JPH059386B2 - - Google Patents

Info

Publication number
JPH059386B2
JPH059386B2 JP59033758A JP3375884A JPH059386B2 JP H059386 B2 JPH059386 B2 JP H059386B2 JP 59033758 A JP59033758 A JP 59033758A JP 3375884 A JP3375884 A JP 3375884A JP H059386 B2 JPH059386 B2 JP H059386B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
crystal structure
volume
tools
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59033758A
Other languages
Japanese (ja)
Other versions
JPS60180962A (en
Inventor
Mikio Fukuhara
Kenji Fukazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP59033758A priority Critical patent/JPS60180962A/en
Publication of JPS60180962A publication Critical patent/JPS60180962A/en
Publication of JPH059386B2 publication Critical patent/JPH059386B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明は、切削工具及び耐摩耗工具に適する高
硬度窒化硅素焼結体に係り、特にα型である三方
晶からなる結晶相を含有させることによつて耐熱
合金、超耐熱合金及び鋼等の切削工具に最適な工
具用窒化硅素焼結体に関する。 〔脊景技術〕 従来、窒化硅素はα型(低温型)である三方晶
とβ型(高温型)である六方晶の結晶構造のもの
があり、これらの窒化硅素にAl2O3、AlN、
Y2O3、MgO等の焼結助剤を添加して得る焼結体
は、1500℃以上の高温で焼結するために高温型の
六方晶構造の結晶となる。窒化硅素にAl元素と
O元素が固溶又は侵入したSi−Al−O−N系の
結晶は、一般にサイアロンと称され、特にSi6
zAlzN8−zOzの式で表わされる結晶が特開昭51
−508で開示され、これは高温型の結晶構造であ
ることから別名β−サイアロンと称されているの
に対してMx(Si、Al)12(O、N)16の式で表わさ
れる結晶がS.Hampshire等によつて詳解され
〔Nature、274、880−82(1978)〕、これは低温型
の結晶構造であることから別名α−サイアロンと
称されている。窒化硅素を主体にした焼結体で三
方晶の結晶構造のものは六方晶の結晶構造のもの
程研究開発されておらず、特に切削工具や耐摩耗
工具等の工具部品に使用されているのは六方晶の
結晶構造からなる窒化硅素焼結体である。この六
方晶の結晶構造からなる窒化硅素焼結体は、切削
工具として使用するときに被削材が鋳鉄であると
きは良好な切削性能を発揮するけれども鋳鉄以外
の被削材、特に耐熱合金、超耐熱合金及び鋼等の
ように硬くて破断強さの高い材料を切削すると
Al2O3系セラミツクスに比較して耐摩耗性が極端
に劣つたり又は切刃にチツピングが生じて、切削
工具としての使用領域が非常に狭い範囲に限られ
てしまうという問題がある。 〔発明の目的〕 本発明は、上記のような従来の窒化硅素焼結体
の問題点を解決したもので、具体的には三方晶構
造の結晶相を含有する窒化硅素焼結体中に周期律
表4a、5a、6a族金属の炭化物、窒化物、硼化物、
硅化物、酸化物又はこれらの相互固溶体の中の少
なくとも1種の分散相を存在させることにより、
特に切削工具として使用したときに被削材が各種
の鋼、耐熱合金及び非鉄金属に対しても耐摩耗
性、耐欠損性及び耐熱衝撃性にすぐれた高硬度及
び高靭性の窒化硅素焼結体の提供を目的とする。 〔発明の開示〕 三方晶構造の窒化硅素焼結体は、六方晶構造の
窒化硅素焼結体に比較して常温では靭性が劣る傾
向にあるけれども高温では硬さ低下の割合が少な
く、しかも三方晶構造の窒化硅素焼結体の変形機
構が転位すべりによる塑性変形のみで転位クリー
プや拡散クリープによる変形を伴わないために高
温での靭性がすぐれている。逆に、六方晶構造の
窒化硅素焼結体は、三方晶構造の窒化硅素焼結体
に比較して常温での硬さが若干低いけれども熱膨
張係数が小さく、熱伝導率が大きいために耐熱衝
撃性にすぐれている。 本発明は、上記のような三方晶構造の窒化硅素
と六方晶構造の窒化硅素のそれぞれの長所を最大
限に発揮できるように追究した結果完成した耐摩
耗性、耐欠損性及び耐熱衝撃性にすぐれた窒化硅
素焼結体であつて、特に各種の鋼を切削するとき
にすばらしい性能を発揮する工具用窒化硅素焼結
体である。即ち、本発明の工具用窒化硅素焼結体
は、周期律表1a、2a、3a、3b、4b族金属の1種
又は2種以上の窒化物および/または酸窒化物の
結晶構造調整剤1〜35体積%と周期律表4a、5a、
6a族金属の炭化物、窒化物、硼化物、珪化物、
酸化物又はこれらの相互固溶体の中のすくなくと
も1種の分散相1〜40体積%と残部窒化硅素と不
可避不純物からなる焼結体であつて、かつ周期律
表1a、2a、3a、3b、4b族金属の1種又は2種以
上の窒化物および/または酸窒化物の結晶構造調
整剤と窒化硅素とによつて形成される硬質相が25
体積%以上の三方晶構造の結晶相として含有して
いる焼結体である。この結晶構造調整剤と窒化硅
素とによつて形成される窒化硅素を主体とする硬
質相は、その組成が(Sia、Mb)24(Ox、Ny)32
(但し、Siは硅素、Mは、周期律表1a族のLi、
Na、K、Rb、Cs2a族のBe、Mg、Ca、Sr、Ba、
Ra3a族のSc、Y、ランタノイド3b族のB、Al、
Ga、In、Tl及び4b族のGeの中の少なくとも1種
を示し、Oは酸素、Nは窒素を表わす。a及びb
は、それぞれSiとMのモル比を表わし、x及びy
は、それぞれ酸素、窒素のモル比を表わし、各々
a+b=1、a>0、b>0、x+y=1、x≧
0である。)と表わせる三方晶構造の結晶相を25
体積%以上含有しているものである。この内、窒
化硅素と主体とする硬質相全部が三方晶構造の結
晶相からなる焼結体の場合は、例えば、切削工具
として使用するときに熱衝撃の加わるような切削
条件によつて刃先又は切刃に熱き裂に起因する欠
損又はチツピングが生じて好ましくない場合があ
る。このことから高温における高硬度と靭性及び
耐熱衝撃性を高めるために結晶構造調整剤と窒化
硅素とによつて形成される窒化硅素を主体とする
硬質相は、三方晶構造の結晶相が35〜95体積%含
有していることが望ましい。 本発明の工具用窒化硅素焼結体は、結晶構造調
整剤と窒化硅素とからなる三方晶構造の結晶相と
六方晶構造の結晶相に周期律表4a、5a、6a族金
遷の炭化物、窒化物、硼化物、硅化物、酸化物又
はこれらの相互固溶体の中の少なくとも1種の分
散相とからなる焼結体であつて、この内三方晶構
造の結晶相が主として焼結体の高硬度化及び高温
での耐塑性変性に寄与して耐摩耗性及び耐クリー
プ変形性を高め、六方晶構造の結晶相が主として
靭性向上に寄与して耐欠損性を高めたもので、こ
の結晶構造調整剤と窒化硅素とからなる三方晶構
造の結晶相の中に混在した分散相が更に焼結体の
高硬度化と熱伝導性及び電気伝導性を高める作用
をしているために耐摩耗性、耐欠損性及び耐熱衝
撃性にすぐれた焼結体となり、この結果、破断強
さの高い鋼及び耐熱合金をも切削可能な工具用焼
結体となつている。この本発明の焼結体に存在す
る結晶構造調整剤と窒化硅素とによつて形成され
る硬質相は、主として三方晶構造の結晶相と六方
晶構造の結晶相からなつているけれども製造条件
又は結晶構造調整剤の種類及び添加量によつては
窒素含有の結晶質硅酸塩〔例えば(Si、M)5(N、
O)7等〕を含む場合がある。 本発明の工具用窒化硅素焼結体は、焼結過程に
おける昇温速度、焼結温度又はN2分圧(PN2
の制御によつて低温型の三方晶から高温型の六方
晶への変態を阻止して三方晶構造の結晶の含有量
を或る程度コントロールできるけれども主として
周期律表1a族金属のLi、Na、K、Rb、Cs、2a族
金属のBe、Mg、Ca、Sr、Ba、Ra、3a族金属の
Sc、Y、ランタノイド、3b族金属のB、Al、
Ga、In、Tl及び4b族金属のGeの窒化物、酸窒化
物又はこれらの相互固溶体の中の少なくとも1種
からなる結晶構造調整剤と窒化硅素との配合成分
比及び出発原料としての窒化硅素の結晶構造によ
つて焼結体中の三方晶構造の結晶相の含有量がコ
ントロールできる。焼結体中の三方晶構造の結晶
相の含有量を多くするときには、特に出発原料と
して使用する窒化硅素粉末が三方晶であるα−窒
化硅素の含有率の高い、例えばα率50%以上のも
のを使用することが望ましく、その平均粒子径が
10μm以下望ましくは平均粒子径が2μm以下の粉
末を使用する方が焼結体の強度向上から望まし
い。又非晶質の窒化硅素を含有したα率50%以上
の窒化硅素粉末を出発原料として使用すると微細
な粉末で焼結も促進される反面窒化硅素粉末の製
造方法によつては酸素を多く含有している場合が
あつて、この酸素量が焼結過程において三方晶構
造の結晶の生成を低下させるために酸素含有量に
は特に注意が必要である。このような窒化硅素粉
末は、Al、Fe等の不純物を微量含んでいたり、
窒化硅素粉末の表面に酸素が吸着してSiO又は
SiO2を形成している場合があり、このSiO又は
SiO2は焼結促進及び緻密化に効果があるけれど
も逆に多過ぎると三方晶構造の結晶の生成を低下
させるので出来るだけ純度の高い例えば1.2体積
%以下のSiO又はSiO2含有の窒化硅素粉末を使用
することが望ましい。又、窒化硅素粉末の他に使
用する出発原料粉末は、出来るだけ微細な粉末が
よく、混合粉末中での均一分散及び焼結性から
3μm以下の粉末が望ましい。これらの出発原料
粉末は、定比化合物又は不定比化合物であつても
よく、特に周期律表4a、5a、6a族金属の炭化物、
窒化物、硼化物、硅化物、酸化物又はこれらの相
互固溶体の中の少なくとも1種の出発原料粉末が
不定比化合物であると焼結過程で発生するガスを
吸着しながら焼結されるために焼結促進及び緻密
化に効果がある。 本発明の工具用窒化硅素焼結体の製造方法は、
従来の粉末冶金法で行なう方法が利用できる。例
えば粉末の混合粉砕は、ステンレス製又はセラミ
ツクス製もしくはステンレスに超硬合金又はゴム
等を内張りした容器にSi3N4系、ZrO2系セラミツ
クスボール又は超合金製ボールと共に所定量の出
発原料粉末を配合した乾式又はヘキサン、アルコ
ール、ベンゼン、アセトン等の有機溶剤を加えた
湿式で混合粉砕できる。この混合粉末の成形及び
焼結は、カーボン又は黒鉛製の焼結用モールドに
混合粉末を詰めて、そのまま直接ホツトプレスに
よる高周波加圧焼結、通電加圧焼結又はN2雰囲
気ガスによる加圧焼結によつて焼結したり、混合
粉末をラバープレス、押出成形又は成形モールド
によつて成形した成形体もしくはこの成形体を焼
結温度より低い温度で予備焼結した後機械加工し
た成形体を真空中又は非酸化性雰囲気中で普通焼
結(無加圧焼結も含む)あるいは雰囲気ガスで加
圧しながら焼結したり、更にこのような方法で1
度焼結したものを熱間静水圧加圧(HIP)処理を
行なつて焼結体の緻密化の促進及び強度の向上も
できる。焼結温度は、出発原料粉末の種類又は配
合成分もしくは上記の製造条件によつても異なる
が1500〜1900℃の温度で相対密度100%近傍の緻
密な焼結体が得られる。これらの製造条件の内、
焼結体中に混在してくる不純物は、混合粉砕工程
から混入する度合が高く、不純物の種類としては
鉄族金属及び周期律表4a、5a、6a族金属の炭化
物、窒化物、炭窒化物等があり、この内特に鉄族
金属が不純物として混入する場合は、焼結体の強
度低下の原因になるために1体積%以下にするこ
とが望ましく、用途によつては製造条件の厳選に
よつて鉄族金属の不純物を0.3体積%以下にする
必要がある。 ここで本発明の工具用窒化硅素焼結体の数値限
定した理由について述べる。 結晶構造調整剤について 周期律表1a、2a、3a、3b、4b族金属の1種又
は2種以上の窒化物および/または酸窒化物から
なる結晶構造調整剤が1体積%未満では窒化硅素
を主体とする結晶中の三方晶の結晶相が25体積%
未満となり、又結晶構造調整剤が焼結促進の効果
を有するけれども1体積%未満では焼結性が悪
く、緻密な焼結体になり難い。逆に、結晶構造調
整剤が35体積%を超えて多くなると焼結体の硬さ
が低下して塑性変形を生じ易くなつたり、耐摩耗
性が劣るために結晶構造調整剤は1〜35体積%と
定めた。特に焼結促進の効果と焼結体の耐摩耗性
及び耐塑性変形性から結晶構造調整剤は、5〜20
体積%が望ましい。焼結体の強度上から結晶構造
調整剤の種類としては、周期律表の2a族である
Be、Mg、Ca、Sr、Ba、Ra、3a族であるSc、
Y、ランタノイド(希土類)、3b族であるB、
Al、Ga、In、Tl金属の窒化物、酸窒化物又はこ
れらの相互固溶体の中の少なくとも1種を結晶構
造調整剤中の50体積%以上含有したものが望まし
い。 分散相について 周期律表4a、5a、6a族金属の炭化物、窒化物、
硼化物、硅化物、酸化物又はこれらの相互固溶体
の中の少なくとも1種からなる分散相が1体積%
未満では焼結体の熱伝導率及び電気伝導率が低下
するために鋼系の被削娯の切削工具として使用す
ると摩耗及び熱衝撃性から生じる損傷が大きくな
つたり、焼結体を放電加工によつて加工するのが
困難になる。逆に、分散相が40体積%を超えて多
くなると焼結性が劣つたり、焼結体の靭性が低下
する傾向になる。このために分散相は、1〜40体
積%と定めた。耐摩耗性、耐熱衝撃性及び耐欠損
性から分散相は、10〜20体積%が望ましい。 三方晶構造の結晶について 結晶構造調整剤と窒化硅素によつて形成される
硬質相中の三方晶構造の結晶相が25体積%未満に
なると相対的に六方晶構造の結晶相が多くなつて
焼結体の硬さが低下すると共に耐塑性変形性も低
下する。このために結晶構造調整剤と窒化硅素に
よつて形成される硬質相中の三方晶構造の結晶相
は、25体積%以上を定めた。 〔発明を実施するための代表的な形態〕 実施例 1 平均粒径1μmのSi3N4(α率90%)と非晶質35
%含有したSi3N4(α率60%)と平均粒径6μmの
Si3N4(α率79%)と平均粒径1〜3μmの各種粉
末を使用して第1表の如く各試料を配合し、この
配合した各試料をヘキサン溶媒中WC基超硬合金
製ボールと共にウレタン内張り容器の中で混合粉
砕した。得られた混合粉末から溶媒を蒸発除去
後、BN粉末で被覆したカーボンモールド中に充
填し、N2ガスで炉内を置換後100〜400Kg/cm2
成形圧力、1700〜1850℃の温度、50〜90分の保持
時間で加圧焼結した。得られた焼結体の諸特性を
第2表に示した。
[Technical field] The present invention relates to a high-hardness silicon nitride sintered body suitable for cutting tools and wear-resistant tools, and in particular, by incorporating a crystal phase consisting of α-type trigonal crystals, it can be used as a heat-resistant alloy or a super heat-resistant alloy. The present invention also relates to a silicon nitride sintered body suitable for cutting tools such as steel. [Background technology] Conventionally, silicon nitride has a trigonal α - type (low-temperature type) and a hexagonal β-type (high-temperature type) crystal structure . ,
A sintered body obtained by adding a sintering aid such as Y 2 O 3 or MgO is sintered at a high temperature of 1500° C. or higher, so it becomes a high-temperature hexagonal crystal structure. A Si-Al-O-N crystal in which Al and O elements are dissolved or penetrated into silicon nitride is generally called sialon, and especially Si 6 -
A crystal expressed by the formula zAlzN 8 −zOz was published in Japanese Patent Application Laid-open No. 1983
-508, which is also called β-Sialon because it has a high-temperature crystal structure, whereas the crystal represented by the formula Mx (Si, Al) 12 (O, N) It was explained in detail by S. Hampshire et al. [Nature, 274, 880-82 (1978)], and is also called α-sialon because it has a low-temperature crystal structure. Sintered bodies mainly made of silicon nitride with a trigonal crystal structure have not been researched and developed as much as those with a hexagonal crystal structure, and are particularly used in tool parts such as cutting tools and wear-resistant tools. is a silicon nitride sintered body with a hexagonal crystal structure. This silicon nitride sintered body with a hexagonal crystal structure exhibits good cutting performance when the workpiece material is cast iron when used as a cutting tool, but it can be used in workpiece materials other than cast iron, especially heat-resistant alloys. When cutting hard materials with high breaking strength such as super heat-resistant alloys and steel,
Compared to Al 2 O 3 ceramics, it has extremely poor wear resistance or chipping occurs on the cutting edge, which limits its use as a cutting tool to a very narrow range. [Object of the Invention] The present invention solves the problems of the conventional silicon nitride sintered body as described above. Specifically, the present invention solves the problems of the conventional silicon nitride sintered body as described above. carbides, nitrides, borides of group 4a, 5a and 6a metals,
By the presence of a dispersed phase of at least one of silicides, oxides or mutual solid solutions thereof,
A silicon nitride sintered body with high hardness and high toughness that has excellent wear resistance, chipping resistance, and thermal shock resistance, especially when used as a cutting tool, even when the work material is various steels, heat-resistant alloys, and non-ferrous metals. The purpose is to provide. [Disclosure of the Invention] Silicon nitride sintered bodies with a trigonal crystal structure tend to have inferior toughness at room temperature compared to silicon nitride sintered bodies with a hexagonal crystal structure, but the hardness decreases less at high temperatures; The deformation mechanism of the silicon nitride sintered body with a crystal structure is only plastic deformation due to dislocation slip and does not involve deformation due to dislocation creep or diffusion creep, so it has excellent toughness at high temperatures. On the other hand, silicon nitride sintered bodies with a hexagonal crystal structure have slightly lower hardness at room temperature than silicon nitride sintered bodies with a trigonal crystal structure, but they have a smaller coefficient of thermal expansion and higher thermal conductivity, so they are more heat resistant. Excellent impact resistance. The present invention is based on the abrasion resistance, chipping resistance, and thermal shock resistance that have been completed as a result of pursuing to maximize the respective advantages of silicon nitride with a trigonal crystal structure and silicon nitride with a hexagonal structure as described above. This silicon nitride sintered body is an excellent silicon nitride sintered body for tools, and exhibits excellent performance especially when cutting various types of steel. That is, the silicon nitride sintered body for tools of the present invention contains the crystal structure modifier 1 of one or more nitrides and/or oxynitrides of metals from groups 1a, 2a, 3a, 3b, and 4b of the periodic table. ~35% by volume and periodic table 4a, 5a,
Group 6a metal carbides, nitrides, borides, silicides,
A sintered body consisting of 1 to 40% by volume of at least one type of dispersed phase in an oxide or a mutual solid solution thereof, the balance being silicon nitride, and inevitable impurities, and meeting the requirements of periodic table 1a, 2a, 3a, 3b, 4b. A hard phase formed by silicon nitride and one or more nitrides and/or oxynitride crystal structure modifiers of group metals is 25
It is a sintered body containing more than % by volume of trigonal structure as a crystalline phase. The hard phase mainly composed of silicon nitride formed by this crystal structure modifier and silicon nitride has a composition of (Sia, Mb) 24 (Ox, Ny) 32
(However, Si is silicon, M is Li of group 1a of the periodic table,
Na, K, Rb, Cs2a group Be, Mg, Ca, Sr, Ba,
Sc, Y of Ra3a group, B, Al of lanthanoid 3b group,
It represents at least one of Ga, In, Tl, and Ge of group 4b, O represents oxygen, and N represents nitrogen. a and b
represent the molar ratio of Si and M, respectively, x and y
represent the molar ratio of oxygen and nitrogen, respectively, a+b=1, a>0, b>0, x+y=1, x≧
It is 0. ) is the trigonal structure crystal phase that can be expressed as 25
It contains more than % by volume. Among these, in the case of a sintered body in which all of the hard phases mainly composed of silicon nitride are crystal phases with a trigonal structure, for example, when used as a cutting tool, the cutting edge or the In some cases, chipping or chipping may occur on the cutting edge due to thermal cracking, which is undesirable. Therefore, in order to increase hardness, toughness, and thermal shock resistance at high temperatures, the hard phase mainly composed of silicon nitride, which is formed by a crystal structure modifier and silicon nitride, has a trigonal structure crystal phase of 35 to It is desirable that the content is 95% by volume. The silicon nitride sintered body for tools of the present invention has a trigonal crystal structure crystal phase and a hexagonal structure crystal phase consisting of a crystal structure modifier and silicon nitride, and carbides of groups 4a, 5a, and 6a of the periodic table. A sintered body consisting of a dispersed phase of at least one of nitrides, borides, silicides, oxides, or mutual solid solutions thereof, in which the trigonal structure crystal phase is mainly the It contributes to hardness and plastic deformation resistance at high temperatures, increasing wear resistance and creep deformation resistance, and the hexagonal crystal structure mainly contributes to improving toughness and increasing fracture resistance. The dispersed phase mixed in the trigonal crystal structure consisting of the modifier and silicon nitride further increases the hardness of the sintered body and increases its thermal conductivity and electrical conductivity, resulting in excellent wear resistance. This results in a sintered body with excellent fracture resistance and thermal shock resistance, resulting in a sintered body for tools that can cut steel and heat-resistant alloys with high breaking strength. Although the hard phase formed by the crystal structure modifier and silicon nitride present in the sintered body of the present invention mainly consists of a trigonal crystal structure crystal phase and a hexagonal crystal structure crystal phase, depending on the manufacturing conditions or Depending on the type and amount of the crystal structure modifier, nitrogen-containing crystalline silicates [e.g. (Si, M) 5 (N,
O) 7 etc.] may be included. The silicon nitride sintered body for tools of the present invention has a temperature increase rate, sintering temperature, or N 2 partial pressure (PN 2 ) in the sintering process.
Although it is possible to prevent the transformation from low-temperature trigonal crystals to high-temperature hexagonal crystals and control the content of trigonal structure crystals to some extent by controlling the K, Rb, Cs, Be of group 2a metal, Mg, Ca, Sr, Ba, Ra, group 3a metal
Sc, Y, lanthanoids, group 3b metal B, Al,
Blend component ratio of silicon nitride and crystal structure modifier consisting of at least one of nitrides, oxynitrides, or mutual solid solutions of Ga, In, Tl, and Ge of group 4b metals, and silicon nitride as a starting material The content of the trigonal crystal phase in the sintered body can be controlled by the crystal structure of the sintered body. When increasing the content of the trigonal crystal structure crystal phase in the sintered body, the silicon nitride powder used as the starting material has a high content of trigonal α-silicon nitride, for example, an α ratio of 50% or more. It is desirable to use particles whose average particle size is
It is desirable to use powder with an average particle diameter of 10 μm or less, preferably 2 μm or less, from the viewpoint of improving the strength of the sintered body. In addition, if silicon nitride powder containing amorphous silicon nitride with an α rate of 50% or more is used as a starting material, sintering will be promoted due to the fine powder, but depending on the manufacturing method of silicon nitride powder, it may contain a large amount of oxygen. Particular attention must be paid to the oxygen content because this oxygen content reduces the formation of trigonal crystals during the sintering process. Such silicon nitride powder contains trace amounts of impurities such as Al and Fe,
Oxygen is adsorbed on the surface of silicon nitride powder, forming SiO or
SiO 2 may be formed, and this SiO or
SiO 2 is effective in accelerating sintering and densification, but on the other hand, too much of it will reduce the formation of trigonal structure crystals, so use as high a purity as possible, for example 1.2 volume % or less of SiO or SiO 2 -containing silicon nitride powder. It is preferable to use In addition, the starting raw material powder used in addition to the silicon nitride powder should be as fine as possible to ensure uniform dispersion in the mixed powder and sinterability.
Powder with a diameter of 3 μm or less is desirable. These starting powders may be stoichiometric or non-stoichiometric compounds, in particular carbides of metals from groups 4a, 5a and 6a of the periodic table;
If the starting material powder of at least one of nitrides, borides, silicides, oxides, or mutual solid solutions thereof is a non-stoichiometric compound, the sintering process is performed while adsorbing gases generated during the sintering process. It is effective in promoting sintering and densification. The method for manufacturing a silicon nitride sintered body for tools of the present invention includes:
Conventional powder metallurgy methods are available. For example, to mix and grind powder, a predetermined amount of starting material powder is placed in a container made of stainless steel, ceramics, or stainless steel lined with cemented carbide or rubber, together with Si 3 N 4 ceramic balls, ZrO 2 ceramic balls, or superalloy balls. It can be mixed and pulverized in a dry method or wet method in which an organic solvent such as hexane, alcohol, benzene, or acetone is added. The molding and sintering of this mixed powder is carried out by filling a carbon or graphite sintering mold with the mixed powder and then directly sintering the mold under high-frequency pressure using a hot press, sintering under current pressure, or sintering under pressure using N2 atmospheric gas. A molded body formed by sintering or molding a mixed powder by rubber pressing, extrusion molding, or a molded body, or a molded body formed by pre-sintering this molded body at a temperature lower than the sintering temperature and then machining it. Ordinary sintering (including pressureless sintering) in a vacuum or non-oxidizing atmosphere, or sintering while pressurizing with atmospheric gas, or further 1
The sintered material can be subjected to hot isostatic pressing (HIP) to promote densification and improve the strength of the sintered material. Although the sintering temperature varies depending on the type of starting material powder, the blended components, or the above manufacturing conditions, a dense sintered body with a relative density of approximately 100% can be obtained at a temperature of 1500 to 1900°C. Among these manufacturing conditions,
Impurities mixed into the sintered body are often mixed in during the mixing and crushing process, and the types of impurities include iron group metals and carbides, nitrides, and carbonitrides of metals in groups 4a, 5a, and 6a of the periodic table. Among these, if iron group metals are mixed as impurities, it is desirable to reduce the amount to 1% by volume or less, as this may cause a decrease in the strength of the sintered body, and depending on the application, the manufacturing conditions may need to be carefully selected. Therefore, it is necessary to reduce the impurity of iron group metal to 0.3% by volume or less. Here, the reason for limiting the numerical values of the silicon nitride sintered body for tools of the present invention will be described. Regarding crystal structure modifiers: If the crystal structure modifier consisting of one or more nitrides and/or oxynitrides of metals from Groups 1a, 2a, 3a, 3b, and 4b of the periodic table is less than 1% by volume, silicon nitride will not be used. The trigonal crystal phase in the main crystal is 25% by volume.
Although the crystal structure modifier has the effect of promoting sintering, if it is less than 1% by volume, the sinterability is poor and it is difficult to form a dense sintered body. On the other hand, if the crystal structure modifier exceeds 35% by volume, the hardness of the sintered body decreases and plastic deformation tends to occur, and wear resistance deteriorates. %. In particular, from the viewpoint of the effect of promoting sintering and the wear resistance and plastic deformation resistance of the sintered body, the crystal structure modifier is
Volume % is preferred. In terms of the strength of the sintered body, the type of crystal structure modifier is Group 2a of the periodic table.
Be, Mg, Ca, Sr, Ba, Ra, Sc which is group 3a,
Y, lanthanoids (rare earths), B, which is group 3b;
It is desirable that the crystal structure modifier contains at least 50% by volume of at least one of nitrides, oxynitrides, or mutual solid solutions of Al, Ga, In, and Tl metals. About dispersed phases Carbides, nitrides of metals from groups 4a, 5a, and 6a of the periodic table,
1% by volume of a dispersed phase consisting of at least one of borides, silicides, oxides, or mutual solid solutions thereof
If the sintered body is used as a cutting tool for recreational machining of steel materials, the damage caused by wear and thermal shock may increase, and the sintered body may not be used for electric discharge machining. This makes it difficult to process. On the other hand, if the amount of the dispersed phase exceeds 40% by volume, the sinterability tends to deteriorate and the toughness of the sintered body tends to decrease. For this purpose, the amount of the dispersed phase was determined to be 1 to 40% by volume. The content of the dispersed phase is preferably 10 to 20% by volume from the viewpoint of wear resistance, thermal shock resistance, and chipping resistance. About crystals with trigonal structure If the trigonal crystal phase in the hard phase formed by the crystal structure modifier and silicon nitride is less than 25% by volume, the hexagonal crystal phase becomes relatively large and sintering As the hardness of the compact decreases, the plastic deformation resistance also decreases. For this purpose, the trigonal structure crystal phase in the hard phase formed by the crystal structure modifier and silicon nitride was determined to be 25% by volume or more. [Representative mode for carrying out the invention] Example 1 Si 3 N 4 (α rate 90%) with an average particle size of 1 μm and amorphous 35
% containing Si 3 N 4 (α rate 60%) and an average particle size of 6 μm.
Using Si 3 N 4 (α ratio 79%) and various powders with an average particle size of 1 to 3 μm, each sample was blended as shown in Table 1, and each of the blended samples was mixed with WC-based cemented carbide in a hexane solvent. The mixture and balls were mixed and ground in a urethane-lined container. After removing the solvent from the obtained mixed powder by evaporation, it was filled into a carbon mold coated with BN powder, and after purging the inside of the furnace with N 2 gas, the molding pressure was 100 to 400 Kg/cm 2 and the temperature was 1700 to 1850 °C. Pressure sintering was performed with a holding time of 50 to 90 minutes. Table 2 shows various properties of the obtained sintered body.

【表】【table】

【表】【table】

〔産業上の利用可能性〕[Industrial applicability]

以上の実施例の結果から本発明の工具用窒化硅
素焼結体は、高硬度で耐熱衝撃性及び耐塑性変形
性にすぐれているために、鋼切削において高価な
CBN系焼結体と同程度の耐摩耗性及び耐欠損性
を有し、又工具に圧着分離損傷から生じる欠損を
誘起し易い難削材に対しても使用できる焼結体で
あることが確認できた。このことからハサミ、ス
リツター、裁断刃、刃物等の切削工具、ボール、
ガイドブツシユ、ロール、ゲージ類の機械部品治
具、Si3N4が有している耐食性を利用して、バル
ブ、メカニカルシール、化学工業関係部品等の耐
摩耐食部品及びSi3N4が有している潤滑性を利用
して軸受部品、離型性の要求される金型に代表さ
れる各種の耐摩耗用工具並びに各種の被削材に対
する旋削工具、フライス工具及び耐圧着、耐摩
耗、耐欠損性にすぐれていることからエンドミ
ル、リーマ、ドリル等の穴あけ工具に代表される
各種の切削工具として本発明の焼結体は利用でき
る。又、軽量化とすぐれた熱伝導性からエンジン
部品、タービン部品等の耐熱性を要する構造用材
料にも応用できる可能性がある産業上有用な焼結
体である。
From the results of the above examples, the silicon nitride sintered body for tools of the present invention has high hardness and excellent thermal shock resistance and plastic deformation resistance, so it is expensive for steel cutting.
It has been confirmed that the sintered body has wear resistance and fracture resistance comparable to that of CBN-based sintered bodies, and can also be used for difficult-to-cut materials that are prone to fractures caused by crimping and separation damage in tools. did it. From this, cutting tools such as scissors, slitters, cutting blades, cutlery, balls, etc.
Taking advantage of the corrosion resistance of Si 3 N 4 , we can manufacture mechanical parts jigs such as guide bushes, rolls, and gauges, as well as wear-resistant and corrosion-resistant parts such as valves, mechanical seals, chemical industry-related parts, etc. Utilizing its lubricity, it can be used for bearing parts, various wear-resistant tools such as molds that require mold releasability, turning tools for various work materials, milling tools, and pressure-resistant, wear-resistant, and chipping-resistant tools. Due to its excellent properties, the sintered body of the present invention can be used as various cutting tools, typified by drilling tools such as end mills, reamers, and drills. Furthermore, due to its light weight and excellent thermal conductivity, it is an industrially useful sintered body that may be applied to structural materials that require heat resistance, such as engine parts and turbine parts.

Claims (1)

【特許請求の範囲】 1 周期律表1a、2a、3a、3b、4b族金属の1種
又は2種以上の窒化物および/または酸窒化物の
結晶構造調整剤1〜35体積%と周期律表4a、5a、
6a族金属の炭化物、窒化物、硼化物、珪化物、
酸化物又はこれらの相互固溶体の中の少なくとも
1種の分散相1〜40体積%と残部窒化硅素と不可
避不純物からなる焼結体であつて、かつ前記結晶
構造調整剤と前記窒化硅素とによつて形成される
硬質相が25体積%以上の三方晶構造の結晶剤とし
て含有していることを特徴とする工具用窒化硅素
焼結体。 2 上記結晶構造調整剤と上記窒化硅素とによつ
て形成される硬質相が35〜95体積%の三方晶構造
の結晶相として含有していることを特徴とする特
許請求の範囲第1項記載の工具用窒化硅素焼結
体。 3 上記結晶構造調整剤が周期律表2a、3a、3b
族金属の窒化物、酸窒化物又はこれらの相互固溶
体の中の少なくとも1種を主体にしたものである
ことを特徴とする特許請求の範囲第1項又は第2
項記載の工具用窒化硅素焼結体。
[Scope of Claims] 1. 1 to 35% by volume of a crystal structure modifier of one or more nitrides and/or oxynitrides of metals from groups 1a, 2a, 3a, 3b, and 4b of the periodic table and the periodic table. Tables 4a, 5a,
Group 6a metal carbides, nitrides, borides, silicides,
A sintered body consisting of 1 to 40% by volume of a dispersed phase of at least one of oxides or a mutual solid solution thereof, the balance silicon nitride, and unavoidable impurities, and which is composed of the crystal structure modifier and the silicon nitride. 1. A silicon nitride sintered body for tools, characterized in that the hard phase formed by this process contains 25% by volume or more of a crystallizing agent having a trigonal structure. 2. Claim 1, characterized in that the hard phase formed by the crystal structure modifier and the silicon nitride is contained as a crystal phase with a trigonal structure in an amount of 35 to 95% by volume. Silicon nitride sintered body for tools. 3 The crystal structure modifier mentioned above is 2a, 3a, 3b of the periodic table.
Claim 1 or 2, characterized in that the material is mainly composed of at least one of group metal nitrides, oxynitrides, or mutual solid solutions thereof.
A silicon nitride sintered body for tools as described in .
JP59033758A 1984-02-24 1984-02-24 Silicon nitride sintered body for tool Granted JPS60180962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59033758A JPS60180962A (en) 1984-02-24 1984-02-24 Silicon nitride sintered body for tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59033758A JPS60180962A (en) 1984-02-24 1984-02-24 Silicon nitride sintered body for tool

Publications (2)

Publication Number Publication Date
JPS60180962A JPS60180962A (en) 1985-09-14
JPH059386B2 true JPH059386B2 (en) 1993-02-04

Family

ID=12395328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59033758A Granted JPS60180962A (en) 1984-02-24 1984-02-24 Silicon nitride sintered body for tool

Country Status (1)

Country Link
JP (1) JPS60180962A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499861B1 (en) * 1991-02-15 1996-01-17 Sumitomo Electric Industries, Limited Tool of silicon nitride sintered body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874574A (en) * 1982-07-30 1983-05-06 住友電気工業株式会社 Plasticity working tool for copper and copper alloy
JPS58213679A (en) * 1982-05-20 1983-12-12 ジ−・テイ−・イ−・ラボラトリ−ズ・インコ−ポレ−テツド Composite ceramic cutting tool and manufacture
JPS59199579A (en) * 1983-04-25 1984-11-12 三菱マテリアル株式会社 Abrasion resistant sialon base ceramics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213679A (en) * 1982-05-20 1983-12-12 ジ−・テイ−・イ−・ラボラトリ−ズ・インコ−ポレ−テツド Composite ceramic cutting tool and manufacture
JPS5874574A (en) * 1982-07-30 1983-05-06 住友電気工業株式会社 Plasticity working tool for copper and copper alloy
JPS59199579A (en) * 1983-04-25 1984-11-12 三菱マテリアル株式会社 Abrasion resistant sialon base ceramics

Also Published As

Publication number Publication date
JPS60180962A (en) 1985-09-14

Similar Documents

Publication Publication Date Title
US5094986A (en) Wear resistant ceramic with a high alpha-content silicon nitride phase
JPS6011288A (en) Surface coated sialon-base ceramic tool member
EP0175041B1 (en) Silicon nitride sintered bodies and a method for their production
EP0262654B2 (en) Silicon nitride sintered material for cutting tools and process for making the same
JPS638075B2 (en)
US4956317A (en) Whisker-reinforced ceramics
JPS62278167A (en) Polycrystal sintered body comprising high break tenacity andhardness silicon nitride
JPH0460077B2 (en)
JPH059386B2 (en)
JPH11217258A (en) Sintered compact of alumina-base ceramic and its production
JPH11335174A (en) Cubic boron nitride sintered compact
JPS6241193B2 (en)
JP2759084B2 (en) High hardness and high strength ceramics sintered body and method for producing the same
JPH06298568A (en) Whisker-reinforced sialon-based sintered compact and sintered and coated material
JPH0537944B2 (en)
JP2997334B2 (en) Fiber reinforced ceramics
JPS6389459A (en) Manufacture of silicon nitride sintered body
JPS6215505B2 (en)
JPH0463030B2 (en)
JPS6337074B2 (en)
JPS6257596B2 (en)
JPH03275565A (en) Silicon nitride-based sintered material having high toughness and strength
JPH0379308B2 (en)
Samanta et al. Pressure Sintering of Si3N4 System for Near-Net Shape Forming
JPS638074B2 (en)