JPH0587806B2 - - Google Patents

Info

Publication number
JPH0587806B2
JPH0587806B2 JP57216742A JP21674282A JPH0587806B2 JP H0587806 B2 JPH0587806 B2 JP H0587806B2 JP 57216742 A JP57216742 A JP 57216742A JP 21674282 A JP21674282 A JP 21674282A JP H0587806 B2 JPH0587806 B2 JP H0587806B2
Authority
JP
Japan
Prior art keywords
light beam
diffraction grating
plane
scanning
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57216742A
Other languages
Japanese (ja)
Other versions
JPS59105611A (en
Inventor
Hiromi Ishikawa
Masaru Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP57216742A priority Critical patent/JPS59105611A/en
Priority to EP83112423A priority patent/EP0111333A1/en
Priority to DE1983112423 priority patent/DE111333T1/en
Priority to US06/560,004 priority patent/US4632499A/en
Publication of JPS59105611A publication Critical patent/JPS59105611A/en
Publication of JPH0587806B2 publication Critical patent/JPH0587806B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/106Scanning systems having diffraction gratings as scanning elements, e.g. holographic scanners

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

【発明の詳細な説明】 本発明は光ビーム走査装置に関し、特にホログ
ラムを代表とする回折格子を利用した光ビーム走
査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light beam scanning device, and more particularly to a light beam scanning device using a diffraction grating, typically a hologram.

光ビーム走査装置の中で用いられる光偏向器と
しては、回転多面鏡やガルバノメータなどの機械
的光偏向器、超音波と光の相互作用を利用する音
響光学的光偏向器、移動するホログラムを利用す
るホログラム光偏向器、などが従来より知られて
いる。これらの中で、ホログラム光偏向器はその
構成主体であるホログラムが写真的なプロセスや
熱圧着のプロセスなどによつて容易に大量複製し
うること、ホログラム光偏向器自体に傾角誤差が
あつたりウオブリングが生じてもその影響が偏向
されるビームには現われにくいこと、ホログラム
自体にレンズ作用をもたせることもできるので集
束レンズを不要とすることも可能であること、光
偏向の方向をホログラムの運動方向とは独立に自
由に選べること、などの特長をもつており、装置
の簡易化、低価格化への期待を集めている。
Optical deflectors used in optical beam scanning devices include mechanical optical deflectors such as rotating polygon mirrors and galvanometers, acousto-optic optical deflectors that utilize the interaction between ultrasonic waves and light, and moving holograms. Holographic optical deflectors, etc., have been known in the past. Among these, hologram optical deflectors are mainly composed of holograms that can be easily mass-produced by photographic processes or thermocompression bonding processes, and the hologram optical deflectors themselves have tilt errors and wobbling. Even if the hologram occurs, its effect is unlikely to appear on the deflected beam, the hologram itself can have a lens effect, so a focusing lens can be omitted, and the direction of light deflection can be set in the direction of the hologram's motion. It has the advantage of being able to be freely selected independently from the other devices, and is attracting expectations for simpler and lower-cost equipment.

ホログラム光偏向器の原理は、ホログラム板と
再生用照明ビームとの相対位置関係を変化させる
ことにより、再生される1次回折ビームの方向を
変化させるものである。この原理を具体化するホ
ログラム光偏向器の形態として、回転する球面
(凸状または凹状)の回転方向に反射型のホログ
ラムを配列したもの、回転する円筒または角筒の
側面にホログラムを配列したもの、回転する円板
の円周方向にホログラムを配列したもの、などが
知られている。
The principle of the hologram optical deflector is to change the direction of the first-order diffracted beam to be reproduced by changing the relative positional relationship between the hologram plate and the illumination beam for reproduction. Examples of holographic optical deflectors that embody this principle include those in which reflective holograms are arranged in the direction of rotation of a rotating spherical surface (convex or concave), and those in which holograms are arranged on the side of a rotating cylinder or rectangular tube. , one in which holograms are arranged in the circumferential direction of a rotating disk, etc. are known.

これらのうち球面上に反射型のホログラムを配
列したものと、円筒または角筒の側面にホログラ
ムを配列したものは、ホログラムの無収差再生系
を利用しているので1走査当り10000点を超える
解像点数を得ることも可能であり、高解像度のレ
ーザ走査装置の構成に有力である。しかしながら
球面や円筒の形態のホログラム光偏向器を実現す
るためには写真乳剤、ホトレジスト、ホトポリマ
ーなどの感光材料を球面や円筒面上に塗布するこ
とが必要であり、技術的困難を伴なう。また角筒
の形態のホログラム光偏向器は、個々のホログラ
ムは平板状に形成されるものの組み立てるのに高
い精度が要求され、また風損が大きいために高速
化に限界がある。
Among these, those in which reflective holograms are arranged on a spherical surface and those in which holograms are arranged on the side of a cylinder or rectangular tube use a hologram reproducing system without aberration, so they can resolve more than 10,000 points per scan. It is also possible to obtain a large number of image points, which is useful for constructing a high-resolution laser scanning device. However, in order to realize a hologram optical deflector in the form of a sphere or cylinder, it is necessary to coat a photosensitive material such as a photographic emulsion, a photoresist, or a photopolymer on the sphere or cylinder, which is technically difficult. Furthermore, in the case of a hologram optical deflector in the form of a rectangular cylinder, although the individual holograms are formed in the shape of a flat plate, high precision is required to assemble them, and there is a limit to how high the speed can be increased due to large windage losses.

一方、円板の円周方向にホログラムほ配列した
ものは、構成が非常に簡単なので上述したような
欠点もなく、実用化に最も適した形態と考えられ
ている。しかしこれまでのところ、ホログラム光
偏向器を構成する複数のホログラムから種々の方
向の走査線を得られるようにしてバーコードリー
ダーの中に組み込んだ場合以外には実用化の例は
ない。その最も大きな理由は、1つの平面上に走
査線を得ようとすると走査線が弓形状となり文書
情報や画像情報の記録や読み取りの装置としては
具合が悪いためである。
On the other hand, a configuration in which holograms are arranged in the circumferential direction of a disk has a very simple structure, does not have the above-mentioned drawbacks, and is considered to be the most suitable form for practical use. However, so far, there has been no example of practical use other than the case where scanning lines in various directions can be obtained from a plurality of holograms constituting a hologram optical deflector and the holographic optical deflector is incorporated into a barcode reader. The biggest reason for this is that when trying to obtain scanning lines on one plane, the scanning lines become arcuate, which is inconvenient as a device for recording or reading document information or image information.

円板形状のホログラム光偏向器におけるこの問
題を解決しようという試みは米国特許4289371号
明細書、米国特許3721486号明細書、及び特開昭
57−85018号明細書に記載されている。
Attempts to solve this problem in disk-shaped hologram optical deflectors are disclosed in U.S. Pat. No. 4,289,371, U.S. Pat.
It is described in the specification of No. 57-85018.

米国特許4289371号明細書に記載された方法は、
用いる光ビームの波長λと回折格子(ホログラ
ム)の周期d(一定)との比λ/dの値を1ない
し1.618とする方法である。しかしこの方法では、
例えば用いる光ビームの波長λを0.488μmとする
と、回折格子の周期dを0.30μmないし0.49μmと
する必要がある。このように微細な周期をもつ回
折格子(ホログラム)を高品質に製作することは
容易ではない。その第1の問題は、ホログラフイ
露光装置の振動やその周囲の空気の擾乱を厳しく
除去しなければならないことであり、上記した周
期のホログラフイツクな格子パターンを記録材料
上に忠実に露光することの難しさは当該技術分野
に関係する者にとつては周知のことである。また
第2の問題は、上記した周期の回折格子を記録す
るための実用性のある記録材料を得ることが難し
い、ということである。
The method described in US Pat. No. 4,289,371 is
This is a method in which the ratio λ/d between the wavelength λ of the light beam used and the period d (constant) of the diffraction grating (hologram) is set to 1 to 1.618. But with this method,
For example, if the wavelength λ of the light beam used is 0.488 μm, the period d of the diffraction grating must be 0.30 μm to 0.49 μm. It is not easy to manufacture a high-quality diffraction grating (hologram) with such a fine period. The first problem is that the vibration of the holographic exposure device and the disturbance of the surrounding air must be strictly eliminated, and the holographic grating pattern with the above-mentioned period must be faithfully exposed onto the recording material. The difficulties are well known to those in the art. The second problem is that it is difficult to obtain a practical recording material for recording a diffraction grating having the period described above.

米国特許3721486号明細書に記載された方法は、
互に等しい速さで逆方向に回転する2つの回折格
子によつて光ビームを2度回折させる方法であ
る。しかし2つの回折格子を互に等しい速さで逆
方向に回転させるためには複雑な回転伝達機構が
必要になり、技術的に難しい問題が残る。
The method described in US Pat. No. 3,721,486 is
This is a method in which a light beam is diffracted twice by two diffraction gratings that rotate in opposite directions at equal speeds. However, in order to rotate the two diffraction gratings at equal speeds and in opposite directions, a complicated rotation transmission mechanism is required, and a technically difficult problem remains.

特開昭57−85018号明細書に記載された方法は、
互に同期して回転する2種類の回折格子(ホログ
ラム)によつて光ビームを2度回折させる方法で
ある。しかしこの方法は、互に所定の関係で結ば
れた2種類の回折格子が必要であり、複雑であ
る。
The method described in Japanese Patent Application Laid-Open No. 57-85018 is
This is a method in which a light beam is diffracted twice using two types of diffraction gratings (holograms) that rotate in synchronization with each other. However, this method is complicated because it requires two types of diffraction gratings connected to each other in a predetermined relationship.

ところで円板形状のホログラム光偏向器では、
円板の回転角度と光ビームの偏向角度とは一般に
は比例関係にない。従つて偏向された光ビームを
集束レンズで集束して走査面上を光点走査する場
合、光点は一般には等速度で移動しない。走査面
上で光点の移動速度をほぼ一定にする方法はJ.C.
Wyant氏がApplied Optics誌、第14巻、第5号
の第1057頁ないし第1058頁に述べている。この方
法は集束レンズとしてデイストーシヨンのないレ
ンズを用い近似的に走査面での光点移動速度を一
定にする方法であつて、厳密ではない。
By the way, in a disk-shaped hologram optical deflector,
Generally, the rotation angle of the disk and the deflection angle of the light beam are not in a proportional relationship. Therefore, when a deflected light beam is focused by a focusing lens to scan a light spot on a scanning surface, the light spot generally does not move at a constant speed. The method of keeping the moving speed of the light spot almost constant on the scanning plane is JC.
Wyant in Applied Optics, Volume 14, Issue 5, pp. 1057-1058. This method uses a distortion-free lens as a focusing lens to approximately keep the light spot moving speed on the scanning plane constant, and is not exact.

本発明の第1の目的は、ホログラムを代表とす
る回折格子から成る回転板状の光偏向器を用いた
光ビーム走査装置を構成するに当り、平面上にお
いて弓形状でない直線状の走査線を得ることにあ
る。
A first object of the present invention is to form a linear scanning line that is not arch-shaped on a plane when constructing an optical beam scanning device that uses a rotating plate-shaped optical deflector made of a diffraction grating, typically a hologram. It's about getting.

本発明の第2の目的は、上記した第1の目的を
達成するのに、比較的大きな格子周期をもつた回
折格子を用いることを可能にし、もつて回折格子
の作成を容易にすることにある。
A second object of the present invention is to enable the use of a diffraction grating with a relatively large grating period in order to achieve the first object described above, thereby facilitating the creation of the diffraction grating. be.

本発明の第3の目的は、上記した第1の目的を
達成するのに、複雑な回転伝達機構を不要にする
ことにある。
A third object of the present invention is to eliminate the need for a complicated rotation transmission mechanism in order to achieve the above first object.

本発明の第4の目的は、上記した第1の目的を
達成するのに、2種類の回折格子を必要とせず、
1種類の回折格子のみで済ませることである。
A fourth object of the present invention is to achieve the above-mentioned first object without requiring two types of diffraction gratings,
This means that only one type of diffraction grating is required.

本発明の第5の目的は、上記した第2の目的を
達成することにより、必ずしもホロクラフイの技
法を必要とせず、ルーリングの技術にても作成し
うる回折格子を用いることを可能にすることにあ
る。
A fifth object of the present invention is to achieve the above-mentioned second object, thereby making it possible to use a diffraction grating that does not necessarily require the holograph technique and can also be created using the ruling technique. be.

本発明の第6の目的は走査面における光点の走
査速度を高精度で一定にすることにある。
A sixth object of the present invention is to make the scanning speed of the light spot on the scanning plane constant with high precision.

本発明の第7の目的は、上記した第1および第
6の目的を達成することによつて装置の性能を高
めると共に、上記した第2,第3,第4,第5の
目的を達成することによつて装置の信頼性を高
め、低価格化を実現することにある。
A seventh object of the present invention is to improve the performance of the device by achieving the above-mentioned first and sixth objects, as well as to achieve the second, third, fourth, and fifth objects. The aim is to improve the reliability of the device and reduce the cost.

本発明は少なくとも1個の等ピツチで直線状の
平面回折格子が設けられた回転板に、この回転板
の回転軸を含む面を入射面としこの回転軸に平行
な光ビーム(この光ビームの波長は前記平面回折
格子の格子周期のほぼ2分の1である)を入射さ
せ、前記平面回折格子によつて回折された光ビー
ムを前記入射面と垂直な平面反射面によつて反射
させて前記入射面への投影が前記回折された光ビ
ームと180°の角度をなすように再び前記平面回折
格子に導き、再度前記平面回折格子によつて回折
された光ビームをθレンズによつて走査面上に集
束し、集束された光点が前記回転板の回転に伴な
つて走査面を走査するようにしたことを特徴とす
る光ビーム走査装置である。
The present invention uses a rotating plate provided with at least one linear planar diffraction grating with equal pitch, and a light beam parallel to the rotating axis (the light beam is a wavelength of which is approximately half the grating period of the planar diffraction grating, and the light beam diffracted by the planar diffraction grating is reflected by a planar reflective surface perpendicular to the incident surface. Guide the light beam again to the plane diffraction grating so that the projection onto the incident surface forms an angle of 180° with the diffracted light beam, and scan the light beam diffracted by the plane diffraction grating again by the θ lens. A light beam scanning device is characterized in that the light beam is focused on a surface, and the focused light spot scans the scanning surface as the rotary plate rotates.

以下本発明を詳細に説明する。 The present invention will be explained in detail below.

第1図は本発明に用いられる回転板の一例を示
す。回転板1の上には、その回転軸2の周囲に図
面から明らかなように複数個の等ピツチで直線状
の平面回折格子3−1,3−2,……,3−6が
設けられている。回折格子の数は必ずしも本例の
ように6個に限られることはなく、1個以上の任
意の数であつてよい。また回折格子の格子線の方
向は回転板1の回転方向に接する方向が好まし
い。
FIG. 1 shows an example of a rotating plate used in the present invention. As is clear from the drawing, a plurality of linear planar diffraction gratings 3-1, 3-2, . ing. The number of diffraction gratings is not necessarily limited to six as in this example, but may be any number greater than or equal to one. Further, the direction of the grating lines of the diffraction grating is preferably a direction tangent to the rotation direction of the rotary plate 1.

回折格子は種々の方法で作成しうるが、ホログ
ラフイの技法で直接作成する場合を第2図で説明
する。表面に記録媒体を設けた回転板1に対し、
互にコヒーレントな波長λの平面波4および5を
入射させる。平面波4および5が干渉して形成す
る干渉縞を一定のマスクを通して所定の回数だけ
露光する。この回数は回転板上に設けるべき回折
格子の数に等しく、例えば第1図のように6個の
回折格子を設ける場合には6回の露光を行なう。
各露光の間に回転板を所定角度(6個の回折格子
を設ける場合には60°)だけ回転する。このよう
に露光して後、現像など記録媒体に適した処理を
施せば所要の回折格子が設けられた回転板が得ら
れる。露光時における2つの平面波4および5の
入射角度を、法線6に対して互に対称の等しい角
度αとすると、格子(干渉縞)の周期dは、 d=λ/(2sinα) ……(1) となる。一例として平面波の波長をλ=
0.488μm、入射角度をα=14.5°とすると、格子周
期はd=0.976μmとなる。また格子(干渉縞)の
方向は2つの平面波4および5の主光線が作る面
(第2図では紙面)に垂直である。
Diffraction gratings can be created by various methods, but the case where they are directly created using holographic techniques will be explained with reference to FIG. For a rotating plate 1 with a recording medium provided on its surface,
Plane waves 4 and 5 having mutually coherent wavelengths λ are made incident. Interference fringes formed by the interference of the plane waves 4 and 5 are exposed a predetermined number of times through a certain mask. This number of times is equal to the number of diffraction gratings to be provided on the rotating plate; for example, when six diffraction gratings are provided as shown in FIG. 1, exposure is performed six times.
The rotary plate is rotated by a predetermined angle (60° in the case of six diffraction gratings) between each exposure. After exposure in this manner, a process suitable for the recording medium, such as development, is performed to obtain a rotary plate provided with the required diffraction grating. If the incident angles of the two plane waves 4 and 5 during exposure are equal and symmetrical angles α with respect to the normal 6, then the period d of the grating (interference fringes) is d=λ/(2sinα)...( 1) becomes. As an example, the wavelength of a plane wave is λ=
If the grating period is 0.488 μm and the incident angle is α=14.5°, then the grating period is d=0.976 μm. Further, the direction of the grating (interference fringes) is perpendicular to the plane (the paper plane in FIG. 2) formed by the chief rays of the two plane waves 4 and 5.

第3図は本発明の光ビーム走査装置一実施例を
示す側面図である。回転板1の回転軸2を含む面
を入射面とし、且つ回転軸2に平行な波長λ′のコ
リメートされた光ビーム7を入射させる。すなわ
ち本発明では回転軸2と入射光ビーム7とを含む
面として入射面を定義する。第3図では一般性を
失うことなく入射面を紙面内にとつた。入射光ビ
ーム7を回転板1の回転軸2に平行にとつてい
る、すなわち入射光ビーム7は回折格子3の面に
垂直になつているので、格子の方向が入射面(第
3図では紙面)に垂直な状態のときに回折されて
生ずる光ビーム8aの回折角α′は、 d=λ′/sinα′ ……(2) で決まる角度となり、この光ビーム8aも入射面
内にある。ここでdは回折格子3の格子周期であ
る。しかし回転板1の回転に伴なつて格子の方向
が入射面に垂直な方向から変化した状態のときに
回折されて生ずる光ビーム8bは入射面内にはな
くなり、入射面に垂直な方向の成分をもつ。この
ことは光ビーム8bが入射面に垂直な方向に偏向
されることを意味する。ところが光ビーム8b
は、入射面に垂直な方向に偏向されるのと同時に
入射面への投影角度βも格子の方向と共に変化し
てα′とは等しくなくなる。このため光ビーム8a
および8bを直接集束レンズによつて集束し、走
査面上に光点を形成させて回転板1の回転によつ
て走査線を描かせると、走査線は直線から偏倚し
て弓形状化を生ずる。このため、本発明では走査
面における走査線の弓形状化を除去するために、
回折格子によつて1度回折されて生じた光ビーム
を再びその回折格子に導き、再度回折させる。そ
の方法の具体例は第3図に示したように、光ビー
ム8aおよび8bを、入射面に垂直な2個の平面
反射面9および10を互にそれらの反射面が直角
をなくすように配置して反射させ、再度回折格子
3に導く。こうすることにより、光ビーム8aが
再び回折格子3に導かれた時も入射面(第3図の
紙面)内にあり、その再入射角はα′であるので、
再度回折格子3によつて回折されて生じる光ビー
ム11aは入射面内にあつてしかも回折格子3の
面に垂直である。一方光ビーム8bが再び回折格
子3に導かれた時の入射面への投影角度はβであ
り、再度回折格子3によつて回折されて生じる光
ビーム11bの入射面への投影が回折格子3の面
となす角度γは、興味深いことに正確に90°とな
る。このことは、光ビーム11aおよび11bを
集束レンズ13によつて走査面14に集束させた
時、Y方向に関して正に同一の位置15に光点が
形成され、従つて走査線の弓形状化が完全に除去
されることを示す。
FIG. 3 is a side view showing one embodiment of the light beam scanning device of the present invention. The surface of the rotary plate 1 that includes the rotation axis 2 is used as an incident surface, and a collimated light beam 7 with a wavelength λ' parallel to the rotation axis 2 is made incident. That is, in the present invention, the entrance plane is defined as a plane that includes the rotation axis 2 and the incident light beam 7. In FIG. 3, the plane of incidence is taken within the plane of the paper without loss of generality. The incident light beam 7 is parallel to the rotation axis 2 of the rotating plate 1, that is, the incident light beam 7 is perpendicular to the plane of the diffraction grating 3, so that the direction of the grating is aligned with the incident plane (in FIG. The diffraction angle α' of the light beam 8a that is generated when the light beam is perpendicular to ) is an angle determined by d=λ'/sin α' (2), and this light beam 8a is also within the plane of incidence. Here, d is the grating period of the diffraction grating 3. However, when the direction of the grating changes from the direction perpendicular to the plane of incidence as the rotating plate 1 rotates, the diffracted light beam 8b disappears within the plane of incidence, and the component in the direction perpendicular to the plane of incidence disappears. have. This means that the light beam 8b is deflected in a direction perpendicular to the plane of incidence. However, light beam 8b
is deflected in a direction perpendicular to the plane of incidence, and at the same time the projection angle β on the plane of incidence changes with the direction of the grating and becomes no longer equal to α'. Therefore, the light beam 8a
and 8b are directly focused by a focusing lens to form a light spot on the scanning surface and a scanning line is drawn by rotating the rotary plate 1, the scanning line deviates from a straight line and takes on an arched shape. . Therefore, in the present invention, in order to eliminate the arching of the scanning line on the scanning plane,
A light beam that has been diffracted once by the diffraction grating is guided back to the diffraction grating and diffracted again. A specific example of this method is as shown in FIG. 3, in which the light beams 8a and 8b are arranged between two flat reflecting surfaces 9 and 10 perpendicular to the plane of incidence so that the reflecting surfaces are not at right angles to each other. It is reflected and guided to the diffraction grating 3 again. By doing this, when the light beam 8a is guided to the diffraction grating 3 again, it remains within the incident plane (the plane of the paper in FIG. 3), and its re-incidence angle is α', so
The light beam 11a generated by being diffracted again by the diffraction grating 3 is within the plane of incidence and perpendicular to the plane of the diffraction grating 3. On the other hand, when the light beam 8b is guided to the diffraction grating 3 again, the projection angle on the incidence plane is β, and the projection angle of the light beam 11b generated by being diffracted by the diffraction grating 3 again on the incidence plane is Interestingly, the angle γ with the plane is exactly 90°. This means that when the light beams 11a and 11b are focused on the scanning surface 14 by the focusing lens 13, a light spot is formed at exactly the same position 15 in the Y direction, and therefore the scanning line is shaped into an arch. Indicates complete removal.

ところで回転板1の回転に伴ない格子の方向が
入射面に垂直な方向から角度φだけ変化したと
き、回折格子3によつて2回の回折を経た光ビー
ム11bが入射面となす角θは、第3図に示した
実施例の場合には、 θ=sin-1(2λ′/dsinφ) ……(3) で与えられることが解析により判明した。本発明
の極めて特徴的な側面は(3)式より導かれる。すな
わち d=2λ′ ……(4) の場合、すなわち回折格子3の格子周期dを光ビ
ームの波長λ′の2倍に等しくすることによつて、 θ=φ ……(5) となり、偏向された光ビーム11bの偏向角度を
回折格子3の回転角度、つまり回転板1の回転角
度と比例させることができるのである。従つて回
転板1を等角速度で回転させ、集束レンズ13と
してこの分野で今や手軽に入手できるようになつ
てきたいわゆるθレンズを用いることにより、走
査面14上に集束された光点はX方向に等速度で
移動すると共に、前述したように走査線の弓形状
化は全く生じない。光ビームの波長がλ′=
0.488μmの場合には、回折格子の格子周期はd=
0.976μmとなり、これを格子パターンの空間周波
数に直すと1/d=1024lp/mmとなる。このよう
な回折格子はホログラフイの技法を用いればもち
ろんのこと、さらにホログラフイの技法以外でも
ルーリングの技法によつて容易に作成することが
できる。
By the way, when the direction of the grating changes by an angle φ from the direction perpendicular to the plane of incidence as the rotary plate 1 rotates, the angle θ that the light beam 11b that has been diffracted twice by the diffraction grating 3 makes with the plane of incidence is In the case of the embodiment shown in FIG. 3, the analysis revealed that θ=sin -1 (2λ'/dsinφ) (3). A very characteristic aspect of the present invention is derived from equation (3). In other words, in the case of d=2λ'...(4), by making the grating period d of the diffraction grating 3 equal to twice the wavelength λ' of the light beam, θ=φ...(5), and the deflection The deflection angle of the light beam 11b can be made proportional to the rotation angle of the diffraction grating 3, that is, the rotation angle of the rotating plate 1. Therefore, by rotating the rotating plate 1 at a constant angular velocity and using a so-called θ lens, which is now readily available in this field, as the focusing lens 13, the light spot focused on the scanning surface 14 is focused in the X direction. The scanning line moves at a constant speed, and as described above, the scanning line does not arch at all. The wavelength of the light beam is λ′=
In the case of 0.488μm, the grating period of the diffraction grating is d=
This becomes 0.976 μm, and when converted to the spatial frequency of the grating pattern, 1/d=1024 lp/mm. Such a diffraction grating can of course be created easily by using a holographic technique, but also by a ruling technique other than a holographic technique.

なお、本発明では(2)式と(4)式から α′=30° ……(6) となつている。 In addition, in the present invention, from equations (2) and (4), α′=30°……(6) It is becoming.

以上述べた第3図の実施例では、反射面が互に
垂直な2個の反射面9および10によつて光ビー
ムを回折格子に再度導いたが、反射面の数は2個
に限られることはない。要は1度目の回折によつ
て生じた光ビーム8aおよび8bが、再度回折格
子に導かれた時には、されらの入射面への投影に
おいて、各々180°の角度をなすように反射面を構
成すればよい。また反射面としては光学ガラスの
基板の表面あるいは裏面に反射膜を設けたものや
プリズムの全反射を利用したものなど種々の具体
例がある。
In the embodiment shown in FIG. 3 described above, the light beam is guided again to the diffraction grating by the two reflecting surfaces 9 and 10 whose reflecting surfaces are perpendicular to each other, but the number of reflecting surfaces is limited to two. Never. In short, when the light beams 8a and 8b generated by the first diffraction are guided to the diffraction grating again, the reflecting surfaces are configured so that they each form an angle of 180° when projected onto the incident surface. do it. In addition, there are various specific examples of the reflective surface, such as one in which a reflective film is provided on the front or back surface of an optical glass substrate, and one in which total reflection of a prism is utilized.

さらに回折格子を作成する方法は、ホログラフ
イの技法を直接適用する方法ばかりでなく、1枚
の原ホログラムを用いて写真的に複製したりレプ
リカを作成する方法や、全くホログラフイの技法
とは別にルーリングの技法によつて作成したり、
それを原板としてレプリカを作成する方法が採用
できる。
Furthermore, methods for creating diffraction gratings include not only direct application of holographic techniques, but also methods of photocopying or creating replicas using a single original hologram, and methods that are completely independent of holographic techniques. Created using the technique of
A method of creating a replica using the original plate can be adopted.

さらにまた回折格子が設けられる回転板は必ず
しも円形でなくてもよく、多角形であつてもよ
い。
Furthermore, the rotary plate on which the diffraction grating is provided does not necessarily have to be circular, but may be polygonal.

このようにして本発明によれば回折格子を利用
した回転板形状の光偏向器を用いた光ビーム走査
装置において、走査線の弓形状化を完全に除去す
ることができる。
In this way, according to the present invention, in a light beam scanning device using a rotating plate-shaped optical deflector using a diffraction grating, it is possible to completely eliminate arching of the scanning line.

また走査線の弓形状化を補正するに際して比較
的大きな格子周期(実施例では格子周期d=
0.976μmの場合を述べた)の回折格子を用いるこ
とができ、回折格子の作成が非常に容易になつて
種々の技法で対応できる。
In addition, when correcting the arcuate shape of the scanning line, a relatively large grating period (in the example, the grating period d=
A diffraction grating of 0.976 μm (described above) can be used, making it extremely easy to create a diffraction grating and making it possible to use various techniques.

さらに本発明では1枚の回転板を回転させれば
よいので、複雑な回転伝達機構を必要としない。
Furthermore, in the present invention, since it is sufficient to rotate one rotary plate, a complicated rotation transmission mechanism is not required.

さらにまた本発明では1種の回折格子のみで走
査線の弓形状化を補正でき、簡単である。
Furthermore, in the present invention, arching of the scanning line can be corrected simply by using only one type of diffraction grating.

さらにまた本発明によれば走査面における光点
の走査速度を高精度で一定にすることができる。
Furthermore, according to the present invention, the scanning speed of the light spot on the scanning surface can be kept constant with high precision.

以上述べたように本発明によれば高性能で高い
信頼性の光ビーム走査装置を、簡易に低価格で実
現することができる。
As described above, according to the present invention, a high performance and highly reliable optical beam scanning device can be easily realized at a low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いられる回転板の一例を示
す平面図、第2図は本発明に用いられる平面回折
格子を作成する一方法を示す側面図、第3図は本
発明の光ビーム走査装置の実施例を示す側面図で
ある。 1……回転板、2……回転軸、3……平面回折
格子、9,10……平面反射面、13……θレン
ズ。
FIG. 1 is a plan view showing an example of a rotary plate used in the present invention, FIG. 2 is a side view showing one method for creating a plane diffraction grating used in the present invention, and FIG. 3 is a light beam scanning method of the present invention. FIG. 2 is a side view showing an embodiment of the device. 1... Rotating plate, 2... Rotating shaft, 3... Planar diffraction grating, 9, 10... Planar reflecting surface, 13... θ lens.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも1個の等ピツチで直線状の単純平
面回折格子が設けられた回転板、この回転板の回
転軸を含む面を入射面としこの回転軸に平行に、
前記平面回折格子周期のほぼ2分の1の波長をも
つ光ビームを入射させる光ビーム源、前記平面回
折格子によつて回折された光ビームを前記入射面
と垂直な平面反射面によつて反射させて前記入射
面への投影が前記回折された光ビームと180°の角
度をなすように再び前記平面回折格子に導く光学
系、および再度前記平面回折格子によつて回折さ
れた光ビームを走査面上に集束するθレンズから
なり、集束された光点が前記回転板の回転に伴な
つて前記走査面を走査するようにしたことを特徴
とする光ビーム走査装置。
1 A rotating plate provided with at least one equally spaced linear simple plane diffraction grating, with the surface including the rotational axis of this rotating plate as the incident plane and parallel to this rotational axis,
a light beam source that makes incident a light beam having a wavelength approximately half the period of the planar diffraction grating; a light beam diffracted by the planar diffraction grating is reflected by a planar reflective surface perpendicular to the incident surface; an optical system that guides the light beam again to the plane diffraction grating so that the projection onto the incident surface makes an angle of 180° with the diffracted light beam, and scans the light beam diffracted by the plane diffraction grating again. 1. A light beam scanning device comprising a θ lens that focuses on a surface, and a focused light spot scans the scanning surface as the rotary plate rotates.
JP57216742A 1982-12-10 1982-12-10 Optical beam scanner Granted JPS59105611A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57216742A JPS59105611A (en) 1982-12-10 1982-12-10 Optical beam scanner
EP83112423A EP0111333A1 (en) 1982-12-10 1983-12-09 Light beam scanning apparatus
DE1983112423 DE111333T1 (en) 1982-12-10 1983-12-09 LIGHT BEAM SCREENING DEVICE.
US06/560,004 US4632499A (en) 1982-12-10 1983-12-09 Light beam scanning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57216742A JPS59105611A (en) 1982-12-10 1982-12-10 Optical beam scanner

Publications (2)

Publication Number Publication Date
JPS59105611A JPS59105611A (en) 1984-06-19
JPH0587806B2 true JPH0587806B2 (en) 1993-12-20

Family

ID=16693216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57216742A Granted JPS59105611A (en) 1982-12-10 1982-12-10 Optical beam scanner

Country Status (1)

Country Link
JP (1) JPS59105611A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785018A (en) * 1980-11-17 1982-05-27 Yokogawa Hokushin Electric Corp Optical scanner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785018A (en) * 1980-11-17 1982-05-27 Yokogawa Hokushin Electric Corp Optical scanner

Also Published As

Publication number Publication date
JPS59105611A (en) 1984-06-19

Similar Documents

Publication Publication Date Title
CA1075052A (en) Straight-line optical scanner using rotating holograms
JPH09500217A (en) Holographic recording and scanning system and method
JPH0335647B2 (en)
JPS6218896B2 (en)
JPH01500226A (en) scanning device
JPS5845003B2 (en) laser beam
US4337994A (en) Linear beam scanning apparatus especially suitable for recording data on light sensitive film
US4626062A (en) Light beam scanning apparatus
US5039183A (en) Holographic laser scanner
JPS63244013A (en) Optical scanner
EP0277883A2 (en) Holographic deflection device
US4632499A (en) Light beam scanning apparatus
JPH0587806B2 (en)
JPH0517530B2 (en)
US4621891A (en) Light beam scanning apparatus
JPS6212893B2 (en)
EP0111333A1 (en) Light beam scanning apparatus
JPS59164525A (en) Light beam scanner
JPS59157613A (en) Light beam scanner
JP2868025B2 (en) Hologram scanner
JPS5872125A (en) Optical scanning device
JP3355722B2 (en) How to create a diffraction grating pattern
JPH03208011A (en) Light beam scanner
JPS60194419A (en) Method and apparatus for scanning optical beam
EP0223508A2 (en) Scanner system having rotating deflector hologram