電池の一実施例を示す断面図である。正極1と負極
2をセパレータ3を介して対向したものを偶数回折り畳
んで電池要素を形成し、これの周囲に電気絶縁性のシー
ル材4を配置して2枚の導電性板材5で挟んで平板状の
単電池を形成している。このようにすることにより、大
電極面積電極をコンパクトに電池容器内に詰め込むこと
ができ、高電圧、大容量の電池が得られる。
Example 4. FIG. 3 is a sectional view showing an embodiment of the flat lithium secondary battery of the present invention. A positive electrode 1 and a negative electrode 2 that face each other with a separator 3 in between are folded evenly to form a battery element, and an electrically insulating seal material 4 is arranged around this and sandwiched between two conductive plate materials 5. A flat cell is formed. By doing so, a large electrode area electrode can be compactly packed in a battery container, and a high voltage, large capacity battery can be obtained.

【0079】電気絶縁性のシール材や導電性板材の材質
は、特に規定されるものではないが、シール材にはポリ
プロピレン、ポリエチレンなどが好まれる。導電性板材
には、銅、アルミニウム、ニッケル、鉄、ステンレスが
挙げられる。
The material of the electrically insulating sealing material and the electrically conductive plate material is not particularly limited, but polypropylene, polyethylene or the like is preferred as the sealing material. Examples of the conductive plate material include copper, aluminum, nickel, iron, and stainless steel.

【0080】電池要素の折り畳み回数を偶数回に規定す
るのは、奇数回にすると折り畳んだ電池要素の裏表両面
とも正極もしくは負極のどちらか一方のみとなるからで
ある。奇数回にすれば電池要素の裏が正極ならば必ず表
面は負極となる。正負両電極とセパレータは、別々の部
品として重ね合わせて折り畳んでもよいが、1枚のセパ
レータのひとつの面に正極を形成し、反対面に負極を形
成した一体化した電池要素として製造し、これを折り畳
んでもよい。上記実施例の電極−セパレータ一体物を使
用すると性能不良を少なくして簡便に形成できる。
The reason why the number of times of folding the battery element is set to be an even number is that if the number of times of folding is set to an odd number, only the positive electrode or the negative electrode is provided on both the front and back surfaces of the folded battery element. If the number of times is odd, if the back of the battery element is the positive electrode, the surface will always be the negative electrode. Both the positive and negative electrodes and the separator may be overlapped and folded as separate parts, but it is manufactured as an integrated battery element in which the positive electrode is formed on one surface of one separator and the negative electrode is formed on the opposite surface. You may fold. By using the electrode-separator integral body of the above-mentioned embodiment, it is possible to easily form it with less performance defects.

【0081】折り畳み回数はなんら規定されるものでは
ないが、組立の煩雑さなどを考慮して4〜16回程度が
望ましい。電池要素の巾および長さは、作成する電極面
積と折り畳み回数で決まる。電池要素の厚みは、セパレ
ータの厚みが25〜50μm程度、正極及び負極の厚み
が、50〜500μmである。
The number of folds is not specified at all, but it is preferably about 4 to 16 times in consideration of complexity of assembly. The width and length of the battery element are determined by the electrode area to be created and the number of folds. Regarding the thickness of the battery element, the thickness of the separator is about 25 to 50 μm, and the thickness of the positive electrode and the negative electrode is 50 to 500 μm.

【0082】実施例5.次に、本発明の上記折り畳み電
極構造の平板状リチウム二次電池に適した折り畳み易い
柔軟電極について説明する。バインダーにフッ素ゴムに
結晶性のフッ素樹脂をグラフト重合させた、下記に示す
モノマーユニットA,Bにより構成された軟質系フッ素
樹脂を用いることを特徴とする柔軟性電極である。ま
た、バインダーとして上記フッ素樹脂と、他の一種類以
上のフッ素樹脂を添加したものを用いてもよい。。 A: −CH2−CF2− B: −CFCl−CF2
Example 5. Next, a flexible electrode which is suitable for the flat lithium secondary battery having the folding electrode structure of the present invention and which can be easily folded will be described. It is a flexible electrode characterized by using a soft fluororesin composed of the following monomer units A and B, which is obtained by graft-polymerizing a crystalline fluororesin on fluororubber as a binder. Moreover, you may use what added the said fluororesin and 1 or more types of other fluororesins as a binder. . A: -CH 2 -CF 2 - B : -CFCl-CF 2 -

【0083】かかる軟質系フッ素樹脂は従来、リチウム
二次電池用電極において最も好まれて用いられているフ
ッ素樹脂と同程度の性能を有し、なおかつ機械的強度を
向上させるために改良されているものであり、特開昭5
8−206615号公報にその製造法及び性能が開示さ
れている。かかる軟質系フッ素樹脂はフッ素ゴムに結晶
性のフッ素樹脂をグラフト重合させたフッ素系の共重合
体であるので、従来のフッ素樹脂と同程度の性能を保持
しつつ、フッ素ゴムの柔軟性をも兼ね備えたフッ素樹脂
となっている。この軟質系フッ素樹脂をバインダーとし
て用いると今までのバインダーにない高性能でなおかつ
柔軟性の高い電極を作成することができる。
Conventionally, such a soft fluororesin has the same level of performance as the fluororesin most favorably used in the electrodes for lithium secondary batteries, and has been improved to improve the mechanical strength. Which is disclosed in JP-A-5
8-206615 discloses the manufacturing method and performance. Since such a soft fluororesin is a fluorocopolymer obtained by graft-polymerizing a crystalline fluororesin to a fluororubber, while maintaining the same level of performance as a conventional fluororesin, the fluororubber also has flexibility. It is a combined fluororesin. When this soft fluororesin is used as a binder, it is possible to produce an electrode having high performance and high flexibility, which is not available in conventional binders.

【0084】かかる軟質系フッ素樹脂は単独で用いるこ
とのみではなく、他の結晶性のフッ素樹脂等との混合に
より基の樹脂の性質を残しつつ、柔軟性を持たせること
ができる。混合する樹脂としては特に限定するものはな
いが、フッ素樹脂の中でもポリふっ化ビニリデン(PV
dF)とは特に相性がよい。
Such a soft fluororesin can be used not only alone, but also by being mixed with another crystalline fluororesin or the like, the flexibility of the soft fluororesin can be imparted while leaving the properties of the base resin. The resin to be mixed is not particularly limited, but among the fluororesins, polyvinylidene fluoride (PV
It is particularly compatible with dF).

【0085】かかるバインダーを用いた柔軟性電極にお
いては、該バインダーの活物質に対する割合が少ないと
活物質を結合させることができず、電池容量の低下を招
くので、また多いと活物質周囲を厚く被ってしまい、電
極反応を阻害するので、 0.1重量%から20重量%、
好ましくは1重量%から10重量%の範囲が望ましい。
また、電極作成において塗工溶剤に分散させることによ
り作成する場合は、塗工時のペーストの硬さの点から、
塗工溶剤のバインダー1重量部に対する割合が5〜30
重量部、好ましくは8〜20重量部であることが望まし
い。作製方法の一例としては該バインダーを塗工溶剤に
溶解させバインダー溶液を作成し、この溶液に活物質等
を分散させたものを基体もしくは電極集電体上に成形す
る方法等がある。
In a flexible electrode using such a binder, if the ratio of the binder to the active material is small, the active material cannot be bound and the battery capacity is lowered. Since it will be covered and hinders the electrode reaction, 0.1% to 20% by weight,
It is preferably in the range of 1% by weight to 10% by weight.
In addition, in the case of making by dispersing in a coating solvent in making the electrode, from the viewpoint of the hardness of the paste at the time of coating,
The ratio of the coating solvent to 1 part by weight of the binder is 5 to 30.
It is desirable that the amount is parts by weight, preferably 8 to 20 parts by weight. As an example of the production method, there is a method in which the binder is dissolved in a coating solvent to prepare a binder solution, and an active material and the like are dispersed in the solution to be molded on a substrate or an electrode current collector.

【0086】例えば塗工溶剤としてN−メチルピロリド
ン(NMP)溶液33重量部に、バインダーとして軟質
系フッ素樹脂(セフラールソフト:セントラル硝子
(株))3重量部を溶解させバインダー溶液とし、この溶
液に正極活物質としてLiCoO2 粉末58重量部と導
電剤としてグラファイト粉末6重量部を分散させて塗工
液を作成したのち、この塗工液を集電体である厚さ20
μmのアルミ箔上に巾30cmに塗工し、乾燥させるこ
とにより厚さ約300μmの本発明の柔軟電極の一実施
例の電極シートを得た。このシートを約80×10mm
に切り出し試験用サンプルとした。
For example, 33 parts by weight of an N-methylpyrrolidone (NMP) solution as a coating solvent, and a soft fluororesin (Cefural Soft: Central Glass) as a binder
Co., Ltd. 3 parts by weight was dissolved into a binder solution, and 58 parts by weight of LiCoO2 powder as a positive electrode active material and 6 parts by weight of graphite powder as a conductive agent were dispersed in the solution to prepare a coating solution. Liquid with a thickness of 20 which is a current collector
An electrode sheet of one example of the flexible electrode of the present invention having a thickness of about 300 μm was obtained by applying a 30 cm width on an aluminum foil of μm and drying. This sheet is about 80 × 10mm
It was used as a sample for cutting test.

【0087】作成したサンプルを用いて引張強度測定器
により引張強度及び伸び歪を測定し、その機械的強度の
評価を行なった。その結果を図4の特性図の特性曲線a
に示す。縦軸が荷重、横軸が伸び率を表す。またバイン
ダーをPVdFに代えた以外は同様に作成した電極シー
ト(従来例)の評価結果を同じく図4の特性曲線cに示
す。またバインダーをPVdFと軟質系フッ素樹脂との
混合粉末(1:1)に代えた以外は同様に作成した他の
実施例の電極シート評価結果を図4の特性曲線bに示
す。
Tensile strength and elongation strain were measured with a tensile strength measuring instrument using the prepared sample, and the mechanical strength thereof was evaluated. The result is the characteristic curve a of the characteristic diagram of FIG.
Shown in. The vertical axis represents load and the horizontal axis represents elongation. Similarly, the characteristic curve c of FIG. 4 shows the evaluation results of an electrode sheet (conventional example) prepared in the same manner except that PVdF was used as the binder. In addition, the characteristic curve b of FIG. 4 shows the evaluation results of the electrode sheets of other examples which were prepared in the same manner except that the binder was changed to the mixed powder (1: 1) of PVdF and the soft fluororesin.

【0088】図4は、非水電解液電池用電極において、
バインダーによって電極活物質等を接着させた電極に関
して、バインダーとしてフッ素ゴムに結晶性のフッ素樹
脂をグラフト重合させた軟質系フッ素樹脂を用いること
により、従来のバインダーでは得られなかった電極柔軟
性を得ることができるようになったことを示している。
FIG. 4 shows an electrode for a non-aqueous electrolyte battery,
Regarding the electrode to which the electrode active material is adhered by the binder, by using the soft fluororesin obtained by graft-polymerizing the crystalline fluororesin with the fluororubber as the binder, the electrode flexibility which cannot be obtained by the conventional binder is obtained. Show that you can now.

【0089】上記溶剤としては該バインダーを溶解し得
るものならば特に限定はしないが、一例としてはN−メ
チルピロリドン(NMP),N,Nジメチルホルムアミ
ド(DMF)等が挙げられる。上記活物質としては特に
限定はしないが、一例としてはグラファイト,グラッシ
ーカーボン,カーボンブラック,コークス,熱分解炭
素,炭素繊維等の炭素材料、TiS2,MoS2,MnO
2,V2O5,V6O13,LiCoO2,LiNiO2,Li
Mn2O4等の無機化合物等が列挙される。上記集電体と
しては、銅,アルミニウム,ニッケル,鉄,ステンレス
等の箔,メッシュ,エキスパンドメタル等が挙げられ
る。
The solvent is not particularly limited as long as it can dissolve the binder, and examples thereof include N-methylpyrrolidone (NMP) and N, N dimethylformamide (DMF). The active material is not particularly limited, but examples thereof include graphite, glassy carbon, carbon black, coke, pyrolytic carbon, carbon materials such as carbon fiber, TiS2, MoS2, MnO.
2, V2O5, V6O13, LiCoO2, LiNiO2, Li
Inorganic compounds such as Mn2O4 are listed. Examples of the current collector include foils such as copper, aluminum, nickel, iron, and stainless steel, mesh, expanded metal, and the like.

【0090】該バインダーを用いて上記のように作成し
た電極を非水電解液電池に用いる場合、負極もしくは正
極としても用いることができ、かかる電池の電解質もし
くは電解液についても特に限定されるものはなく、従来
と同様のものを用いることができる。
When the electrode prepared as described above using the binder is used in a non-aqueous electrolyte battery, it can also be used as a negative electrode or a positive electrode, and the electrolyte or electrolyte of such a battery is also not particularly limited. Instead, a conventional one can be used.

【0091】前記したごとく、粉体の活物質をバインダ
ーによって結着させている電極においては、その性能は
もとより機械的な性質もバインダーの性能に左右される
ことが少なくない。よって本発明においては活物質等を
接着させるバインダーに注目することにより、電池性能
に影響を与えることなくかつ機械的強度にも優れたバイ
ンダーを見いだすことにより、加工性に優れた柔軟性電
極を作製できることを示している。
As described above, in an electrode in which a powdery active material is bound by a binder, not only its performance but also its mechanical properties often depend on the performance of the binder. Therefore, in the present invention, by paying attention to the binder for adhering the active material and the like, by finding a binder that does not affect the battery performance and is also excellent in mechanical strength, a flexible electrode having excellent processability is produced. It shows that you can do it.

【0092】前記のバインダーを非水電解液電池用電極
における活物質を接着させるバインダーに応用すること
により、従来のバインダーでは得られなかった電極柔軟
性を得ることができるものである。このように作製した
電極を用いることにより、大電極面積化における折り畳
み電極もしくは卷回電極の製作が容易になり、電池性能
向上に有益な結果をもたらす。
By applying the above-mentioned binder to the binder for adhering the active material in the electrode for non-aqueous electrolyte battery, it is possible to obtain the electrode flexibility which cannot be obtained by the conventional binder. By using the electrode thus manufactured, it becomes easy to manufacture a folded electrode or a wound electrode in a large electrode area, which brings a beneficial result for improving battery performance.

【0093】実施例6.本発明の組電池は、高電圧を得
るために上記平板状リチウム二次電池を積層して形成す
るものである。このとき積層方向に面圧をかけることに
より平板状電池を互いに固定し、電気的に接続している
が、この接続は面圧をゆるめることで切ることができる
ように構成している。
Example 6. The assembled battery of the present invention is formed by stacking the flat lithium secondary batteries to obtain a high voltage. At this time, the planar batteries are fixed to each other and electrically connected by applying a surface pressure in the stacking direction, but this connection can be cut by loosening the surface pressure.

【0094】図5は本発明の組電池の一実施例を示す模
式図である。図5に示すように、積層する図4に示す平
板状電池11の間にバネ12を挿入している。締め付け
棒13により面圧がかかっているときは、バネ12が縮
み、平板状電池11同士の電気的接続が保たれる。面圧
をゆるめて平板状電池11の電気的接続を切る必要が生
じるのは、組電池内部で短絡が生じた場合である。この
場合通常の数倍から数十倍の電流が流れるので、異常な
発熱を生じ、電池温度が急上昇する。また同時に異常に
発熱している単電池内部の圧力も急上昇する。これら温
度と圧力の急変を検知して締め付け棒13をゆるめるこ
とによりバネ12の復原力で平板状電池11同士の間隔
が空き、電気的接続を切ることができる。
FIG. 5 is a schematic view showing an embodiment of the assembled battery of the present invention. As shown in FIG. 5, the spring 12 is inserted between the stacked flat plate-shaped batteries 11 shown in FIG. When the surface pressure is applied by the tightening rod 13, the spring 12 contracts to maintain the electrical connection between the flat plate batteries 11. It is when a short circuit occurs inside the assembled battery that it is necessary to loosen the surface pressure to disconnect the flat battery 11 from electrical connection. In this case, an electric current that is several times to several tens of times larger than usual flows, causing abnormal heat generation and causing the battery temperature to rise rapidly. At the same time, the pressure inside the unit cell, which is generating heat abnormally, also rises sharply. By detecting these sudden changes in temperature and pressure and loosening the tightening rod 13, the restoring force of the spring 12 allows a space between the flat plate-shaped batteries 11 to be opened and electrical connection to be cut off.

【0095】例えば、締め付け棒13の一部である切り
放し部分14を周囲温度によって溶断する材料にしてお
くと、締め付け棒周辺温度が異常上昇すると締め付け棒
が切れ、面圧をゆるめることができる。締め付け棒13
の切り放し部分14が溶断する周囲温度としては、電池
の常用温度を越えるところに設定するが、およそ60℃
以上で切れるのが好ましい。このような温度で溶断する
ような材料としてはいわゆるウッド合金(融解域60℃
〜72℃)のような低融点合金がある。
For example, when the cut-off portion 14 which is a part of the tightening rod 13 is made of a material that melts by the ambient temperature, the tightening rod is broken and the surface pressure can be relaxed when the temperature around the tightening rod abnormally rises. Tightening rod 13
The ambient temperature at which the cut-off portion 14 of the battery melts is set to a temperature above the normal temperature of the battery, but is about 60 ° C.
It is preferable to cut off as described above. As a material that melts at such a temperature, a so-called wood alloy (melting region 60 ° C.
There is a low melting point alloy such as (about 72 ° C.).

【0096】実施例7.また、上記実施例6では締め付
け棒13の切り放し部分14を溶断する事により、面圧
をゆるめるように構成しているが、締め付け棒13の一
部を細くしたり、材質を代えて引っ張り強度の弱い部分
をつくることで急激な電池の異常内圧上昇による面圧増
加によって締め付け棒が切れ、面圧をゆるめることがで
きるように構成してもよい。締め付け棒が切断する面圧
としては、単電池の内圧が1MPaを越えないことが望
ましく従って、0.8〜0.9MPaで切断するのが望ま
しい。
Example 7. Further, in the sixth embodiment, the surface pressure is loosened by fusing the cut-off portion 14 of the tightening rod 13, but a part of the tightening rod 13 may be thinned or the material may be changed to obtain a tensile strength. The tightening rod may be broken and the surface pressure may be relaxed by increasing the surface pressure due to the abrupt increase in the internal pressure of the battery by forming the weak portion. As for the surface pressure at which the tightening rod cuts, it is desirable that the internal pressure of the unit cell does not exceed 1 MPa. Therefore, it is desirable to cut at the pressure of 0.8 to 0.9 MPa.

【0097】実施例8.また、締め付け棒が切れるよう
な破壊的に面圧をゆるめる方法ではない方法で急激な温
度上昇や圧力上昇に対して面圧をゆるめることができ
る。即ち、締め付け棒の一部を電磁石でつなぎ、電池に
とりつけたセンサー、例えば熱電対のような温度センサ
ーや歪ゲージで温度上昇、圧力上昇を検知し、信号電流
を電磁石に与えて締め付け棒の接続を解くものである。
締め付け棒の接続を切る温度はおよそ60℃以上、圧力
は0.8〜0.9MPa程度でとするのが望ましい。
Example 8. Further, the surface pressure can be loosened against a sudden temperature rise or pressure rise by a method that is not a method of destructively loosening the surface pressure such that the tightening rod is cut. That is, a part of the tightening rod is connected by an electromagnet, and a sensor attached to the battery, for example, a temperature sensor such as a thermocouple or a strain gauge detects temperature rise and pressure rise, and a signal current is given to the electromagnet to connect the tightening rod. Is to solve.
It is desirable that the temperature at which the tightening rod is disconnected is about 60 ° C. or higher, and the pressure is about 0.8 to 0.9 MPa.

【0098】実施例9.また、上記実施例の組電池は、
平板状電池11の間にバネ12を挿入したものについて
示したが、平板状電池を板バネ状に形成し、これを用い
ても良く、同様の効果を奏する。
Example 9. In addition, the assembled battery of the above embodiment,
Although the one in which the spring 12 is inserted between the flat plate-shaped batteries 11 is shown, the flat plate-shaped battery may be formed in a plate spring shape and this may be used, and the same effect is obtained.

【0099】電池内部の発熱は、充電あるいは放電時に
流れる電流と電池内部抵抗により決まる。電池の使い方
により流れる電流は変化し、また電池内部抵抗も必ずし
も一定ではなく、電流によって変わるので発熱量も一定
ではない。しかしながら、リチウム二次電池の場合、平
均すれば、充電に要した電気エネルギーと放電で取り出
せる電気エネルギーの比、即ち充放電エネルギー効率は
およそ80%以上であるから、発熱量は充電エネルギー
量の高々20%である。しかしながら電池1kgあたり
のエネルギー、即ち重量エネルギー密度は、およそ12
0W/kgと高いので、電池の比熱を0.8とすると、
1秒あたり0.12℃電池温度が上昇することになり、
断熱状態では1分の充放電で7.2℃も上昇する。小型
の単電池では、その表面積が相対的に大きいので表面か
らの自然放熱で冷やされるが、大型電池になれば表面か
らの自然放熱のみでは難しい。また、組電池では、小型
電池の組み合わせでも組電池内側に配置される電池の温
度を組電池表面からの自然放熱のみで下げることは難し
い。
The heat generation inside the battery is determined by the current flowing during charging or discharging and the internal resistance of the battery. The current flowing varies depending on how the battery is used, and the internal resistance of the battery is not always constant, and the amount of heat generated is not constant because it changes depending on the current. However, in the case of a lithium secondary battery, on average, the ratio of the electric energy required for charging to the electric energy that can be taken out by discharging, that is, the charging / discharging energy efficiency is about 80% or more, so the heat generation amount is at most the charging energy amount. 20%. However, the energy per kg of battery, that is, the weight energy density, is about 12
Since it is as high as 0 W / kg, if the specific heat of the battery is 0.8,
The battery temperature will rise by 0.12 ° C per second,
In the adiabatic state, the temperature rises by 7.2 ° C in 1 minute of charging and discharging. Since the surface area of a small unit cell is relatively large, it is cooled by natural heat dissipation from the surface, but for a large battery, it is difficult to use only natural heat dissipation from the surface. Further, in the assembled battery, it is difficult to lower the temperature of the battery arranged inside the assembled battery only by natural heat dissipation from the surface of the assembled battery even in the combination of small batteries.

【0100】実施例10.而して、本発明の大形電池、
大電極面積化における折り畳み電極もしくは卷回電極の
電池外周部には、例えば放熱用フィン、ピンの集合体か
らなる放熱機構を設け、充放電にともなって発生する熱
の除去が速やかに行えるようにしている。電池温度の過
度な上昇を防止している。
Example 10. Thus, the large battery of the present invention,
In order to increase the area of the electrode, a heat dissipating mechanism including, for example, a heat dissipating fin and an assembly of pins is provided on the outer peripheral portion of the battery of the folding electrode or the winding electrode so that the heat generated due to charging and discharging can be quickly removed. ing. It prevents the battery temperature from rising excessively.

【0101】実施例11.図6は本発明の組電池の他の
実施例を示す模式図である。図6に示すように組電池の
外周部分に電池内部で発生する熱を除去するための放熱
機構21を設置しているので、電池温度の過度な上昇を
下げることができる。放熱機構21は、一般の熱交換器
いわゆるラジエータと同類のものである。
Example 11. FIG. 6 is a schematic view showing another embodiment of the assembled battery of the present invention. As shown in FIG. 6, since the heat dissipation mechanism 21 for removing the heat generated inside the battery is installed on the outer peripheral portion of the assembled battery, it is possible to suppress an excessive rise in the battery temperature. The heat dissipation mechanism 21 is similar to a general heat exchanger, a so-called radiator.

【0102】実施例12.図7は本発明の組電池のさら
に他の実施例を示す部分拡大模式図で、電池中央部の熱
を効果的に除去するための集熱板31を単電池11に張
り付けている。例えば、図7に示すように、単電池11
が平板状電池の場合、集熱板31が単電池11同士の間
に入るように積層する。そして集熱板31を放熱機構2
1に電気絶縁層32を介して接続している。電気絶縁層
32を介するのは、単電池11同士の組電池内での内部
短絡を防ぐためである。もちろん集熱板31自体に電気
絶縁性がある場合には不要な層である。しかしながら、
集熱板に適するような熱良導性の材質、例えばカーボン
やアルミニウム、銅といった材料は電気伝導性も良いの
が通例である。電気絶縁層32には、比較的熱伝導性が
良いアルミナなどの金属酸化物が使われる。
Example 12. FIG. 7 is a partially enlarged schematic view showing still another embodiment of the assembled battery of the present invention, in which a heat collecting plate 31 for effectively removing heat in the central portion of the battery is attached to the unit cell 11. For example, as shown in FIG.
Is a flat battery, the heat collecting plates 31 are stacked so as to be located between the unit cells 11. Then, the heat collecting plate 31 is attached to the heat dissipation mechanism 2
1 through the electrically insulating layer 32. The reason for interposing the electrical insulating layer 32 is to prevent an internal short circuit in the assembled battery between the unit cells 11. Of course, it is an unnecessary layer when the heat collecting plate 31 itself has electric insulation. However,
It is customary that a material having a good thermal conductivity suitable for the heat collecting plate, for example, a material such as carbon, aluminum or copper also has a good electric conductivity. For the electric insulating layer 32, a metal oxide such as alumina having a relatively high thermal conductivity is used.

【0103】実施例13.電解液の枯渇を防ぐため組電
池に設けられる電解液補給機構の一実施例について説明
する。電解液補給機構は電池容器内に組電池に接して設
置される多孔体からなる電解液リザーバと、この電解液
リザーバと単電池のセパレータを接続する吸液力の異な
る多孔体からなる導液部とで構成される。多孔体は、例
えばスポンジのように液をその内部の空洞部(ポア)に
吸い込む性質を有する。一方ポア中の液を取り出すため
には、何らかの力が必要となる。これは、ポアを円筒形
と見立てたときの入り口半径と液の表面張力、それに液
と多孔体の接触角できまるポアの吸液力があるからで、
これは下記の式に示すように定まる。セパレータ及び電
極は多孔体であるから、やはり多孔体である電解液リザ
ーバから、電解液不足時に自発的に吸液するためには、
リザーバの多孔体の吸液力をセパレータ及び電極の吸液
力より小さく設定しなければならない。これは吸液力が
強いポア中の液は、吸液力の弱いポアには外力を掛けな
い限り動かないからである。吸液力をコントロールする
もっとも一般的な方法は、下記式から考えてすることで
ある。従って、この発明の電解液補給機構においては多
孔体のポアの半径を調整して、リザーバの多孔体の吸液
力をセパレータ及び電極の多孔体の吸液力より小さく
し、電解液の枯渇を防いでいる。長寿命化している。 P=2σcosθ/r P:吸液力(N/m2) σ:表面張力(N/m) θ:接触角(degree) r:半径(m)
Example 13. An embodiment of the electrolyte replenishing mechanism provided in the battery pack to prevent the exhaustion of the electrolyte will be described. The electrolyte replenishing mechanism is an electrolyte solution reservoir made of a porous body placed in contact with the assembled battery in a battery container, and a liquid conducting section made of a porous body having a different liquid absorption force for connecting the electrolyte solution reservoir and the separator of the unit cell. Composed of and. The porous body has a property of sucking a liquid into a hollow portion (pore) therein, like a sponge. On the other hand, some force is required to remove the liquid in the pores. This is because there is an inlet radius when the pore is assumed to be cylindrical, the surface tension of the liquid, and the liquid absorption force of the pore that is defined by the contact angle between the liquid and the porous body.
This is determined as shown in the equation below. Since the separator and the electrode are porous, in order to spontaneously absorb liquid when the electrolyte is insufficient, from the electrolyte reservoir which is also porous,
The liquid absorption force of the porous body of the reservoir must be set smaller than that of the separator and the electrode. This is because the liquid in the pores with strong liquid absorption does not move unless external force is applied to the pores with weak liquid absorption. The most common method of controlling the liquid absorption force is to think from the following formula. Therefore, in the electrolyte replenishing mechanism of the present invention, the radius of the pores of the porous body is adjusted to make the liquid absorption force of the porous body of the reservoir smaller than the liquid absorption force of the porous bodies of the separator and the electrode, thereby depleting the electrolyte solution. It is preventing. It has a long life. P = 2σ cos θ / r P: Liquid absorption force (N / m 2 ) σ: Surface tension (N / m) θ: Contact angle (degree) r: Radius (m)

【0104】直列に積層された複数の電池に対し共通の
リザーバから電解液を補給するとき、常時電池とリザー
バが電解液でつながれている液絡状態では、液絡部を伝
わって積層した電池間に短絡電流が流れ電池の自己放電
がおこるので、常時液絡があるのは好ましくない。
When a plurality of batteries stacked in series are replenished with an electrolytic solution from a common reservoir, in a liquid junction state in which the battery and the reservoir are constantly connected by the electrolytic solution, the cells between the stacked batteries are transmitted through the liquid junction. Since a short-circuit current flows through the battery and self-discharge of the battery occurs, it is not preferable to have a liquid junction at all times.

【0105】実施例14.この実施例の電解液補給機構
においては、上記問題点を解消するため、さらにリザー
バとセパレータの接続部分、導液部の吸液力をリザーバ
やセパレータ及び電極より小さくしている。このように
構成することにより、過剰な電解液を含ませない限り、
導液部は、液が無い状態となり、液絡は生じない。電解
液不足時に電解液が補給され、電池効率の低下が防止で
きる。セパレータのポア径は、内部短絡防止の観点から
1μm未満であることが望ましい。したがって導液部の
ポア径は、1μm以上が望ましいことになる。この実施
例では、セパレータをポア径が1μm未満のポアの体積
が全ポア体積の50%以上である多孔体で、導液部をポ
ア径が1μm以上のポアの体積が全ポア体積の50%以
上である多孔体で構成している。
Example 14. In the electrolyte replenishing mechanism of this embodiment, in order to solve the above-mentioned problems, the liquid absorption force of the connecting portion between the reservoir and the separator and the liquid conducting portion is made smaller than that of the reservoir, the separator and the electrode. By configuring in this way, unless an excessive amount of electrolytic solution is included,
The liquid introducing portion is in a liquid-free state, and no liquid junction occurs. When the electrolyte solution is insufficient, the electrolyte solution is replenished, and the decrease in battery efficiency can be prevented. The pore diameter of the separator is preferably less than 1 μm from the viewpoint of preventing an internal short circuit. Therefore, it is desirable that the pore diameter of the liquid introducing portion is 1 μm or more. In this embodiment, the separator is a porous body in which the volume of pores having a pore diameter of less than 1 μm is 50% or more of the total pore volume, and the liquid introducing portion has a volume of pores having a pore diameter of 1 μm or more 50% of the total pore volume. It is composed of the above porous body.

【0106】電池内の電解液不足は、おもに電解液の分
解で生じる。電解液の分解は電池内圧上昇をもたらす。
電解液不足は内部抵抗増大をもたらすと考えられるか
ら、電解液不足と内圧の上昇には相関があると考えられ
る。
The lack of the electrolytic solution in the battery is mainly caused by the decomposition of the electrolytic solution. The decomposition of the electrolytic solution causes the internal pressure of the battery to rise.
It is considered that the lack of electrolyte causes an increase in internal resistance, so there is a correlation between lack of electrolyte and increase in internal pressure.

【0107】電池内部圧力がリザーバに掛かることによ
り、その圧力が、接続部の吸液力とリザーバの吸液力の
差以上であれば、接続部にはリザーバから電解液が押し
込まれ、液絡が形成される。液絡が形成されると、電解
液が不足しているセパレータ及び電極にリザーバから供
給されることになる。内圧解放機構が働いて電池内圧が
低下すると、再び接続部とリザーバの吸液力の差により
液絡が解消される。
When the internal pressure of the battery is applied to the reservoir so that the pressure is equal to or more than the difference between the liquid absorbing force of the connecting portion and the liquid absorbing force of the reservoir, the electrolytic solution is pushed into the connecting portion from the reservoir to cause the liquid junction. Is formed. When the liquid junction is formed, the electrolytic solution is supplied from the reservoir to the separator and the electrode lacking. When the internal pressure release mechanism operates and the internal pressure of the battery decreases, the liquid junction is eliminated again due to the difference in the liquid absorption force between the connection portion and the reservoir.

【0108】単電池の内圧が上がらないように、単電池
のシール部分は、ガスに対して透過性があるようにし、
組電池を収納密閉する容器を用意して、大気中の水分が
混入しないようにするが、内圧解放機構として電池容器
内の圧力が上がりすぎないように調節するバルブを電池
容器につける。
In order to prevent the internal pressure of the unit cell from rising, the sealing portion of the unit cell should be permeable to gas,
A container for accommodating the assembled battery is prepared to prevent water in the atmosphere from mixing in, but a valve for adjusting the internal pressure release mechanism so that the pressure inside the battery container does not rise too much is attached to the battery container.

【0109】従来よりある解放機構は、内圧の増大によ
って破壊される部分を容器の一部に設けるもので、いわ
ゆるラプチャーディスクの考えによるものである。この
方法は自己破壊的作用なので一度働くと全体の再使用が
難しくなる。とくに大気からの水分混入を嫌うリチウム
二次電池では致命的な作用で、最終的な安全装置と言う
べきものである。
A conventional releasing mechanism is to provide a portion that is destroyed by an increase in internal pressure in a part of the container, and is based on the idea of a so-called rupture disc. Since this method is a self-destructive action, once it works, it becomes difficult to reuse it as a whole. In particular, it is a fatal action in a lithium secondary battery that is reluctant to mix water from the atmosphere, and should be called a final safety device.

【0110】一方、いわゆるチャッキ弁、リリーフ弁と
称するものがあるが、これは、所定の圧力で作動し、そ
の圧力以下になると停止することで内圧を保つものであ
る。その基本構造は、内圧に拮抗する力を生じるもの、
例えば、圧縮したバネにつながる弁体で解放口を押さえ
るものである。内圧を解放し所定圧以下にするためのみ
ならば、このような従来から知られているチャッキ弁を
容器にとりつけるだけでよい。
On the other hand, there are so-called check valves and relief valves, which operate at a predetermined pressure and stop when the pressure falls below that pressure to maintain the internal pressure. Its basic structure is one that produces a force that antagonizes internal pressure,
For example, a valve body connected to a compressed spring presses the opening. If only to release the internal pressure so that the pressure is equal to or lower than a predetermined pressure, such a conventionally known check valve may be attached to the container.

【0111】しかし、先に述べたように電池内圧上昇を
利用して電解液補給機構を動作させるためには、ある圧
力Aで内圧解放したあと、圧力Aより小さい圧力Bまで
下がって内圧解放が終わるようにしなければならない。
電解液補給機構が動作を始める圧力Cを挟むように圧力
Bと圧力Aが設定される。圧力Aは、安全上の上限圧力
である。このような動作をするリリーフ弁として図8の
模式図に示すような弁を電池容器に装着することを発明
した。
However, as described above, in order to operate the electrolyte replenishing mechanism by utilizing the rise in the battery internal pressure, the internal pressure is released at a certain pressure A, and then the internal pressure is released to a pressure B smaller than the pressure A. You have to make it over.
The pressure B and the pressure A are set so as to sandwich the pressure C at which the electrolyte replenishing mechanism starts operating. The pressure A is a safety upper limit pressure. As a relief valve that operates in this way, the inventors have invented that a valve as shown in the schematic view of FIG. 8 is attached to a battery container.

【0112】図8に従って動作を説明する。電池内部の
圧力は、弁体41にかかっており、弁体41は、圧力A
に相当する力を生じるバネA42で押さえられている。
バネA42は、バネケース43に納められ、バネケース
43ごと留めピン44で支えられている。留めピン44
は弁体41に連動する。またバネケース43は、圧力B
に相当する力を生じるバネB45で押さえられている。
The operation will be described with reference to FIG. The pressure inside the battery is applied to the valve body 41, and
It is held by a spring A42 that produces a force equivalent to
The spring A42 is housed in the spring case 43, and is supported by the retaining pin 44 together with the spring case 43. Fastening pin 44
Interlocks with the valve body 41. Further, the spring case 43 has a pressure B
It is held by a spring B45 that produces a force equivalent to

【0113】電池内圧が圧力Aを越えると弁体41が下
がり、内圧は解放口46から解放される。同時に弁体4
1に連動した留めピン44が抜けることで、弁体41は
バネケース43ごと後退しバネB45を圧縮する。電池
内圧が低下し圧力B以下になるとバネB45が復帰し、
弁体41をバネケース43ごと押し返し、留めピン44
を復帰させるとともに、再び解放口46を塞ぐ。このよ
うに作用することで、電池内圧が上りすぎないようにす
ることができる。圧力Aとしては、いわゆる高圧ガスに
ならない1MPa未満にするのが望ましい。圧力Bにつ
いては、圧力A以下でよいがいわゆる大気圧0.1MP
aから0.3MPaの間が望ましい。
When the battery internal pressure exceeds the pressure A, the valve body 41 is lowered, and the internal pressure is released from the release port 46. Valve body 4 at the same time
When the retaining pin 44 interlocked with 1 is removed, the valve body 41 retracts together with the spring case 43 and compresses the spring B45. When the internal pressure of the battery drops below the pressure B, the spring B45 returns,
Push the valve body 41 back together with the spring case 43, and
And the opening 46 is closed again. By acting in this way, the internal pressure of the battery can be prevented from rising too much. It is desirable that the pressure A is less than 1 MPa, which does not produce so-called high-pressure gas. The pressure B may be equal to or lower than the pressure A, but the so-called atmospheric pressure is 0.1MP.
It is preferably between a and 0.3 MPa.

【0114】次に、電池内圧の上昇抑制について説明す
る。電池内圧の上昇は、リチウム二次電池の場合、電解
液である有機溶媒の分解である。有機溶媒は、例えば、
リチウム二次電池の電解液によく用いられるプロピレン
カーボネートの分解反応は、化1のようになる。この場
合プロピレンカーボネートを分解するとき生成するプロ
ペンガスが電池容器内の圧力を上げる元である。
Next, suppression of increase in battery internal pressure will be described. In the case of a lithium secondary battery, the increase in battery internal pressure is the decomposition of an organic solvent that is an electrolytic solution. The organic solvent is, for example,
The decomposition reaction of propylene carbonate, which is often used in the electrolytic solution of a lithium secondary battery, is as shown in Chemical formula 1. In this case, the propene gas generated when decomposing propylene carbonate is the source of increasing the pressure in the battery container.

【0115】[0115]

【化1】 [Chemical 1]

【0116】実施例15.この発明は電解液内に炭酸リ
チウムを添加するとこのガス発生抑制効果のあることを
見いだし、成し得たもので、有機溶媒にリチウム塩を溶
解させた電解質を用いるリチウム二次電池において、電
解液に炭酸リチウムを含有させることにより、電解液の
有機溶媒の分解によるガス発生を抑制している。その結
果、電池内部圧力の過度の上昇を抑えることができ、安
全性が向上する。その詳細は明かではないが、電池のよ
うな閉じた系では、反応生成物である炭酸リチウムが系
に多くあると平衡移動が起こり、反応が進み難くなるも
のと考えられる。
Example 15. This invention was found to have the effect of suppressing this gas generation when lithium carbonate was added to the electrolytic solution, and was made. In a lithium secondary battery using an electrolyte in which a lithium salt is dissolved in an organic solvent, the electrolytic solution is By containing lithium carbonate in the composition, gas generation due to decomposition of the organic solvent of the electrolytic solution is suppressed. As a result, it is possible to suppress an excessive rise in the internal pressure of the battery and improve the safety. Although the details are not clear, it is considered that in a closed system such as a battery, when a large amount of reaction product lithium carbonate is present in the system, equilibrium transfer occurs and the reaction becomes difficult to proceed.

【0117】実施例16.また酸化リチウムと炭酸ガス
が共存すると同様にガス発生速度が低下することも見い
だした。そこで、電池を収納する容器内に炭酸ガスを含
ませ、電解液に酸化リチウムを含有させた。これによ
り、ガス発生速度を低下させることができ、電池内圧の
上昇を抑えられた。また、図9の特性図に示すように炭
酸ガス濃度の違いにより電池内圧の経時変化の様子が異
なる。縦軸が電池内圧、横軸が時間を表し、特性曲線d
は炭酸ガス100%の電池内圧上昇曲線、特性曲線eは
炭酸ガス50%の電池内圧上昇曲線、特性曲線fは炭酸
ガス0%の電池内圧上昇曲線である。炭酸ガス濃度が低
いと早く電池内圧が上昇するのがわかる。これは、化2
で示されるように炭酸ガス、酸化リチウムと炭酸リチウ
ムが平衡関係にあるため、炭酸ガス濃度が高いと炭酸リ
チウムが生成し、炭酸リチウムを添加した場合と同様の
効果が現れたと考えられる。
Example 16. It was also found that the gas generation rate decreased similarly when lithium oxide and carbon dioxide coexist. Therefore, carbon dioxide was included in the container for accommodating the battery, and the electrolytic solution was made to contain lithium oxide. As a result, the gas generation rate could be reduced, and the increase in the battery internal pressure could be suppressed. Further, as shown in the characteristic diagram of FIG. 9, the time-dependent change in the internal pressure of the battery differs depending on the difference in carbon dioxide concentration. The vertical axis represents the battery internal pressure, the horizontal axis represents time, and the characteristic curve d
Is a battery internal pressure increase curve of 100% carbon dioxide, a characteristic curve e is a battery internal pressure increase curve of 50% carbon dioxide, and a characteristic curve f is a battery internal pressure increase curve of carbon dioxide 0%. It can be seen that when the carbon dioxide concentration is low, the internal pressure of the battery rises quickly. This is
Since carbon dioxide gas, lithium oxide, and lithium carbonate are in an equilibrium relationship as shown by, it is considered that when the carbon dioxide gas concentration is high, lithium carbonate is produced and the same effect as when lithium carbonate is added is exhibited.

【0118】[0118]

【化2】 [Chemical 2]

【0119】実施例17.従って炭酸ガスを電池容器内
に封入することでも、炭酸リチウムが生成しこれにより
電解液の分解反応が抑制されるので電池内圧の上昇が抑
えられる。そこで、電池容器を密閉する工程を炭酸ガス
雰囲気中で行い、周囲の炭酸ガスを同時に封入するよう
にしている。また、電池部品に炭酸ガスを吹き付けなが
ら電池容器を密閉するようにして、吹き付けた炭酸ガス
を同時に容器内に封入するようにしてもよい。
Example 17 Therefore, even if carbon dioxide gas is sealed in the battery container, lithium carbonate is generated and the decomposition reaction of the electrolytic solution is suppressed, so that the increase in the battery internal pressure is suppressed. Therefore, the process of sealing the battery container is performed in a carbon dioxide gas atmosphere so that the surrounding carbon dioxide gas is sealed at the same time. Alternatively, the carbon dioxide gas may be blown onto the battery parts so that the battery container is closed, and the blown carbon dioxide gas may be simultaneously enclosed in the container.

【0120】また、電池内圧を炭酸ガスによって定圧よ
り高くして作成した電池は、図10の電池内圧の経時変
化を示す特性図に示すように炭酸ガスを含まない電池に
比べ結果的には限界圧力に達するのに要する時間が長
い。これも炭酸ガスによる電解液の分解抑止効果による
ものである。図10において、縦軸が電池内圧、横軸が
時間を表し、特性曲線gは炭酸ガス0%の電池内圧上昇
曲線、特性曲線hは正極の炭酸塩を分解したあとの電池
内圧上昇曲線を示す。
Further, the battery prepared by increasing the internal pressure of the battery higher than the constant pressure by carbon dioxide gas has a limit in result as compared with the battery containing no carbon dioxide gas as shown in the characteristic diagram of FIG. It takes a long time to reach the pressure. This is also due to the effect of inhibiting decomposition of the electrolytic solution by carbon dioxide gas. In FIG. 10, the vertical axis represents the battery internal pressure, the horizontal axis represents time, the characteristic curve g represents the battery internal pressure increase curve at 0% carbon dioxide, and the characteristic curve h represents the battery internal pressure increase curve after decomposing the carbonate of the positive electrode. .

【0121】本明細書では、プロピレンカーボネートの
分解を例にとって説明したが、同様の分解をするエチレ
ンカーボネートに対しても同様の効果がある。また、炭
酸リチウムもしくは酸化リチウムを電解液に直接添加せ
ず、負極やセパレータなど電池内部にある部品に含有さ
せたりしても同様の効果が得られる。
In the present specification, the decomposition of propylene carbonate has been described as an example, but the same effect can be obtained for ethylene carbonate which is decomposed in the same manner. Further, the same effect can be obtained even if lithium carbonate or lithium oxide is not directly added to the electrolytic solution but is contained in components such as the negative electrode and the separator inside the battery.

【0122】実施例18.ところが正極に炭酸リチウム
が含有されているケースでは、逆に過充電時に内圧上昇
が早いことがわかっている。これは、炭酸リチウムが過
充電で炭酸ガスと酸化リチウムに分解するからである。
本実施例では、これを利用して、正極に炭酸リチウムを
添加しておき、電池に組み立てた後、意識的に過充電も
しくは加熱するこにより、炭酸リチウムを分解し、電池
容器内で炭酸ガスを発生させている。これにより電池内
部の炭酸ガス濃度を電解液を分解せずに上げることがで
きる。正極への炭酸リチウムの添加量は1重量%以下で
は実質上添加効果が見られないので、また添加量は少な
い方が望ましく、2重量%も添加すれば実用上十分であ
るので、1〜2重量%が適当である。なお、炭酸リチウ
ムに限らず、他の炭酸塩を用いても同様の効果を奏す
る。
Example 18. However, in the case where the positive electrode contains lithium carbonate, conversely, it is known that the internal pressure rises rapidly during overcharge. This is because lithium carbonate decomposes into carbon dioxide gas and lithium oxide by overcharging.
In this example, by utilizing this, lithium carbonate was added to the positive electrode, and after assembled into a battery, the lithium carbonate was decomposed by intentionally overcharging or heating, and carbon dioxide gas was stored in the battery container. Is being generated. As a result, the carbon dioxide concentration inside the battery can be increased without decomposing the electrolytic solution. If the amount of lithium carbonate added to the positive electrode is 1% by weight or less, the effect of addition is not substantially seen. Further, it is preferable that the amount added is small, and if 2% by weight is added, it is practically sufficient. Weight percent is suitable. It should be noted that the same effect can be obtained not only by using lithium carbonate but also by using another carbonate.

【0123】以下に、より具体的な実施例を挙げて説明
する。 実施例19.塗工溶剤としてNMP溶液33重量部に、
バインダーとして軟質系フッ素樹脂3重量部を溶解させ
バインダー溶液とし、この溶液に正極活物質としてLi
CoO2 粉末58重量部と導電剤としてグラファイト粉
末6重量部を分散させて塗工液を作成した。この塗工液
を集電体である厚さ20μmのアルミ箔上に巾30cmに
塗工し、乾燥させることにより厚さ約300μmの電極
シートを作成した。長さは151cmとした。
A more specific example will be described below. Example 19. 33 parts by weight of NMP solution as a coating solvent,
3 parts by weight of a soft fluororesin was dissolved as a binder to prepare a binder solution, and Li was used as a positive electrode active material in this solution.
A coating solution was prepared by dispersing 58 parts by weight of CoO2 powder and 6 parts by weight of graphite powder as a conductive agent. This coating solution was applied on an aluminum foil having a thickness of 20 μm and serving as a current collector so as to have a width of 30 cm, and dried to prepare an electrode sheet having a thickness of about 300 μm. The length was 151 cm.

【0124】塗工溶剤としてNMP溶液33重量部に、
バインダーとして軟質系フッ素樹脂3重量部を溶解させ
バインダー溶液とし、この溶液に負極活物質としてメソ
フェーズマイクロビーズカーボン(以下MCMBと略
記)粉末(大阪ガス製)62重量部と炭酸リチウム2重
量部を分散させて塗工液を作成した。この塗工液を集電
体である厚さ20μmの銅箔上に塗工し、乾燥させるこ
とにより厚さ約300μmの電極シートを作成した。電
極の巾は31cm、長さは151cmであった。
33 parts by weight of NMP solution as a coating solvent,
62 parts by weight of mesophase microbead carbon (hereinafter abbreviated as MCMB) powder (manufactured by Osaka Gas) and 2 parts by weight of lithium carbonate were dispersed in this solution as a binder solution by dissolving 3 parts by weight of a soft fluororesin as a binder. Then, a coating liquid was prepared. This coating solution was applied onto a copper foil having a thickness of 20 μm, which is a current collector, and dried to prepare an electrode sheet having a thickness of about 300 μm. The width of the electrode was 31 cm and the length was 151 cm.

【0125】作成した正極および負極をセパレータであ
る多孔質ポリプロピレンフィルム(厚さ50μm)を挟
んで活物質層が向かい合い、巾方向の正極の端が負極の
巾方向の端よりはみ出さないように配置し、長さ方向に
30cmごとに4回つづら折れに折り畳み電池要素を作成
した。セパレータの長さは155cmで、折り始めと折り
終わりで、それぞれ約2cmずつ正極および負極よりはみ
出すようにした。
The positive electrode and the negative electrode thus prepared are arranged such that the active material layers face each other with a porous polypropylene film (thickness 50 μm) as a separator sandwiched therebetween, and the end of the positive electrode in the width direction does not extend beyond the end of the negative electrode in the width direction. Then, a battery element was prepared by folding the battery element in a lengthwise direction every 30 cm four times. The length of the separator was 155 cm, and about 2 cm at the beginning and the end of folding, respectively, were projected from the positive electrode and the negative electrode.

【0126】作成した30cm角の電池要素を2つの 厚
さ1.5mm、巾5mmのポリエチレン製の枠にはめ、電池
要素からはみ出したセパレータと これと電解液リザー
バを接続するための導液部(リザーバ接続多孔体)のポ
リプロピレン製多孔体フィルム(厚さ50μm)をポリ
エチレン枠ではさみ、さらに 厚さ0.1mmのステンレス
板2枚ではさみ、周囲をプレスしながら熱融着し、4角
形の平板状単電池を作成した。
The prepared 30 cm square battery element was fitted in two polyethylene frames having a thickness of 1.5 mm and a width of 5 mm, and the separator protruding from the battery element and the liquid conducting part for connecting this to the electrolyte reservoir ( Porous polypropylene film (thickness 50 μm) of reservoir connection porous body is sandwiched between polyethylene frames, and further sandwiched between two 0.1 mm thick stainless steel plates, and heat-bonded while pressing the periphery to form a rectangular flat plate. A single cell was created.

【0127】ポリエチレン枠には、巾3mm 深さ0.5mm
の溝が枠の内側と外側を結ぶように3mmごとに形成して
あり、溝にはセパレータと導液部が挟まれる。熱融着温
度は、ポリエチレンが融着し、ポリプロピレンが溶けな
い135〜160℃にするのが望ましい。セパレータは
およそ0.1μm以下のポア径のポア体積が全ポア体積
の50%であるものを用いた。導液部(リザーバ接続多
孔体)には、およそ1μm以下のポア径のポア体積が全
ポア体積の50%であるものを用いた。
The polyethylene frame has a width of 3 mm and a depth of 0.5 mm.
The groove is formed every 3 mm so as to connect the inside and the outside of the frame, and the separator and the liquid conducting portion are sandwiched in the groove. The heat fusion temperature is preferably 135 to 160 ° C. at which polyethylene is fused and polypropylene is not melted. The separator used had a pore volume of about 0.1 μm or less and 50% of the total pore volume. As the liquid introducing part (reservoir connection porous body), one having a pore volume of about 1 μm or less and 50% of the total pore volume was used.

【0128】平板状単電池を40個直列に積層し、平板
状電池同士の間に真鍮の板バネをはさんで硬質ポリエチ
レンの板を押さえ板として組電池を形成した。締め付け
棒には、アルミニウムパイプをウッド合金でつないだも
のを用いた。
Forty flat flat cells were laminated in series, and a brass leaf spring was sandwiched between the flat cells to form a battery assembly using a hard polyethylene plate as a pressing plate. The tightening rod used was an aluminum pipe connected with a wood alloy.

【0129】単電池5個ごとに厚み1mmのアルミ板を集
熱板として挟んだ。電池の外周4辺のうち対向する2辺
側にアルミ集熱板とアルミナ層を介して接続される放熱
機構を設置した。放熱機構は、アルミ製で、巾10mm長
さ12cmの放熱フィンが、10mm間隔で片側31枚積層
方向に沿って配置されている。
An aluminum plate having a thickness of 1 mm was sandwiched as a heat collecting plate for every five unit cells. A heat radiating mechanism connected to the aluminum heat collecting plate via an alumina layer was installed on the two opposite sides of the four outer sides of the battery. The heat radiation mechanism is made of aluminum, and heat radiation fins having a width of 10 mm and a length of 12 cm are arranged at intervals of 10 mm along the stacking direction of 31 sheets on one side.

【0130】残る2辺側に、電解液リザーバが配置され
る。電解液リザーバは、硬質ポリプロピレン製のケース
に、ポリプロピレン製の不織布を詰めたものであり、各
電池から出ている導液部(リザーバ接続多孔体シート)
が挟み込まれる。
Electrolyte reservoirs are arranged on the remaining two sides. The electrolyte reservoir is made of a polypropylene case filled with polypropylene non-woven fabric, and the liquid conducting part (reservoir connection porous sheet) that comes out from each battery.
Is sandwiched.

【0131】放熱機構および電解液リザーバを配置した
組電池をステンレス製の電池容器に収納し、圧力調節弁
を付けた容器蓋に絶縁層を介してとりつけている正極端
子および負極端子に 組電池から出している正極リード
および負極リードを各々溶接したのち、容器蓋の注液口
を電解質リザーバの位置にあわせて、容器蓋を電池容器
に溶接する。
The assembled battery in which the heat dissipation mechanism and the electrolyte reservoir are arranged is housed in a stainless steel battery container, and the positive electrode terminal and the negative electrode terminal are attached to the container lid equipped with the pressure control valve via the insulating layer. After the positive electrode lead and the negative electrode lead that have been taken out are respectively welded, the liquid inlet of the container lid is aligned with the position of the electrolyte reservoir, and the container lid is welded to the battery container.

【0132】容器全体を真空(ー750mmHg以下)
にしたのち、注液口にエチレンカーボネートとジメトキ
シエタンの1:1混合溶媒に過塩素酸リチウムを1モル
/l溶かした電解液を流し込む。注液は、乾燥炭酸ガス
雰囲気のドライボックス内でおこなう。注液完了後、注
液口を溶接、封口する。
Vacuum the entire container (-750 mmHg or less)
After that, an electrolytic solution in which 1 mol / l of lithium perchlorate is dissolved in a 1: 1 mixed solvent of ethylene carbonate and dimethoxyethane is poured into the injection port. Injection is performed in a dry box in a dry carbon dioxide atmosphere. After the injection is completed, the injection port is welded and sealed.

【0133】このようにして組み立てた電池は、初回単
電池電圧 4.2Vまで充電した後、平均単電池電圧3.
6V、平均組電池電圧144Vで動作し、1.3kWの
出力を得た。
The battery thus assembled was charged to an initial cell voltage of 4.2 V, and then the average cell voltage was 3.
It operated at 6 V and an average assembled battery voltage of 144 V, and obtained an output of 1.3 kW.

【0134】実施例20.電極製造のバインダーをPV
dFと軟質系フッ素樹脂との混合粉末(1:1)に代え
た以外は実施例19と同様に電池を組み立てた。
Example 20. PV electrode binder
A battery was assembled in the same manner as in Example 19 except that the mixed powder of dF and the soft fluororesin (1: 1) was used.

【0135】このようにして組み立てた電池は、実施例
19と同様 平均単電池電圧3.6V、平均組電池電圧1
44Vで動作し、1.3kWの出力を得た。
The battery thus assembled had an average cell voltage of 3.6 V and an average assembled battery voltage of 1 as in Example 19.
It operated at 44V and obtained an output of 1.3 kW.

【0136】実施例21.負極製造時に炭酸リチウムを
3重量部入れる代わりに酸化リチウムを3重量部入れた
以外は実施例19と同様に電池を組み立てた。
Example 21. A battery was assembled in the same manner as in Example 19 except that 3 parts by weight of lithium oxide was added instead of 3 parts by weight of lithium carbonate during the production of the negative electrode.

【0137】このようにして組み立てた電池は、実施例
19と同様 平均単電池電圧3.6V、平均組電池電圧1
44Vで動作し、1.3kWの出力を得た。
The battery thus assembled had an average cell voltage of 3.6 V and an average assembled battery voltage of 1 as in Example 19.
It operated at 44V and obtained an output of 1.3 kW.

【0138】実施例22.電解液注液時に乾燥空気雰囲
気のドライボックス内で、注液口周辺に炭酸ガスを吹き
付けながら行った以外は、実施例19と同様に電池を組
み立てた。
Example 22. A battery was assembled in the same manner as in Example 19 except that carbon dioxide gas was blown around the injection port in a dry box in a dry air atmosphere when the electrolytic solution was injected.

【0139】このようにして組み立てた電池は、実施例
19と同様に平均単電池電圧3.6V、平均組電池電圧
144Vで動作し、1.3kWの出力を得た。
The battery thus assembled was operated at an average cell voltage of 3.6 V and an average assembled battery voltage of 144 V as in Example 19, and an output of 1.3 kW was obtained.

【0140】実施例23.塗工溶剤としてNMP溶液3
3重量部に、バインダーとして軟質系フッ素樹脂3重量
部を溶解させバインダー溶液とし、この溶液に正極活物
質としてLiCoO2 粉末58重量部と導電剤としてグ
ラファイト粉末6重量部と炭酸リチウム1重量部を分散
させて塗工液を作成した。この塗工液を集電体である厚
さ20μmのアルミ箔上に巾30cmに塗工し、乾燥させ
ることにより厚さ約300μmの電極シートを作成し
た。長さは151cmとした。
Example 23. NMP solution 3 as a coating solvent
3 parts by weight of soft fluororesin as a binder was dissolved in 3 parts by weight to prepare a binder solution, and 58 parts by weight of LiCoO2 powder as a positive electrode active material, 6 parts by weight of graphite powder as a conductive agent and 1 part by weight of lithium carbonate were dispersed in the solution. Then, a coating liquid was prepared. This coating solution was applied on an aluminum foil having a thickness of 20 μm and serving as a current collector so as to have a width of 30 cm, and dried to prepare an electrode sheet having a thickness of about 300 μm. The length was 151 cm.

【0141】以下の工程は、実施例19と同様に行な
い、注液工程を乾燥空気雰囲気のドライボックスで行っ
て電池を組み立てた後、初回充電を 4.5Vまでおこな
い、電池容器内で炭酸ガスを発生させて圧力調節弁を動
作させ、電池容器内部を炭酸ガス充分な雰囲気にした。
The following steps are carried out in the same manner as in Example 19, the liquid injection step is carried out in a dry box in a dry air atmosphere to assemble the battery, and then the initial charge is carried out to 4.5 V to generate carbon dioxide gas in the battery container. Was generated and the pressure control valve was operated to make the inside of the battery container a sufficient carbon dioxide gas atmosphere.

【0142】このようにして組み立てた電池は、実施例
1と同様に平均単電池電圧3.6V、平均組電池電圧1
44Vで動作し、1.3kWの出力を得た。
The batteries thus assembled had an average cell voltage of 3.6 V and an average assembled battery voltage of 1 as in Example 1.
It operated at 44V and obtained an output of 1.3 kW.

【0143】[0143]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0144】イオン導電性物質を保持する多孔体を挟ん
で、電気化学的にイオンを吸蔵、排出する能力を有する
活物質層からなる電子伝導性の電極が対向する構造をな
す電気化学素子において、上記活物質層を上記多孔体表
面上にその縁端を除き、その幅より狭くなるように形成
し、上記活物質層の背面または内部に集電体を設けるよ
うにしたので、組立の際に対向する電極の位置合わせが
不要となり、組立が簡便になるとともに、組立不良に起
因する反応面積の低下に伴う性能不良を低減できる効果
がある。
In an electrochemical device having a structure in which electron-conductive electrodes composed of active material layers having the ability to electrochemically store and discharge ions are opposed to each other with a porous body holding an ion-conductive substance sandwiched therebetween, Since the active material layer is formed on the surface of the porous body so as to be narrower than its width excluding the edge thereof, and a current collector is provided on the back surface or the inside of the active material layer, so that the active material layer is assembled at the time of assembly. Since there is no need to align the electrodes facing each other, the assembly can be simplified, and the performance defect due to the reduction of the reaction area due to the assembly defect can be reduced.

【0145】また、リチウムイオン導電性の電解質を保
持するセパレータを有し、リチウムイオンを吸蔵、排出
する無機酸化物を正極活物質とし、炭素を負極活物質と
する電池において、上記セパレータの一方の面に正極活
物質を含む正極活物質層を、他方の面に負極活物質を含
む負極活物質層を、上記セパレータ縁端を除いて上記セ
パレータ幅より狭く形成するようにしたので、組立時に
正極と負極の位置合わせが不要となり、部品点数も減る
ので、組立工程が簡素化され簡便になるとともに、正極
と負極の位置ズレによる反応面積の不足や短絡の発生が
抑えられるので、これに伴う性能不良が無くなり、信頼
性の高い電池が得られる効果がある。
Further, in a battery having a separator holding a lithium ion conductive electrolyte, using an inorganic oxide for occluding and discharging lithium ions as a positive electrode active material and carbon as a negative electrode active material, one of the above separators is used. Since the positive electrode active material layer containing the positive electrode active material on the surface and the negative electrode active material layer containing the negative electrode active material on the other surface are formed to be narrower than the separator width except for the separator edge, Since there is no need to align the negative electrode and the negative electrode, and the number of parts is reduced, the assembly process is simplified and simplified, and the shortage of reaction area and short circuit due to the positional deviation between the positive electrode and the negative electrode can be suppressed. There is an effect that defects are eliminated and a highly reliable battery is obtained.

【0146】また、この電気化学素子の製造に際して
は、帯状の多孔体を相対移動させ、帯状多孔体の一面と
他面に電気化学的活物質を含むペーストを塗ることによ
り上記多孔体に活物質層を形成するようにしたので、セ
パレータに正極活物質層と負極活物質層を容易に形成で
きる。
In the production of this electrochemical device, the band-shaped porous body is relatively moved, and a paste containing an electrochemically active material is applied to one surface and the other surface of the band-shaped porous body to form an active material in the porous body. Since the layers are formed, the positive electrode active material layer and the negative electrode active material layer can be easily formed on the separator.

【0147】さらに、平板状リチウム二次電池を、セパ
レータを介して正極と負極を対向配置し、これを偶数回
折り畳んで電池要素を形成し、この電池要素の周囲に電
気絶縁性のシール材を配設し、かつその重畳方向両端部
に配設する導電性板材で上記電池要素を挟んだ構造とし
たので、大電極面積電極をコンパクトに電池容器内に詰
め込め、高電圧、大電流が得られ、性能を向上できる。
また、平板状であり、組電池の形成に適している。
Further, in a flat lithium secondary battery, a positive electrode and a negative electrode are arranged so as to face each other with a separator interposed therebetween, and this is folded evenly to form a battery element, and an electrically insulating sealing material is provided around the battery element. Since the battery elements are arranged and the battery elements are sandwiched by the conductive plate materials arranged at both ends in the overlapping direction, a large electrode area electrode can be compactly packed in a battery container, and high voltage and large current can be obtained. , Performance can be improved.
Further, it has a flat plate shape and is suitable for forming an assembled battery.

【0148】また、電池外周部に放熱機構を設置したの
で、熱の除去が速やかに行え、電池温度の過度な上昇を
防止できる。安全になる。
Further, since the heat dissipation mechanism is installed on the outer peripheral portion of the battery, heat can be quickly removed and an excessive rise in battery temperature can be prevented. Be safe.

【0149】また、バインダーにフッ素ゴムに結晶性の
フッ素樹脂をグラフト重合させた、下記に示すモノマー
ユニットA,Bにより構成された軟質系フッ素樹脂を用
いたので、 A: −CH2−CF2− B: −CFCl−CF2− 高性能で、かつ柔軟性の高い柔軟性電極が得られる。従
って、加工性が向上し、電極構造の自由度が増す。巻回
電極や折り畳み電極の製作が容易になる。
Since a soft fluororesin composed of the following monomer units A and B obtained by graft-polymerizing a crystalline fluororesin on fluororubber was used as the binder, A: --CH 2 --CF 2 - B: -CFCl-CF 2 - high-performance, and highly flexible flexible electrode is obtained. Therefore, the workability is improved and the degree of freedom of the electrode structure is increased. It facilitates the manufacture of wound electrodes and folded electrodes.

【0150】また、軟質系フッ素樹脂からなるバインダ
ーの活物質に対する割合を 0.1重量%〜20重量%の
範囲としたので電池性能が良好となり、またバインダー
1重量部に対し5〜30重量部の塗工溶剤に分散させる
ようにしたので、塗工(電極作成)が容易になる。
Further, since the ratio of the binder made of the soft fluororesin to the active material is set in the range of 0.1% by weight to 20% by weight, the battery performance becomes good, and 5 to 30 parts by weight relative to 1 part by weight of the binder. Since it is dispersed in the coating solvent, the coating (electrode preparation) becomes easy.

【0151】上記平板状リチウム二次電池を積層し、積
層方向に面圧をかけ、上記平板状電池同士を互いに固定
し電気的に接続するようにして組電池を構成したので、
トラブルが発生した際など、面圧をゆるめることにより
容易にこの接続をきることができ、電池を保護できる。
Since the plate-shaped lithium secondary batteries are stacked, surface pressure is applied in the stacking direction, and the plate-shaped batteries are fixed and electrically connected to each other to form an assembled battery,
When trouble occurs, this connection can be easily broken by loosening the surface pressure to protect the battery.

【0152】また、積層する平板状電池の間にバネを挿
入する、もしくは積層する平板状電池を板バネ状に形成
したので、積層方向の面圧が緩むと、バネの復原力によ
り電池同士の間隔が空き、電気的接続を速やかにきるこ
とができる。
Further, since a spring is inserted between the stacked flat plate-shaped batteries or the stacked flat plate-shaped batteries are formed in the shape of leaf springs, when the surface pressure in the stacking direction is relaxed, the restoring force of the springs causes the batteries to be separated from each other. Since there is an interval, the electrical connection can be quickly cut.

【0153】さらに、リチウム二次電池に集熱板を付設
するとともに、組電池外周部に放熱機構を設け、上記集
熱板と放熱機構を電気的に絶縁して接続したので、電池
内部で発生する熱を除去でき、組電池表面からの自然放
熱のみで下げることが難しい組電池内の電池温度の過度
な上昇を下げることができる。。
Further, since a heat collecting plate is attached to the lithium secondary battery and a heat radiating mechanism is provided on the outer peripheral portion of the assembled battery, and the heat collecting plate and the heat radiating mechanism are electrically insulated and connected, it is generated inside the battery The heat generated can be removed, and an excessive rise in battery temperature in the assembled battery, which is difficult to reduce only by natural heat dissipation from the surface of the assembled battery, can be reduced. .

【0154】そして、組電池外周部に配設される電解液
を含有する多孔体からなる電解液リザーバ、及びこのリ
ザーバとリチウム二次電池のセパレータを接続する多孔
体からなる導液部で構成される電解液補給機構を設けた
ので、電解液の枯渇を防ぐことができ、長寿命化でき
る。
An electrolyte solution reservoir made of a porous body containing an electrolyte solution is provided at the outer periphery of the assembled battery, and a liquid conducting section made of a porous body connecting the reservoir and the separator of the lithium secondary battery. Since the electrolyte replenishing mechanism is provided, the electrolyte can be prevented from being depleted and the life can be extended.

【0155】また、電解液リザーバの吸液力が電池のセ
パレータ及び電極の吸液力と同等もしくはそれ以下で、
かつ導液部の吸液力より大きくなるように形成したの
で、電解液不足時に電解液が補給され、電池効率の低下
が防止できる。
Further, the liquid absorbing power of the electrolytic solution reservoir is equal to or less than the liquid absorbing power of the separator and the electrode of the battery,
In addition, since it is formed so as to be larger than the liquid absorption force of the liquid guiding portion, the electrolyte solution is replenished when the electrolyte solution is insufficient, and the decrease in battery efficiency can be prevented.

【0156】さらに有機溶媒にリチウム塩を溶解させた
電解質を用いるリチウム二次電池において、負極、セパ
レータ及び電解質の少なくともいずれかに炭酸リチウム
を含有させたので、電解液の有機溶媒の分解によるガス
発生を抑制でき、電池内圧の上昇を抑えることができ
る。安全性が向上する。
Furthermore, in a lithium secondary battery using an electrolyte in which a lithium salt is dissolved in an organic solvent, since lithium carbonate is contained in at least one of the negative electrode, the separator and the electrolyte, gas is generated by decomposition of the organic solvent in the electrolytic solution. Can be suppressed, and an increase in battery internal pressure can be suppressed. Safety is improved.

【0157】また、電池を収納する容器内に炭酸ガスを
含ませ、かつ負極、セパレータ及び電解質の少なくとも
いずれかに酸化リチウムを含有させたので、ガス発生速
度を低下させることができ、電池内圧の上昇を抑えられ
る。
Further, since carbon dioxide is contained in the container for accommodating the battery and lithium oxide is contained in at least one of the negative electrode, the separator and the electrolyte, the gas generation rate can be reduced and the internal pressure of the battery can be reduced. The rise can be suppressed.

【0158】そして、リチウム二次電池の製造に際し、
炭酸ガス雰囲気中、または電池部品に炭酸ガスを吹き付
けながら電池容器を密閉する工程を行うようにしたの
で、容器内に炭酸ガスを封入することができ、電解液の
分解を抑止でき、電池内圧の上昇を抑えられる。
Then, in manufacturing the lithium secondary battery,
Since the process of sealing the battery container is performed in a carbon dioxide atmosphere or while blowing carbon dioxide gas to the battery parts, carbon dioxide gas can be sealed in the container, decomposition of the electrolytic solution can be suppressed, and the battery internal pressure can be reduced. The rise can be suppressed.

【0159】また、正極に炭酸塩を添加し、電池組み立
て後、充電もしくは加熱を行うことにより上記炭酸塩を
分解し炭酸ガスを発生させるようにしたので、電池内部
の炭酸ガス濃度を電解液を分解せずに上げることがで
き、電池内圧の上昇を抑えられる。
Further, since carbonate is added to the positive electrode and the battery is assembled and then charged or heated to decompose the carbonate to generate carbon dioxide gas, the concentration of carbon dioxide gas in the battery is adjusted to the electrolytic solution. It can be raised without disassembling, and the rise in battery internal pressure can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係わる電池シートの斜視図
である。
FIG. 1 is a perspective view of a battery sheet according to an embodiment of the present invention.

【図2】本発明の他の実施例に係わる電池シートの斜視
図である。
FIG. 2 is a perspective view of a battery sheet according to another embodiment of the present invention.

【図3】本発明の平板状リチウム二次電池の一実施例を
示す断面図である。
FIG. 3 is a cross-sectional view showing an example of the flat lithium secondary battery of the present invention.

【図4】本発明の柔軟性電極の実施例の効果を表わす電
極の伸び率を示す特性図である。
FIG. 4 is a characteristic diagram showing the elongation rate of an electrode showing the effect of the embodiment of the flexible electrode of the present invention.

【図5】本発明の組電池の一実施例、図5に示す平板状
単電池を積層した組電池を示す模式図である。
FIG. 5 is a schematic view showing an example of an assembled battery of the present invention, which is an assembled battery in which the plate-like unit cells shown in FIG. 5 are stacked.

【図6】本発明の組電池の他の実施例、放熱機構を組み
込んだ組電池を示す模式図である。
FIG. 6 is a schematic view showing another embodiment of the assembled battery of the present invention, which is an assembled battery incorporating a heat dissipation mechanism.

【図7】本発明の組電池のさらに他の実施例を示す部分
拡大模式図である。
FIG. 7 is a partially enlarged schematic view showing still another embodiment of the assembled battery of the present invention.

【図8】本発明に係わる電池内圧開放機構の圧力調節弁
の模式図である。
FIG. 8 is a schematic view of a pressure control valve of a battery internal pressure release mechanism according to the present invention.

【図9】本発明に係わる炭酸ガス濃度による電池内圧の
経時変化を示す特性図である。
FIG. 9 is a characteristic diagram showing changes with time in the internal pressure of the battery depending on the carbon dioxide concentration according to the present invention.

【図10】本発明に係わる電池内圧の経時変化を示す特
性図である。
FIG. 10 is a characteristic diagram showing changes with time in the battery internal pressure according to the present invention.

【図11】比較例における電池組立法の模式図である。FIG. 11 is a schematic view of a battery assembling method in a comparative example.

【図12】従来のコイン型電池を示す半断面側面図であ
る。
FIG. 12 is a half sectional side view showing a conventional coin battery.

【図13】従来のクラッド式鉛電池の構造を示す分解斜
視図である。
FIG. 13 is an exploded perspective view showing the structure of a conventional clad lead-acid battery.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電気絶縁性シール材 5 導電性板材 11 平板状単電池 12 バネ 13 締め付け棒 14 切り放し部分 21 放熱機構 31 集熱板 32 電気絶縁層 41 弁体 42 バネA 43 バネケース 44 留めピン 45 バネB 46 解放口 51 タブ付き集電網 52 正極活物質層 53 集電用銅箔 54 タブ付き集電用銅箔 55 負極活物質層 1 Positive Electrode 2 Negative Electrode 3 Separator 4 Electrical Insulation Sealing Material 5 Conductive Plate Material 11 Flat Single Cell 12 Spring 13 Tightening Rod 14 Cut-Out Part 21 Heat Dissipation Mechanism 31 Heat Collection Plate 32 Electrical Insulation Layer 41 Valve Body 42 Spring A 43 Spring Case 44 Fastening Pin 45 Spring B 46 Opening port 51 Current collecting net with tab 52 Positive electrode active material layer 53 Copper foil for current collection 54 Copper foil for current collecting with tab 55 Negative electrode active material layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 隆 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 (72)発明者 相原 茂 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Takashi Nishimura 8-1-1 Tsukaguchi Honcho, Amagasaki City Mitsubishi Electric Corporation Central Research Institute (72) Inventor Shigeru Aihara 8-1-1 Tsukaguchi Honmachi, Amagasaki Mitsubishi Electric Central Research Institute Co., Ltd.

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 イオン導電性物質を保持する多孔体を挟
んで、電気化学的にイオンを吸蔵、排出する能力を有す
る活物質を含む活物質層からなる電子伝導性の電極が対
向する構造の電気化学素子において、上記活物質層を上
記多孔体表面上にその縁端を除き、その幅より狭くなる
ように形成し、上記活物質層の背面または内部に集電体
を設けたことを特徴とする電気化学素子。
1. A structure in which electron-conductive electrodes composed of an active material layer containing an active material having an ability of electrochemically absorbing and discharging ions are opposed to each other with a porous body holding an ion conductive material sandwiched therebetween. In the electrochemical element, the active material layer is formed on the surface of the porous body so as to be narrower than its width excluding its edges, and a current collector is provided on the back surface or inside of the active material layer. And electrochemical device.
【請求項2】 帯状の多孔体を相対移動させ、上記帯状
の多孔体の一面と他面に電気化学的活物質を含むペース
トを塗ることにより上記多孔体に活物質層を形成するよ
うにしたことを特徴とする電気化学素子の製造方法。
2. An active material layer is formed on the porous body by moving the strip-shaped porous body relative to each other and applying a paste containing an electrochemically active material to one surface and the other surface of the strip-shaped porous body. A method for manufacturing an electrochemical device, comprising:
【請求項3】 帯状の多孔体に予めイオン導電性物質を
保持させた後、上記多孔体にペーストを塗るようにした
ことを特徴とする請求項第2項記載の電気化学素子の製
造方法。
3. The method for manufacturing an electrochemical element according to claim 2, wherein the band-shaped porous body is made to hold an ion conductive substance in advance, and then the paste is applied to the porous body.
【請求項4】 リチウムイオン導電性の電解質を保持す
るセパレータを有し、リチウムイオンを吸蔵、排出する
無機酸化物を正極活物質とし、炭素を負極活物質とする
電池において、上記セパレータの一方の面に正極活物質
を含む正極活物質層を、他方の面に負極活物質を含む負
極活物質層を、上記セパレータ縁端を除いて上記セパレ
ータ幅より狭く形成したことを特徴とするリチウム二次
電池。
4. A battery having a separator that holds a lithium ion conductive electrolyte, wherein an inorganic oxide that occludes and discharges lithium ions is used as a positive electrode active material and carbon is used as a negative electrode active material. A positive electrode active material layer containing a positive electrode active material on the surface, a negative electrode active material layer containing a negative electrode active material on the other surface, a lithium secondary characterized by being formed narrower than the separator width except the separator edge. battery.
【請求項5】 セパレータを介して正極と負極を対向配
置し、これを偶数回折り畳んで電池要素を形成し、この
電池要素の周囲に電気絶縁性のシール材を配設し、かつ
その重畳方向両端部に配設する導電性板材で上記電池要
素を挟んでなることを特徴とする平板状リチウム二次電
池。
5. A positive electrode and a negative electrode are arranged so as to face each other with a separator interposed therebetween, which are folded evenly to form a battery element, and an electrically insulating sealing material is arranged around the battery element, and the stacking direction thereof is provided. A flat plate-shaped lithium secondary battery, characterized in that the battery element is sandwiched between conductive plate materials arranged at both ends.
【請求項6】 電池外周部に放熱機構を設置したことを
特徴とする請求項第5項記載の平板状リチウム二次電
池。
6. The plate-shaped lithium secondary battery according to claim 5, wherein a heat dissipation mechanism is installed on the outer periphery of the battery.
【請求項7】 バインダーと活物質からなる非水電解液
電池用電極で、上記バインダーがフッ素ゴムに結晶性の
フッ素樹脂をグラフト重合させた、下記に示すモノマー
ユニットA,Bにより構成された軟質系フッ素樹脂であ
ることを特徴とする柔軟性電極。 A: −CH2−CF2− B: −CFCl−CF2
7. An electrode for a non-aqueous electrolyte battery comprising a binder and an active material, wherein the binder is composed of monomer units A and B shown below, in which a fluororubber is graft-polymerized with a crystalline fluororesin. A flexible electrode characterized by being a fluorocarbon resin. A: -CH 2 -CF 2 - B : -CFCl-CF 2 -
【請求項8】 軟質系フッ素樹脂からなるバインダーの
活物質に対する割合が 0.1重量%〜20重量%の範囲
で、かつ電極作成に際し、バインダー1重量部に対し5
〜30重量部の塗工溶剤に分散させるようにしたことを
特徴とする請求項第7項記載の柔軟性電極。
8. The ratio of the binder composed of a soft fluororesin to the active material is in the range of 0.1% by weight to 20% by weight, and when the electrode is prepared, 5 parts by weight of the binder are used.
The flexible electrode according to claim 7, wherein the flexible electrode is dispersed in about 30 parts by weight of the coating solvent.
【請求項9】 請求項第5項記載の平板状リチウム二次
電池を積層し、積層方向に面圧をかけ、上記平板状電池
同士を互いに固定し電気的に接続するようにしたことを
特徴とする組電池。
9. The flat-plate lithium secondary battery according to claim 5 is stacked, and a surface pressure is applied in the stacking direction so that the flat-plate batteries are fixed to each other and electrically connected to each other. And assembled battery.
【請求項10】 積層する平板状電池の間にバネを挿入
し、積層方向の面圧が緩むと上記平板状電池同士の電気
的接続がはずれるように構成したことを特徴とする請求
項第9項記載の組電池。
10. A structure in which a spring is inserted between the flat plate batteries to be stacked so that the flat plate batteries can be electrically disconnected from each other when the surface pressure in the stacking direction is loosened. The assembled battery according to the item.
【請求項11】 積層する平板状電池を板バネ状に形成
し、積層方向の面圧が緩むと上記平板状電池同士の電気
的接続がはずれるように構成したことを特徴とする請求
項第9項記載の組電池。
11. The flat plate battery to be stacked is formed in a leaf spring shape, and when the surface pressure in the stacking direction is relaxed, the flat plate batteries are electrically disconnected from each other. The assembled battery according to the item.
【請求項12】 リチウム二次電池を積層してなる組電
池において、上記リチウム二次電池に集熱板を付設する
とともに、組電池外周部に放熱機構を設け、上記集熱板
と放熱機構を電気的に絶縁して接続するようにしたこと
を特徴とする組電池。
12. An assembled battery formed by stacking lithium secondary batteries, wherein a heat collecting plate is attached to the lithium secondary battery, and a heat radiating mechanism is provided on an outer peripheral portion of the assembled battery, and the heat collecting plate and the heat radiating mechanism are provided. An assembled battery characterized by being electrically insulated and connected.
【請求項13】 請求項第5項記載の平板状リチウム二
次電池を積層してなる組電池において、組電池外周部に
配設される電解液を含有する多孔体からなる電解液リザ
ーバ、及びこのリザーバと上記電池のセパレータを接続
する多孔体からなる導液部で構成される電解液補給機構
を設けたことを特徴とする組電池。
13. An assembled battery formed by stacking the flat-plate lithium secondary batteries according to claim 5, wherein an electrolytic solution reservoir made of a porous body containing an electrolytic solution is provided at an outer peripheral portion of the assembled battery, and An assembled battery characterized in that an electrolytic solution replenishing mechanism including a liquid conducting part made of a porous body that connects the reservoir and the separator of the battery is provided.
【請求項14】 電解液補給機構は、電解液リザーバの
吸液力が電池のセパレータ及び電極の吸液力と同等もし
くはそれ以下で、かつ導液部の吸液力より大きくなるよ
うに形成されていることを特徴とする請求項第13項記
載の組電池。
14. The electrolytic solution replenishing mechanism is formed so that the liquid absorbing force of the electrolytic solution reservoir is equal to or less than the liquid absorbing force of the separator and the electrode of the battery, and is larger than the liquid absorbing force of the liquid conducting section. The assembled battery according to claim 13, wherein:
【請求項15】 有機溶媒にリチウム塩を溶解させた電
解質を用いるリチウム二次電池であって、負極、セパレ
ータ及び電解質の少なくともいずれかが炭酸リチウムを
含有することを特徴とするリチウム二次電池。
15. A lithium secondary battery using an electrolyte in which a lithium salt is dissolved in an organic solvent, wherein at least one of a negative electrode, a separator and an electrolyte contains lithium carbonate.
【請求項16】 有機溶媒にリチウム塩を溶解させた電
解質を用いたリチウム二次電池であって、電池を収納す
る容器内に炭酸ガスを含み、かつ負極、セパレータ及び
電解質の少なくともいずれかが酸化リチウムを含有する
ことを特徴とするリチウム二次電池。
16. A lithium secondary battery using an electrolyte in which a lithium salt is dissolved in an organic solvent, wherein a container for housing the battery contains carbon dioxide gas, and at least one of the negative electrode, the separator and the electrolyte is oxidized. A lithium secondary battery containing lithium.
【請求項17】 炭酸ガス雰囲気中、または電池部品に
炭酸ガスを吹き付けながら電池容器を密閉する工程を行
うようにしたことを特徴とするリチウム二次電池の製造
方法。
17. A method of manufacturing a lithium secondary battery, comprising a step of sealing a battery container in a carbon dioxide atmosphere or while blowing carbon dioxide gas to battery parts.
【請求項18】 正極に炭酸塩を添加し、電池組み立て
後、充電もしくは加熱を行うことにより上記炭酸塩を分
解し炭酸ガスを発生させるようにしたことを特徴とする
リチウム二次電池の組立法。
18. A method for assembling a lithium secondary battery, wherein carbonate is added to the positive electrode, and after assembling the battery, charging or heating decomposes the carbonate to generate carbon dioxide gas. .
JP05076840A 1992-09-11 1993-04-02 Electrochemical element, assembled battery, and method of manufacturing electrochemical element Expired - Lifetime JP3116643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05076840A JP3116643B2 (en) 1992-09-11 1993-04-02 Electrochemical element, assembled battery, and method of manufacturing electrochemical element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24334692 1992-09-11
JP4-243346 1992-09-11
JP05076840A JP3116643B2 (en) 1992-09-11 1993-04-02 Electrochemical element, assembled battery, and method of manufacturing electrochemical element

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2000228413A Division JP2001076732A (en) 1992-09-11 2000-07-28 Flexible electrode and electrochemical element using it
JP2000228414A Division JP2001057240A (en) 1992-09-11 2000-07-28 Lithium secondary battery and its manufacture

Publications (2)

Publication Number Publication Date
JPH06140077A true JPH06140077A (en) 1994-05-20
JP3116643B2 JP3116643B2 (en) 2000-12-11

Family

ID=26417957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05076840A Expired - Lifetime JP3116643B2 (en) 1992-09-11 1993-04-02 Electrochemical element, assembled battery, and method of manufacturing electrochemical element

Country Status (1)

Country Link
JP (1) JP3116643B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176323A (en) * 1993-12-21 1995-07-14 Mitsubishi Cable Ind Ltd Electrolytic solution and negative electrode for li secondary battery
JPH08138743A (en) * 1994-11-14 1996-05-31 Matsushita Electric Ind Co Ltd Nonaqeuous electrolyte secondary battery
JPH08138726A (en) * 1994-11-08 1996-05-31 Murata Mfg Co Ltd Layer-built lithium secondary battery
JPH08162164A (en) * 1994-07-28 1996-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery and its manufacture
JPH1021925A (en) * 1996-07-05 1998-01-23 Sumitomo Bakelite Co Ltd Electrode film for nonaqueous electrolyte secondary battery
EP0866511A2 (en) * 1997-01-28 1998-09-23 Mitsubishi Denki Kabushiki Kaisha Litium ion secondary battery and method of fabricating the same
KR20020029487A (en) * 2000-10-13 2002-04-19 김순택 Lithium secondary battery and Eletrode plate assembly thereof
JP2004006408A (en) * 1998-09-17 2004-01-08 Toshiba Corp Nonaqueous electrolyte secondary battery and its manufacturing method
CN100401573C (en) * 2003-02-26 2008-07-09 三洋电机株式会社 Manufacturing method for non-aqueous electrolyte secondary battery and used electrode thereof
US7794873B2 (en) 2005-04-26 2010-09-14 Panasonic Corporation Battery including strip-shaped electrode group folded in a zigzag pattern
JP2010225356A (en) * 2009-03-23 2010-10-07 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and using method for the same
JP2010534397A (en) * 2007-07-25 2010-11-04 エルジー・ケム・リミテッド Electrochemical element and manufacturing method thereof
JP2011154955A (en) * 2010-01-28 2011-08-11 Hitachi Ltd Lithium ion secondary battery
US8173289B2 (en) 2007-11-19 2012-05-08 Mitsubishi Electric Corporation Electrical energy storage cell and electrical energy storage module including the same
JP2012516542A (en) * 2009-01-27 2012-07-19 ジー4 シナジェティクス, インコーポレイテッド Electrode folds for energy storage devices
JP2012528457A (en) * 2009-05-26 2012-11-12 オプトドット コーポレイション Batteries utilizing an anode coated directly on a nanoporous separator
JP2013041741A (en) * 2011-08-15 2013-02-28 Toyota Industries Corp Secondary battery
CN103493253A (en) * 2011-07-20 2014-01-01 株式会社Lg化学 Separator, manufacturing method thereof, and electrochemical device employing same
JP2017147222A (en) * 2016-02-12 2017-08-24 三洋化成工業株式会社 Lithium-ion battery
EP3246984A4 (en) * 2015-01-14 2018-06-06 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
JP2019053819A (en) * 2017-09-12 2019-04-04 株式会社Gsユアサ Power storage element
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
US10505168B2 (en) 2006-02-15 2019-12-10 Optodot Corporation Separators for electrochemical cells
JP2020119731A (en) * 2019-01-23 2020-08-06 トヨタ自動車株式会社 Battery pack
US10833307B2 (en) 2010-07-19 2020-11-10 Optodot Corporation Separators for electrochemical cells
US10879513B2 (en) 2013-04-29 2020-12-29 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
WO2021182406A1 (en) * 2020-03-11 2021-09-16 株式会社Gsユアサ Electricity storage element
EP4187675A3 (en) * 2021-11-30 2023-06-28 Prime Planet Energy & Solutions, Inc. Manufacturing method of secondary battery
EP4187663A3 (en) * 2021-11-30 2023-07-05 Prime Planet Energy & Solutions, Inc. Manufacturing method of secondary battery
US12040506B2 (en) 2015-04-15 2024-07-16 Lg Energy Solution, Ltd. Nanoporous separators for batteries and related manufacturing methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266855A (en) * 1988-08-31 1990-03-06 Matsushita Electric Ind Co Ltd Manufacture of sheet-form positive electrode
JPH02262274A (en) * 1989-03-31 1990-10-25 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266855A (en) * 1988-08-31 1990-03-06 Matsushita Electric Ind Co Ltd Manufacture of sheet-form positive electrode
JPH02262274A (en) * 1989-03-31 1990-10-25 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176323A (en) * 1993-12-21 1995-07-14 Mitsubishi Cable Ind Ltd Electrolytic solution and negative electrode for li secondary battery
JPH08162164A (en) * 1994-07-28 1996-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery and its manufacture
JPH08138726A (en) * 1994-11-08 1996-05-31 Murata Mfg Co Ltd Layer-built lithium secondary battery
JPH08138743A (en) * 1994-11-14 1996-05-31 Matsushita Electric Ind Co Ltd Nonaqeuous electrolyte secondary battery
JPH1021925A (en) * 1996-07-05 1998-01-23 Sumitomo Bakelite Co Ltd Electrode film for nonaqueous electrolyte secondary battery
EP0866511A2 (en) * 1997-01-28 1998-09-23 Mitsubishi Denki Kabushiki Kaisha Litium ion secondary battery and method of fabricating the same
EP0866511A3 (en) * 1997-01-28 2006-06-21 Mitsubishi Denki Kabushiki Kaisha Litium ion secondary battery and method of fabricating the same
JP2004006408A (en) * 1998-09-17 2004-01-08 Toshiba Corp Nonaqueous electrolyte secondary battery and its manufacturing method
KR20020029487A (en) * 2000-10-13 2002-04-19 김순택 Lithium secondary battery and Eletrode plate assembly thereof
CN100401573C (en) * 2003-02-26 2008-07-09 三洋电机株式会社 Manufacturing method for non-aqueous electrolyte secondary battery and used electrode thereof
US7794873B2 (en) 2005-04-26 2010-09-14 Panasonic Corporation Battery including strip-shaped electrode group folded in a zigzag pattern
US12046774B2 (en) 2006-02-15 2024-07-23 Lg Energy Solution, Ltd. Separators for electrochemical cells
US11264676B2 (en) 2006-02-15 2022-03-01 Optodot Corporation Separators for electrochemical cells
US10797288B2 (en) 2006-02-15 2020-10-06 Optodot Corporation Separators for electrochemical cells
US11121432B2 (en) 2006-02-15 2021-09-14 Optodot Corporation Separators for electrochemical cells
US10505168B2 (en) 2006-02-15 2019-12-10 Optodot Corporation Separators for electrochemical cells
US11522252B2 (en) 2006-02-15 2022-12-06 Lg Energy Solution, Ltd. Separators for electrochemical cells
JP2010534397A (en) * 2007-07-25 2010-11-04 エルジー・ケム・リミテッド Electrochemical element and manufacturing method thereof
US8173289B2 (en) 2007-11-19 2012-05-08 Mitsubishi Electric Corporation Electrical energy storage cell and electrical energy storage module including the same
US8329328B2 (en) 2007-11-19 2012-12-11 Mitsubishi Electric Corporation Electrical energy storage cell and electrical energy storage module including the same
JP2012516542A (en) * 2009-01-27 2012-07-19 ジー4 シナジェティクス, インコーポレイテッド Electrode folds for energy storage devices
JP2010225356A (en) * 2009-03-23 2010-10-07 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and using method for the same
JP2015156383A (en) * 2009-05-26 2015-08-27 オプトドット コーポレイション Battery utilizing anode directly coated on nanoporous separator
US10403874B2 (en) 2009-05-26 2019-09-03 Optodot Corporation Methods of producing batteries utilizing anode metal depositions directly on nanoporous separators
US9065120B2 (en) 2009-05-26 2015-06-23 Optodot Corporation Batteries utilizing electrode coatings directly on nanoporous separators
US8962182B2 (en) 2009-05-26 2015-02-24 Optodot Corporation Batteries utilizing anode coatings directly on nanoporous separators
US9660297B2 (en) 2009-05-26 2017-05-23 Optodot Corporation Methods of producing batteries utilizing anode coatings directly on nanoporous separators
US11621459B2 (en) 2009-05-26 2023-04-04 Meta Materials Inc. Batteries utilizing anode coatings directly on nanoporous separators
US11605862B2 (en) 2009-05-26 2023-03-14 Meta Materials Inc. Batteries utilizing anode coatings directly on nanoporous separators
JP2012528457A (en) * 2009-05-26 2012-11-12 オプトドット コーポレイション Batteries utilizing an anode coated directly on a nanoporous separator
US11387523B2 (en) 2009-05-26 2022-07-12 Optodot Corporation Batteries utilizing cathode coatings directly on nanoporous separators
US11335976B2 (en) 2009-05-26 2022-05-17 Optodot Corporation Batteries utilizing anode coatings directly on nanoporous separators
US9118047B2 (en) 2009-05-26 2015-08-25 Optodot Corporation Batteries utilizing cathode coatings directly on nanoporous separators
US11870097B2 (en) 2009-05-26 2024-01-09 Meta Materials Inc. Methods of producing batteries utilizing anode coatings directly on nanoporous separators
US11283137B2 (en) 2009-05-26 2022-03-22 Optodot Corporation Methods of producing batteries utilizing anode coatings directly on nanoporous separators
JP2011154955A (en) * 2010-01-28 2011-08-11 Hitachi Ltd Lithium ion secondary battery
US11728544B2 (en) 2010-07-19 2023-08-15 Lg Energy Solution, Ltd. Separators for electrochemical cells
US10833307B2 (en) 2010-07-19 2020-11-10 Optodot Corporation Separators for electrochemical cells
US9287545B2 (en) 2011-07-20 2016-03-15 Lg Chem, Ltd. Separator, manufacturing method of the same, and electrochemical device having the same
CN103493253A (en) * 2011-07-20 2014-01-01 株式会社Lg化学 Separator, manufacturing method thereof, and electrochemical device employing same
JP2014512650A (en) * 2011-07-20 2014-05-22 エルジー・ケム・リミテッド Separator, method for producing the same, and electrochemical device including the same
JP2013041741A (en) * 2011-08-15 2013-02-28 Toyota Industries Corp Secondary battery
US11387521B2 (en) 2013-04-29 2022-07-12 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
US11217859B2 (en) 2013-04-29 2022-01-04 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
US10879513B2 (en) 2013-04-29 2020-12-29 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
EP3246984A4 (en) * 2015-01-14 2018-06-06 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
US10305146B2 (en) 2015-01-14 2019-05-28 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery and battery pack
US12040506B2 (en) 2015-04-15 2024-07-16 Lg Energy Solution, Ltd. Nanoporous separators for batteries and related manufacturing methods
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
JP2017147222A (en) * 2016-02-12 2017-08-24 三洋化成工業株式会社 Lithium-ion battery
JP2019053819A (en) * 2017-09-12 2019-04-04 株式会社Gsユアサ Power storage element
JP2020119731A (en) * 2019-01-23 2020-08-06 トヨタ自動車株式会社 Battery pack
WO2021182406A1 (en) * 2020-03-11 2021-09-16 株式会社Gsユアサ Electricity storage element
EP4187675A3 (en) * 2021-11-30 2023-06-28 Prime Planet Energy & Solutions, Inc. Manufacturing method of secondary battery
EP4187663A3 (en) * 2021-11-30 2023-07-05 Prime Planet Energy & Solutions, Inc. Manufacturing method of secondary battery

Also Published As

Publication number Publication date
JP3116643B2 (en) 2000-12-11

Similar Documents

Publication Publication Date Title
JP3116643B2 (en) Electrochemical element, assembled battery, and method of manufacturing electrochemical element
KR102126371B1 (en) Electrochemical device and manufacturing method thereof
JP3584583B2 (en) Stacked non-aqueous electrolyte secondary battery
JP4173674B2 (en) Electrochemical device module
KR101229902B1 (en) Porous film for separator, battery separator, battery electrode, and manufacturing methods therefor, and lithium secondary battery
US6617074B1 (en) Lithium ion polymer secondary battery and gelatinous polymer electrolyte for sheet battery
US20050244716A1 (en) Lithium-ion secondary battery and method of charging lithium-ion secondary battery
KR100767196B1 (en) Solid electrolyte cell
WO2005018038A2 (en) Rechargeable bipolar high power electrochemical device with reduced monitoring requirement
US8431265B2 (en) Electric cell
JP2006318892A (en) Square lithium secondary battery
JP4218792B2 (en) Non-aqueous secondary battery
JP5804712B2 (en) Nonaqueous electrolyte secondary battery
JP2003288863A (en) Electrochemical device
JPH11154534A (en) Lithium ion secondary battery element
JP3579227B2 (en) Thin rechargeable battery
JPH09274935A (en) Lithium ion secondary battery
KR100509435B1 (en) Lithium secondary battery and its fabrication
JP2001076732A (en) Flexible electrode and electrochemical element using it
JP2001167752A (en) Non-aqueous electrolyte secondary battery
JP2002313348A (en) Secondary battery
JP2001057240A (en) Lithium secondary battery and its manufacture
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JP4609353B2 (en) Charging system
JP3795894B2 (en) Power supply, charging device and charging system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071006

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 13