JPH06103840A - Manufacture of transparent conductive substrate - Google Patents

Manufacture of transparent conductive substrate

Info

Publication number
JPH06103840A
JPH06103840A JP4251516A JP25151692A JPH06103840A JP H06103840 A JPH06103840 A JP H06103840A JP 4251516 A JP4251516 A JP 4251516A JP 25151692 A JP25151692 A JP 25151692A JP H06103840 A JPH06103840 A JP H06103840A
Authority
JP
Japan
Prior art keywords
transparent conductive
substrate
film
producing
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4251516A
Other languages
Japanese (ja)
Other versions
JP3103682B2 (en
Inventor
Masaya Yukinobu
雅也 行延
Yasuo Chikui
泰夫 筑井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Tohoku Chemical Industries Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Tohoku Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Tohoku Chemical Industries Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP04251516A priority Critical patent/JP3103682B2/en
Priority to US08/021,338 priority patent/US5411792A/en
Priority to KR1019930002828A priority patent/KR950014928B1/en
Priority to US08/184,695 priority patent/US5421926A/en
Publication of JPH06103840A publication Critical patent/JPH06103840A/en
Application granted granted Critical
Publication of JP3103682B2 publication Critical patent/JP3103682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To provide a manufacturing method of a transparent conductive substrate with low surface resistance and excellent optical properties. CONSTITUTION:A transparent conductive substrate consisting of a visible light transmissive substrate material, a transparent overcoat layer formed on the substrate material, and a transparent conductive film formed on the overcoat layer and containing conductive superfine particles is prepared by printing or applying a transparent conductive ink to a substrate, drying and then firing the ink to form the transparent conductive film, and after that forming the overcoat layer, sticking the resulting body to a substrate material with an adhesive, etc., and removing the substrate by dissolving or swelling the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、タッチパネル、液晶装
置又はエレクトロルミネセンス表示素子等における透明
電極等として用いられる透明導電性基板の製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a transparent conductive substrate used as a transparent electrode or the like in a touch panel, a liquid crystal device, an electroluminescent display element or the like.

【0002】[0002]

【従来の技術】一般に透明導電膜は、インジウム−スズ
酸化物(ITO)やスズ−アンチモン酸化物(ATO)
等の酸化物をスパッター法やCVD法によりガラス又は
プラスチックフィルム上に成膜して得られるが、これら
の方法は高価な装置を必要とし、生産性が低いため安価
に得ることは困難であり、また、大面積の膜を得るのに
適していない。
2. Description of the Related Art Generally, a transparent conductive film is made of indium-tin oxide (ITO) or tin-antimony oxide (ATO).
It can be obtained by forming an oxide such as a film on a glass or a plastic film by a sputtering method or a CVD method, but these methods require an expensive device and are difficult to obtain at low cost because of low productivity, Also, it is not suitable for obtaining a large-area film.

【0003】そこで、従来これらの問題を解決するため
に、導電性の超微粉を含む透明導電インキを基材に印刷
し硬化させて、透明導電回路を形成する方法が用いられ
て来た。
In order to solve these problems, therefore, there has been used a method of forming a transparent conductive circuit by printing a transparent conductive ink containing conductive ultrafine powder on a substrate and curing it.

【0004】[0004]

【発明が解決しようとする課題】ところで、この透明導
電インキは、導電性超微粉をフィラーとし、熱可塑性樹
脂、熱硬化性樹脂又は紫外線硬化性樹脂等の樹脂をバイ
ンダーとし、その他に溶剤及び少量の分散剤等の添加剤
を含んでいる。そして、この透明導電インキをガラスや
プラスチックフィルム上に印刷した後、硬化(乾燥硬
化、熱硬化、紫外線硬化)させると、フィラーとしての
導電性超微粉がバインダーとしての樹脂により相互に接
触した状態で固定されて、導電性塗膜となる。したがっ
て、バインダーとして用いられる樹脂の量が多過ぎる
と、フィラー粒子間に樹脂が介在して粒子同志の接触を
妨害するため、塗膜の表面抵抗が増大する。一方、樹脂
の量が少ないと、フィラー粒子の接触は良好で塗膜の表
面抵抗は低下するが、粒子間に空隙が生じ、この空隙が
光の散乱因子となって塗膜の光学特性である光の透過率
が低下し、塗膜のヘーズ値(くもりの度合)が増加する
と同時に膜強度や密着力が低下する。したがって、バイ
ンダーとして用いる樹脂量には最適値が存在するが、例
えば、抵抗を重視すれば塗膜のヘーズ値が増大して光学
的には不十分な膜となり、従来の印刷法では、塗膜の表
面抵抗と光学特性の双方を共に満足させることは不可能
であった。
By the way, this transparent conductive ink uses conductive ultrafine powder as a filler, a resin such as a thermoplastic resin, a thermosetting resin or an ultraviolet curable resin as a binder, and a solvent and a small amount. It contains additives such as a dispersant. Then, after printing this transparent conductive ink on a glass or plastic film and curing (dry curing, heat curing, ultraviolet curing), conductive ultrafine powder as a filler is in contact with each other by a resin as a binder. It is fixed and becomes a conductive coating film. Therefore, when the amount of the resin used as the binder is too large, the resin intervenes between the filler particles and interferes with the contact between the particles, so that the surface resistance of the coating film increases. On the other hand, when the amount of the resin is small, the contact of the filler particles is good and the surface resistance of the coating film is lowered, but voids are generated between the particles, and the voids act as a light scattering factor and are optical properties of the coating film. The light transmittance decreases, the haze value (degree of clouding) of the coating film increases, and at the same time, the film strength and the adhesive force decrease. Therefore, although there is an optimum value for the amount of resin used as the binder, for example, if importance is attached to the resistance, the haze value of the coating film increases, resulting in an optically inadequate film. It was impossible to satisfy both the surface resistance and the optical characteristics of the.

【0005】また、ITO超微粒子を含むインキをガラ
ス等の基板に塗布した後、500℃以上の高温で焼成す
ることにより透明導電膜を形成する方法も知られてい
る。しかし、この方法では、高温でITO超微粒子同志
が緩やかに焼結するために、常温で行う上記印刷法に比
べて膜の表面抵抗は著しく低下するが、基板部材として
ポリエステル等のプラスチックフィルムを用いることは
できず、また、ITO超微粒子間に空隙が残るため、透
明導電膜の光学特性については印刷法と同様に問題があ
った。
A method is also known in which an ink containing ultrafine ITO particles is applied to a substrate such as glass and then baked at a high temperature of 500 ° C. or higher to form a transparent conductive film. However, in this method, since the ITO ultrafine particles are gently sintered at a high temperature, the surface resistance of the film is significantly reduced as compared with the above printing method performed at room temperature, but a plastic film such as polyester is used as the substrate member. In addition, since voids remain between the ITO ultrafine particles, there is a problem in the optical characteristics of the transparent conductive film as in the printing method.

【0006】本発明は、従来の技術の有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、表面抵抗が低く、かつ、光学特性の優れた透明
導電性基板の製造方法を提供しようとするものである。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a transparent conductive substrate having a low surface resistance and excellent optical characteristics. It is intended to provide a manufacturing method.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、この透明導電性基板は、基材上に透明導電インキを
印刷又は塗布して乾燥した後、焼成することにより硬化
させて透明導電膜を形成せしめ、次にこの透明導電膜上
にオーバーコート液を塗布することによりオーバーコー
ト層を形成せしめた後、上記オーバーコート液又は接着
剤により上記オーバーコート層を可視光線を透過する基
板部材に対面させた状態で上記基材とこの基板部材とを
はり合わせ、次に上記オーバーコート層及び/又は上記
接着剤を硬化せしめ、硬化後、上記基材又はその一部を
溶解又は膨潤により除去して、基板部材上に透明導電膜
を形成して製作される。
In order to achieve the above object, the transparent conductive substrate is formed by printing or applying a transparent conductive ink on a base material, drying the transparent conductive ink, and then baking the transparent conductive ink to cure the transparent conductive film. And then forming an overcoat layer by applying an overcoat solution on this transparent conductive film, and then forming the overcoat layer with the above overcoat solution or adhesive into a substrate member that transmits visible light. The base material and the substrate member are bonded together in a state of facing each other, then the overcoat layer and / or the adhesive is cured, and after curing, the base material or a part thereof is removed by dissolution or swelling. Then, a transparent conductive film is formed on the substrate member to be manufactured.

【0008】本発明によれば、基材としては、ポリイミ
ドフィルム又はガラス、金属等の耐熱基板上にポリイミ
ドを塗布形成したものが用いられ、基板部材としては、
ポリエステル又はポリエーテルサルフォン等のプラスチ
ックフィルム、ガラス等が用いられる。透明導電インキ
としては、インジウム−スズ酸化物又はスズ−アンチモ
ン酸化物等の酸化物系の超微粉を溶剤に分散させるか、
あるいはこれに熱可塑性樹脂を加えて分散させたものが
用いられ、オーバーコート液又は接着剤としては、紫外
線硬化性樹脂又は熱硬化性樹脂を用いることができ、焼
成はインキのバインダーに樹脂を用いた場合、まず大気
中400℃で次に不活性ガス中400℃〜600℃で行
われる。また、インキのバインダーに樹脂を用いず単に
溶剤を用いる場合は、大気中の焼成は必要なく、直接不
活性ガス中で焼成できる。
According to the present invention, as the base material, a polyimide film or a heat resistant substrate such as glass or metal coated with polyimide is used. As the substrate member,
A plastic film such as polyester or polyether sulfone, glass or the like is used. The transparent conductive ink, indium-tin oxide or tin-disperse oxide-based ultrafine powder such as antimony oxide in a solvent,
Alternatively, a thermoplastic resin is added to and dispersed in this, and an ultraviolet curable resin or a thermosetting resin can be used as the overcoat liquid or adhesive, and the resin is used as a binder of the ink for firing. If so, first, it is performed at 400 ° C. in the atmosphere and then at 400 ° C. to 600 ° C. in an inert gas. Further, when a solvent is simply used as a binder of the ink without using a resin, baking in the air is not necessary and baking can be performed directly in an inert gas.

【0009】[0009]

【作用】基材の面の平滑度は、本発明によって得られる
透明導電膜の表面の平滑度となる。したがって、基材に
は平滑な面を有するものが好ましい。従来の印刷法で
は、印刷は2μm〜5μmの膜厚をもって行われるた
め、印刷部分と基材との間には2μm〜5μmの凹凸が
生じるが、本発明方法では、平滑な基材を用いること
で、凹凸を0.2μm以下に抑えることができる。基材
の形状は、平面でも曲面でもよく、例えばフィルム状、
板状、ロール状等のものを用いることができる。
The smoothness of the surface of the base material is the smoothness of the surface of the transparent conductive film obtained by the present invention. Therefore, it is preferable that the base material has a smooth surface. In the conventional printing method, since printing is performed with a film thickness of 2 μm to 5 μm, unevenness of 2 μm to 5 μm occurs between the printed portion and the base material, but in the method of the present invention, a smooth base material is used. Thus, the unevenness can be suppressed to 0.2 μm or less. The shape of the substrate may be a flat surface or a curved surface, for example, a film shape,
A plate shape, a roll shape, or the like can be used.

【0010】基材上への透明導電インキの印刷には、ス
クリーン印刷法、グラビア印刷法等が用いられ、基材上
への透明導電インキの塗布には、ワイヤーバーコーティ
ング法、ドクターブレードコーティング法、ロールコー
ティング法等が用いられる。
A screen printing method, a gravure printing method or the like is used for printing the transparent conductive ink on the substrate, and a wire bar coating method or a doctor blade coating method is used for coating the transparent conductive ink on the substrate. A roll coating method or the like is used.

【0011】透明導電インキは、フィラーとしての粒径
0.1μm以下のITO,ATO等の導電性超微粉と、
バインダーとしての熱可塑性樹脂と、溶剤と、分散剤等
の添加剤とから成り、印刷又は塗布後は乾燥により硬化
される。バインダー用樹脂は、インキの粘度調節のため
加えるので、塗布法によっては入れなくともよい。透明
導電インキでは、表面抵抗を小さくするためにフィラー
を多量に入れる。このため、印刷又は塗布により形成さ
れた導電膜は、ポーラスになる傾向があり、導電膜中の
空隙が光の散乱因子となって、導電膜の光学特性に悪影
響を及ぼす。
The transparent conductive ink is a conductive ultrafine powder such as ITO or ATO having a particle diameter of 0.1 μm or less as a filler,
It is composed of a thermoplastic resin as a binder, a solvent, and an additive such as a dispersant, and is cured by drying after printing or coating. Since the binder resin is added to adjust the viscosity of the ink, it may be omitted depending on the coating method. In transparent conductive ink, a large amount of filler is added to reduce the surface resistance. Therefore, the conductive film formed by printing or coating tends to be porous, and the voids in the conductive film act as a light scattering factor, which adversely affects the optical characteristics of the conductive film.

【0012】例えば、フィラーとしてITO超微粉を用
いる場合は、ITO超微粉を溶剤、又はインキの粘度調
節のためにアクリル等の樹脂を溶解した溶剤に分散させ
て、透明導電インキとする。基材上にこの導電インキを
印刷又は塗布し乾燥した後、大気中で約400℃に加熱
して、インキ中の樹脂及び少量残留している溶剤を酸化
燃焼させる。更に、これを不活性ガス雰囲気下400℃
〜600℃で加熱し、ITO微粒子間の焼結を進めると
同時にITOに酸素欠損を導入して、膜の低抵抗化を行
う。透明導電膜の膜特性は膜の厚さにより決まるが、例
えば、400℃の焼成では約1μm膜厚で約100Ω/
□程度の抵抗値の膜が得られる。このようにして、例え
ば、ポリイミドフィルム上に低抵抗のITO透明導電膜
を形成することができるが、形成されたITO膜も粒子
間に空隙が存在して光を散乱させるため、膜の光学特性
にも問題があり、このままでは透明導電膜として用いる
ことはできない。
For example, when ITO ultrafine powder is used as a filler, the ITO ultrafine powder is dispersed in a solvent or a solvent in which a resin such as acryl is dissolved to adjust the viscosity of the ink to obtain a transparent conductive ink. After printing or coating this conductive ink on a substrate and drying it, the conductive ink is heated to about 400 ° C. in the atmosphere to oxidize and burn the resin and a small amount of solvent remaining in the ink. Furthermore, this is 400 ° C in an inert gas atmosphere.
The film is heated at ˜600 ° C. to promote sintering between the ITO fine particles and simultaneously introduce oxygen vacancies into the ITO to lower the resistance of the film. The film characteristics of the transparent conductive film are determined by the film thickness. For example, when firing at 400 ° C., a film thickness of about 1 μm is about 100 Ω /
A film with a resistance value of about □ can be obtained. In this way, for example, a low-resistance ITO transparent conductive film can be formed on a polyimide film. However, the formed ITO film also has voids between particles to scatter light, so that the optical characteristics of the film However, it cannot be used as it is as a transparent conductive film.

【0013】そこで、基材上に透明導電インキを印刷又
は塗布した後、その上から樹脂と溶剤から成るオーバー
コート液でオーバーコートすると、膜中の空隙はオーバ
ーコート液中の樹脂で埋められて光の散乱が防止され、
膜の光学特性が著しく改善される。例えば、このオーバ
ーコートにより光の透過率は、78%〜81%のものが
80%〜83%程度まで増加し、ヘーズ値は、10%〜
12%のものが3%〜5%程度まで低下する。オーバー
コート液には熱硬化性樹脂又は紫外線硬化樹脂を用いる
が、膜によく浸透して膜中の空隙を埋めるように、樹脂
に溶剤を混ぜてオーバーコート液の粘度を低下させるこ
とが好ましい。
Then, after printing or applying the transparent conductive ink on the substrate, and then overcoating it with an overcoat liquid comprising a resin and a solvent, the voids in the film are filled with the resin in the overcoat liquid. Light scattering is prevented,
The optical properties of the film are significantly improved. For example, with this overcoat, the light transmittance of 78% to 81% is increased to about 80% to 83%, and the haze value is 10% to
12% decreases to about 3% to 5%. Although a thermosetting resin or an ultraviolet curable resin is used as the overcoat liquid, it is preferable to mix the solvent with the resin to reduce the viscosity of the overcoat liquid so that the resin can be well penetrated into the film to fill the voids in the film.

【0014】このように、オーバーコートにより透明導
電膜の光学特性は著しく改善されるが、逆にその表面抵
抗は犠牲になるため、次に述べる方法によりその問題を
解決した。すなわち、基材上にインキを印刷又は塗布し
て乾燥した後、焼成して透明導電膜を形成し、更に、オ
ーバーコートされた透明導電膜をオーバーコート液及び
/又は接着剤で基板部材とはり合わせた後、オーバーコ
ート層、接着剤層を硬化させる。接着剤には熱硬化性樹
脂又は紫外線硬化性樹脂を用い、基板部材は可視光線を
透過するポリエステル(PET)、ポリエーテルサルフ
ォン(PES)等のプラスチックやガラス等を用いる。
As described above, the optical characteristics of the transparent conductive film are remarkably improved by the overcoat, but on the contrary, the surface resistance is sacrificed. Therefore, the problem is solved by the method described below. That is, after printing or applying ink on a substrate and drying, the transparent conductive film is formed by baking, and the overcoated transparent conductive film is applied to a substrate member with an overcoat liquid and / or an adhesive. After the matching, the overcoat layer and the adhesive layer are cured. A thermosetting resin or an ultraviolet curable resin is used for the adhesive, and a plastic such as polyester (PET) or polyether sulfone (PES) which transmits visible light or glass is used for the substrate member.

【0015】基材と基板部材とのはり合わせは、基材の
オーバーコート層上又は基板部材上に接着剤又はオーバ
ーコート液を塗布した後、スチールロール又はゴムロー
ル等で1〜3kgf /cm程度の線圧力を掛けながら行う。
基材と基板部材をはり合わせた後の接着剤層及びオーバ
ーコート層の硬化は、熱硬化性樹脂を用いた場合は加熱
により行うが、紫外線硬化樹脂を用いた場合には、基材
又は基板部材側から紫外線照射を行うため、基材又は基
板部材のいずれか一方は、紫外線を透過する材質のもの
でなければならない。以上は、オーバーコート層と接着
剤を一緒に硬化させる場合であるが、これらを別々に硬
化させることもできるのは、いうまでもない。即ち、オ
ーバーコート層を硬化させた後、接着剤を用いてはり合
わせ、その接着剤を硬化させる方法である。
The substrate and the substrate member are bonded together by applying an adhesive or an overcoat liquid on the overcoat layer of the substrate or the substrate member, and then applying a steel roll or a rubber roll or the like at about 1 to 3 kgf / cm. Perform while applying linear pressure.
The curing of the adhesive layer and the overcoat layer after bonding the base material and the substrate member is performed by heating when a thermosetting resin is used, but when an ultraviolet curable resin is used, the base material or the substrate is used. Since UV irradiation is performed from the member side, either the base material or the substrate member must be made of a material that transmits UV light. The above is the case where the overcoat layer and the adhesive are cured together, but it goes without saying that they can be cured separately. That is, this is a method in which the overcoat layer is cured and then bonded using an adhesive to cure the adhesive.

【0016】このようにして、基材と基板部材をはり合
わせ硬化させた後、基材のポリイミドを溶解又は膨潤に
より除去して、基板部材上に透明導電膜を形成する。基
材がガラス、金属板上にポリイミドを塗布形成したもの
の場合は、基材と基板部材をはり合わせ、硬化させた
後、ガラス、金属板とポリイミドの界面からはく離した
後、ポリイミド層を溶解除去することで、基板部材上に
透明導電膜を形成する。ポリイミドの溶解は、ヒドラジ
ン、ヒドラジン水化物又はそれらとジアミンの混合物を
用いることができる。これらの液を室温〜50℃程度に
加温して、数分間浸せきすることで、ポリイミド層を溶
解又は膨潤により除去した後、純水で洗浄してから乾燥
する。
In this way, after the base material and the substrate member are bonded and cured, the polyimide of the base material is removed by dissolution or swelling to form a transparent conductive film on the substrate member. When the base material is glass or a metal plate coated with polyimide, the base material and the substrate member are laminated and cured, and then peeled from the glass / metal plate / polyimide interface, and then the polyimide layer is dissolved and removed. By doing so, a transparent conductive film is formed on the substrate member. To dissolve the polyimide, hydrazine, hydrazine hydrate, or a mixture of them and a diamine can be used. These liquids are heated to room temperature to about 50 ° C. and immersed for several minutes to dissolve or swell the polyimide layer, and then washed with pure water and dried.

【0017】透明導電膜の基板部材への密着力を向上さ
せるために、基板部材がプラスチックの場合にはコロナ
放電処理、プライマー処理、短波長紫外線照射処理等を
行い、基板部材とオーバーコート層との密着力向上処理
を行うことが望ましい。基板部材としてガラスを用いる
場合も、同様にシリコンカップリング処理等の密着力向
上処理を行うことが好ましい。基板部材とオーバーコー
ト層との密着力向上処理を行う代りに、基板部材とオー
バーコート層が強力に接着するような接着剤を用いるこ
ともできる。例えば、基板部材としてガラスを用い、接
着剤に紫外線硬化性樹脂を用いる場合、接着剤にシリコ
ーン系のモノマーを少量添加することにより、ガラスと
の密着力を向上させることができる。
In order to improve the adhesion of the transparent conductive film to the substrate member, when the substrate member is plastic, corona discharge treatment, primer treatment, short wavelength ultraviolet ray irradiation treatment, etc. are performed to form the substrate member and the overcoat layer. It is desirable to carry out the adhesion improving treatment. Even when glass is used as the substrate member, it is preferable to similarly perform adhesion improving treatment such as silicon coupling treatment. Instead of performing the treatment for improving the adhesion between the substrate member and the overcoat layer, an adhesive that strongly bonds the substrate member and the overcoat layer can be used. For example, when glass is used as the substrate member and an ultraviolet curable resin is used as the adhesive, the adhesion to the glass can be improved by adding a small amount of a silicone-based monomer to the adhesive.

【0018】基板部材に形成された透明導電膜は、オー
バーコートによりその光学特性が著しく改善され、ま
た、はり合わせ後の基材の溶解又は膨潤による除去の結
果、導電性超微子の導電面が表面に現れるため、膜の表
面抵抗も低くできる。こうして、光学特性と抵抗特性の
双方を満足する透明導電膜が得られる。
The transparent conductive film formed on the substrate member has its optical characteristics remarkably improved by the overcoating, and as a result of the removal by dissolution or swelling of the base material after laminating, the conductive surface of the conductive ultrafine particles is obtained. Appear on the surface, the surface resistance of the film can be reduced. Thus, a transparent conductive film satisfying both optical characteristics and resistance characteristics can be obtained.

【0019】[0019]

【実施例】実施例1 フィラーとして粒径0.03μmのITO超微粉、バイ
ンダーとして熱可塑性樹脂を用いた透明導電インキ(東
北化工(株)製X−101)を、スクリーン印刷法で基
材としてのポリイミドフィルム(東レ−デュポン(株)
製カプトンKA−300,厚さ75μm)上に厚さ3μ
mとなるように印刷し、乾燥した後、大気中400℃で
30分間、窒素ガス中400℃で25分間焼成した。次
に、この透明導電膜上を紫外線硬化性樹脂を用いたオー
バーコート液(表1参照)で線径0.3mmのワイヤーバ
ーによりオーバーコートし、室温で5分間、50℃で1
0分間それぞれ乾燥した。こうして透明導電膜とオーバ
ーコート層の形成された基材を、基板部材としての別の
PETフィルム(プライマー処理品、帝人(株)製テト
ロンHP−7,厚さ100μm)とはり合わせた。
Example 1 A transparent conductive ink (X-101 manufactured by Tohoku Kako Co., Ltd.) using ITO ultrafine powder having a particle size of 0.03 μm as a filler and a thermoplastic resin as a binder was used as a substrate by a screen printing method. Polyimide film (Toray-Dupont Co., Ltd.)
Made Kapton KA-300, thickness 75μm) and thickness 3μ
After printing so as to have a thickness of m, drying, and baking in air at 400 ° C. for 30 minutes and in nitrogen gas at 400 ° C. for 25 minutes. Next, this transparent conductive film was overcoated with an overcoat liquid (see Table 1) using an ultraviolet curable resin with a wire bar having a wire diameter of 0.3 mm, and it was left at room temperature for 5 minutes at 50 ° C
Each was dried for 0 minutes. In this way, the transparent conductive film and the base material on which the overcoat layer was formed were laminated with another PET film (primer-treated product, Tetron HP-7 manufactured by Teijin Ltd., thickness 100 μm) as a substrate member.

【0020】はり合わせは、基板部材をオーバーコート
層が面接するように基材と重ね、スチールロールで2kg
f /cmの線圧力を掛けながら行った。はり合わされた基
材と基板部材を、基板部材側からメタルハライドランプ
で紫外線硬化を行った。硬化条件は、硬化時間10秒
間、紫外線照度150mw/cm2 であった。硬化後、約4
0℃に加温されたヒドラジン水化物に10分間浸せきし
て、基材のポリイミドを溶解した後、純水で洗浄してか
ら乾燥し、透明導電膜とオーバーコート層を基板部材上
に形成した。紫外線照射装置としては、アイグラフイッ
ク(株)製のメタルハライドランプM01−L212,
照射器(ロールドミラー型)UE011−201C,電
源装置UB01.51−3A/BM−E2及び熱線カッ
トフィルターを用いた。
The laminating is carried out by stacking the substrate member with the base material so that the overcoat layer is in face-to-face contact, and using a steel roll for 2 kg.
It was performed while applying a linear pressure of f / cm. The bonded base material and substrate member were UV-cured from the substrate member side with a metal halide lamp. The curing conditions were a curing time of 10 seconds and an ultraviolet illuminance of 150 mw / cm 2 . About 4 after curing
After immersing in hydrazine hydrate heated to 0 ° C. for 10 minutes to dissolve the polyimide of the base material, washing with pure water and drying, a transparent conductive film and an overcoat layer were formed on the substrate member. . As an ultraviolet irradiation device, a metal halide lamp M01-L212 manufactured by Eye Graphic Co., Ltd.,
An irradiator (rolled mirror type) UE011-201C, a power supply device UB01.51-3A / BM-E2, and a heat ray cut filter were used.

【0021】得られた透明導電基板の光線透過率、ヘー
ズ値及び表面抵抗をそれぞれ測定した。その結果は表2
に示されている。また、上記透明導電基板の表面粗さを
測定したところ、表面の凹凸は0.2μm以下であっ
た。なお、これらの測定を行うに際して、透明導電基板
及び透明導電膜の光線透過率及びヘーズ値は、基材ある
いは基板部材であるPETフィルムと一緒にスガ試験機
械(株)製の直読ヘーズコンピュータHGM−ZDPに
より、表面抵抗は、三菱油化(株)製のロ−レスタMC
P−T400により、それぞれ測定した。このほか、透
明導電性基板及び透明導電膜の表面粗さは、東京精密
(株)製の表面粗さ測定機サーフコム900Aを用いて
測定した。なお、本実施例と比較例として用いた従来の
透明導電性基板の構成を図1(a),(b)に示した。
The light transmittance, haze value and surface resistance of the obtained transparent conductive substrate were measured. The results are shown in Table 2.
Is shown in. Moreover, when the surface roughness of the transparent conductive substrate was measured, the unevenness on the surface was 0.2 μm or less. In performing these measurements, the light transmittance and the haze value of the transparent conductive substrate and the transparent conductive film were measured by the direct reading haze computer HGM- manufactured by Suga Test Machine Co., Ltd. together with the PET film as the base material or the substrate member. With ZDP, the surface resistance is Loresta MC manufactured by Mitsubishi Petrochemical Co., Ltd.
Each was measured by P-T400. In addition, the surface roughness of the transparent conductive substrate and the transparent conductive film was measured using a surface roughness measuring device Surfcom 900A manufactured by Tokyo Seimitsu Co., Ltd. The structures of the conventional transparent conductive substrates used in this example and the comparative example are shown in FIGS. 1 (a) and 1 (b).

【0022】実施例2 粒径0.03μmのITO超微粉を有機溶剤に分散させ
た透明導電インキ(東北化工(株)製DX−101)
を、線径0.1mmのワイヤーバーで基材に塗布した以
外は、実施例1と同様の方法で透明導電基板を製造し
た。また、光透過率、ヘーズ値、表面抵抗の測定は、実
施例1の場合と同じ測定装置を用いて行い、その結果は
表2に示すとおりであった。
Example 2 Transparent conductive ink in which ultrafine ITO powder having a particle size of 0.03 μm is dispersed in an organic solvent (DX-101 manufactured by Tohoku Kako Co., Ltd.)
A transparent conductive substrate was manufactured by the same method as in Example 1 except that was coated on a substrate with a wire bar having a wire diameter of 0.1 mm. The light transmittance, haze value, and surface resistance were measured using the same measuring device as in Example 1, and the results are shown in Table 2.

【0023】実施例3 透明導電インキの焼成を、窒素ガス中で500℃,15
分間行った以外は、実施例2と同様の方法で行った。ま
た、光透過率、ヘーズ値、表面抵抗の測定は、実施例1
の場合と同じ測定装置を用いて行い、その結果は表2に
示すとおりであった。
Example 3 The transparent conductive ink was fired in nitrogen gas at 500 ° C. for 15 hours.
The same procedure as in Example 2 was carried out except that the procedure was carried out for 1 minute. The light transmittance, haze value, and surface resistance were measured in Example 1.
The measurement results were as shown in Table 2.

【0024】実施例4 実施例1の方法において、透明導電膜が印刷、乾燥後、
焼成され、次いでオーバーコート液が塗布された基材を
乾燥した後、メタルハライドランプで大気中において照
度150mw/cm2 をもって10秒間紫外線照射すること
により、オーバーコート層を硬化させた。硬化後、基板
部材としてガラス板(旭硝子(株)製ソーダライムA
S,厚さ1mm)を用い、基材と基板部材とを熱硬化性
の接着剤(表1参照)ではり合わせた。このはり合わせ
は、接着剤を基板部材上にドクターブレードコーティン
グ法によりウエット膜厚で50μmとなるように塗布
し、オーバーコート層が基板部材に面接するように基材
を基板部材と重ね、線圧力2kgf /cmではり合わせた。
はり合わされた基材と基板部材を120℃,3時間で熱
硬化させた後、実施例1と同様の方法で基材のポリイミ
ドを溶解除去して透明導電性基板を製造した。また、光
透過率、ヘーズ値、表面抵抗の測定は、実施例1の場合
と同じ測定装置を用いて行い、その結果は表2に示すと
おりであった。
Example 4 In the method of Example 1, after the transparent conductive film was printed and dried,
After baking and then drying the base material coated with the overcoat liquid, the overcoat layer was cured by irradiating with ultraviolet rays for 10 seconds in the atmosphere with a metal halide lamp at an illuminance of 150 mw / cm 2 . After curing, a glass plate (soda lime A manufactured by Asahi Glass Co., Ltd.) was used as a substrate member.
S, thickness 1 mm), and the base material and the substrate member were bonded together with a thermosetting adhesive (see Table 1). In this bonding, an adhesive is applied on the substrate member by a doctor blade coating method so that the wet film thickness is 50 μm, and the base material is superposed on the substrate member so that the overcoat layer is in surface contact with the substrate member. Laminated at 2 kgf / cm.
After heat-curing the bonded base material and substrate member at 120 ° C. for 3 hours, the polyimide of the base material was dissolved and removed in the same manner as in Example 1 to manufacture a transparent conductive substrate. The light transmittance, haze value, and surface resistance were measured using the same measuring device as in Example 1, and the results are shown in Table 2.

【0025】実施例5 基材として、ガラス板(旭硝子(株)製ソーダライムA
S,厚さ1mm)上にポリイミドワニス(宇部興産
(株)製リソコートPI)を線経度0.1mmのワイヤ
ーバーで塗布後、200℃で乾燥したものを用いた。こ
の基材上に、実施例3と同様の方法で透明導電膜を形成
後、基材と基板部材をはり合わせ、次にオーバーコート
層を硬化させた。硬化後、基材のガラスとポリイミド層
の間の密着力は弱いため、その界面ではく離させてか
ら、ヒドラジン水化物とエチレンジアミンの1対1の混
合液に液温40℃で5分間浸せきし、膨潤させてから布
で軽くこすると、ポリイミド層は完全にはく離した。そ
の後、純水で洗浄してから乾燥し透明導電性基板を製造
した。光透過率、ヘーズ値、表面抵抗の測定は、実施例
1の場合と同じ測定装置を用いて行い、その結果は表2
に示すとおりであった。
Example 5 As a base material, a glass plate (soda lime A manufactured by Asahi Glass Co., Ltd.)
A polyimide varnish (litho coat PI manufactured by Ube Industries, Ltd.) was applied onto S (thickness: 1 mm) with a wire bar having a line length of 0.1 mm and dried at 200 ° C. After forming a transparent conductive film on this base material by the same method as in Example 3, the base material and the substrate member were bonded together, and then the overcoat layer was cured. After curing, the adhesion between the glass of the substrate and the polyimide layer is weak, so after peeling at the interface, soak in a 1: 1 mixture of hydrazine hydrate and ethylenediamine at a liquid temperature of 40 ° C. for 5 minutes, When swollen and then lightly rubbed with a cloth, the polyimide layer was completely peeled off. Then, it was washed with pure water and dried to manufacture a transparent conductive substrate. The light transmittance, haze value and surface resistance were measured using the same measuring device as in Example 1, and the results are shown in Table 2.
It was as shown in.

【0026】比較例 フィラーとしてITO超微粉、バインダーとして熱可塑
性樹脂を用いた透明導電インキ(東北化工(株)製X−
101)をスクリーン印刷法で、基板部材としてのガラ
ス板(旭硝子(株)製ソーダライムAS,厚さ1mm)
に厚さ3μmとなるように印刷し乾燥後、大気中で40
0℃,30分、次に窒素中で400℃,25分間焼成し
て、透明導電膜を形成した。また、光透過率、ヘーズ
値、表面抵抗の測定は、実施例1の場合と同じ測定装置
を用いて行い、その結果は表2に示した。
Comparative Example A transparent conductive ink using ITO ultrafine powder as a filler and a thermoplastic resin as a binder (X-manufactured by Tohoku Kako Co., Ltd.)
101) by a screen printing method using a glass plate (soda lime AS manufactured by Asahi Glass Co., Ltd., thickness 1 mm) as a substrate member.
Printed to a thickness of 3 μm and dried, then 40
The transparent conductive film was formed by baking at 0 ° C. for 30 minutes and then in nitrogen at 400 ° C. for 25 minutes. Further, the light transmittance, haze value, and surface resistance were measured using the same measuring device as in Example 1, and the results are shown in Table 2.

【0027】表1(オーバーコート液及び接着剤の組
成)
Table 1 (Composition of overcoat liquid and adhesive)

【表1】 [Table 1]

【0028】表2(本発明で得られた透明導電膜の塗膜
物性)
Table 2 (Physical film properties of the transparent conductive film obtained in the present invention)

【表2】 [Table 2]

【0029】[0029]

【発明の効果】上述のごとく本発明によれば、印刷法に
より形成される従来の透明導電膜の表面抵抗を損なうこ
となく、光学特性の著しく向上した透明導電性基板を提
供することができる。また、透明導電膜の平滑度も著し
く向上するため、液晶装置等のごとく表面の平滑性を要
求される用途にも適した透明導電性基板を得ることがで
きる。
As described above, according to the present invention, it is possible to provide a transparent conductive substrate having significantly improved optical characteristics without impairing the surface resistance of the conventional transparent conductive film formed by the printing method. Further, since the smoothness of the transparent conductive film is remarkably improved, it is possible to obtain a transparent conductive substrate suitable for applications such as liquid crystal devices that require surface smoothness.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明による透明導電性基板の一実施
例の構成図である。(b)は従来の透明導電性基板の構
成図である。
FIG. 1A is a configuration diagram of an embodiment of a transparent conductive substrate according to the present invention. (B) is a block diagram of a conventional transparent conductive substrate.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基材上に透明導電インキを印刷又は塗布
して乾燥した後、焼成することにより透明導電膜を形成
せしめ、次に該透明導電膜上にオーバーコート液を塗布
することによりオーバーコート層を形成せしめた後、上
記オーバーコート液又は接着剤により上記オーバーコー
ト層を可視光線が透過する基板部材に対面させた状態で
上記基材と該基板部材とをはり合わせ、次に上記オーバ
ーコート層及び/又は接着剤を硬化せしめ、硬化後、上
記基材又はその一部を溶解又は膨潤により除去して基板
部材上に透明導電膜を形成することを特徴とする透明導
電性基板の製造方法
1. A transparent conductive film is formed by printing or coating a transparent conductive ink on a substrate, drying and baking, and then coating an overcoat liquid on the transparent conductive film. After forming the coating layer, the base material and the substrate member are bonded together in a state where the overcoat layer or the adhesive agent faces the substrate member that transmits visible light, and then the overcoat layer is formed. Production of a transparent conductive substrate, characterized in that the coating layer and / or the adhesive is cured, and after curing, the base material or a part thereof is removed by dissolution or swelling to form a transparent conductive film on a substrate member. Method
【請求項2】 基材がポリイミドフィルム又はポリイミ
ドを塗布形成した耐熱性のガラス、金属等の耐熱材であ
る請求項1に記載の透明導電性基板の製造方法。
2. The method for producing a transparent conductive substrate according to claim 1, wherein the substrate is a polyimide film or a heat-resistant material such as heat-resistant glass or metal coated with polyimide.
【請求項3】 透明導電インキがインジウム−スズ酸化
物、スズ−アンチモン酸化物の超微粉を溶剤又は樹脂を
溶解した溶剤に分散せしめて成る請求項1に記載の透明
導電性基板の製造方法。
3. The method for producing a transparent conductive substrate according to claim 1, wherein the transparent conductive ink is formed by dispersing ultrafine powder of indium-tin oxide or tin-antimony oxide in a solvent or a solvent in which a resin is dissolved.
【請求項4】 焼成が大気中400℃以上でなされ、次
に不活性ガス雰囲気下400℃〜600℃でなされる請
求項1に記載の透明導電性基板の製造方法。
4. The method for producing a transparent conductive substrate according to claim 1, wherein the firing is performed at 400 ° C. or higher in the air, and then at 400 ° C. to 600 ° C. in an inert gas atmosphere.
【請求項5】 焼成が不活性ガス雰囲気下400℃〜6
00℃でなされる請求項1に記載の透明導電性基板の製
造方法。
5. The firing is performed at 400 ° C. to 6 in an inert gas atmosphere.
The method for producing a transparent conductive substrate according to claim 1, which is performed at 00 ° C.
【請求項6】 基板部材が透明なプラスチック、ガラス
等の透明材である請求項1に記載の透明導電性基板の製
造方法。
6. The method for producing a transparent conductive substrate according to claim 1, wherein the substrate member is a transparent material such as transparent plastic or glass.
【請求項7】 オーバーコート液及び接着剤が熱硬化性
樹脂溶液又は紫外線硬化性樹脂溶液である請求項1に記
載の透明導電性基板の製造方法。
7. The method for producing a transparent conductive substrate according to claim 1, wherein the overcoat liquid and the adhesive are a thermosetting resin solution or an ultraviolet curable resin solution.
【請求項8】 基材又はその一部の溶解又は膨潤を、ヒ
ドラジン又はヒドラジン水化物又はそれらとジアミンと
の混合物で行う請求項1に記載の透明導電性基板の製造
方法。
8. The method for producing a transparent conductive substrate according to claim 1, wherein dissolution or swelling of the base material or a part thereof is performed with hydrazine, hydrazine hydrate or a mixture thereof with a diamine.
JP04251516A 1992-02-27 1992-09-21 Method for manufacturing transparent conductive substrate Expired - Fee Related JP3103682B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP04251516A JP3103682B2 (en) 1992-09-21 1992-09-21 Method for manufacturing transparent conductive substrate
US08/021,338 US5411792A (en) 1992-02-27 1993-02-23 Transparent conductive substrate
KR1019930002828A KR950014928B1 (en) 1992-02-27 1993-02-26 Transparent electric conduction substrate and process for making the same
US08/184,695 US5421926A (en) 1992-02-27 1994-01-21 Transparent conductive substrate and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04251516A JP3103682B2 (en) 1992-09-21 1992-09-21 Method for manufacturing transparent conductive substrate

Publications (2)

Publication Number Publication Date
JPH06103840A true JPH06103840A (en) 1994-04-15
JP3103682B2 JP3103682B2 (en) 2000-10-30

Family

ID=17223979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04251516A Expired - Fee Related JP3103682B2 (en) 1992-02-27 1992-09-21 Method for manufacturing transparent conductive substrate

Country Status (1)

Country Link
JP (1) JP3103682B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003001539A1 (en) * 2001-06-21 2003-01-03 Toyo Boseki Kabushiki Kaisha Transparent conductive film roll and production method thereof, touch panel using it, and non-contact surface resistance measuring device
KR20170057160A (en) * 2015-11-16 2017-05-24 삼성전자주식회사 Silver nanowires, production methods thereof, conductors and electronic devices including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003001539A1 (en) * 2001-06-21 2003-01-03 Toyo Boseki Kabushiki Kaisha Transparent conductive film roll and production method thereof, touch panel using it, and non-contact surface resistance measuring device
US7436190B2 (en) 2001-06-21 2008-10-14 Toyo Boseki Kabushiki Kaisha Transparent conductive film roll and production method thereof, touch panel using it, and non-contact surface resistance measuring device
US7812623B2 (en) 2001-06-21 2010-10-12 Toyo Boseki Kabushiki Kaisha Transparent conductive film roll and production method thereof, touch panel using the same, and non-contact surface resistance measuring device
KR20170057160A (en) * 2015-11-16 2017-05-24 삼성전자주식회사 Silver nanowires, production methods thereof, conductors and electronic devices including the same
JP2017092036A (en) * 2015-11-16 2017-05-25 三星電子株式会社Samsung Electronics Co.,Ltd. Silver nanowires, production methods thereof, conductors and electronic devices including the same

Also Published As

Publication number Publication date
JP3103682B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
KR950014928B1 (en) Transparent electric conduction substrate and process for making the same
JP4086132B2 (en) Transparent conductive film and touch panel
KR100791725B1 (en) Functional film having functional layer and article provided with the functional film
JP3103681B2 (en) Method for manufacturing transparent conductive substrate
TW575882B (en) Transparent conductive multi-layer structure and process for producing the same
TWI485070B (en) Transparent conducting film
CN1668462B (en) Functional film for transfer having functional layer, object furnished with functional layer
CN105446555B (en) Nano-silver thread conductive laminate structure and touch panel
JPH0883515A (en) Transparent conductive sheet
JPH05325646A (en) Transparent conducting substrate and its manufacture
US20060286316A1 (en) Conductive film for transfer, method for forming transparent conductive film using same, and transparent conductive film
JPH0795165B2 (en) Microsphere, spherical spacer for liquid crystal display device, and liquid crystal display device using the same
JP4666961B2 (en) Object provided with transparent conductive layer, and conductive film for transfer
JPH0697322B2 (en) Roughened light-shielding film having conductivity
JPH06103840A (en) Manufacture of transparent conductive substrate
JP2007008153A (en) Releasing sheet for use in compression bonding and roll
JPS59198607A (en) Transparent conductive film having protective film
KR101465071B1 (en) A flexible transparent electrode using cesium and a flexible transparent electrode produced thereby
JP4037066B2 (en) Functional film having functional layer and object provided with the functional layer
CN113764137B (en) Preparation method of nano silver wire conductive film, nano silver wire conductive film and application thereof
JP3190416B2 (en) Method for manufacturing transparent conductive substrate
KR101330065B1 (en) Method for fabricating and coating ito ink
JP2002283462A (en) Method for manufacturing matter of which surface is coated with conductive layer and functional layer and surface coated matter
JP3140995B2 (en) Spherical spacer for liquid crystal display device and liquid crystal display device using the same
KR101535208B1 (en) Transparent conductive film having metal nano-wire structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080825

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees