JPH0574717A - Compound semiconductor crystal growth method - Google Patents
Compound semiconductor crystal growth methodInfo
- Publication number
- JPH0574717A JPH0574717A JP23065691A JP23065691A JPH0574717A JP H0574717 A JPH0574717 A JP H0574717A JP 23065691 A JP23065691 A JP 23065691A JP 23065691 A JP23065691 A JP 23065691A JP H0574717 A JPH0574717 A JP H0574717A
- Authority
- JP
- Japan
- Prior art keywords
- compound semiconductor
- catalyst
- atomic layer
- arsenic
- semiconductor crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、化合物半導体結晶成長
方法の改良、特に、原料ガスの反応効率を高めて少量の
原料ガスで良好な原子層エピタキシを可能にする改良に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method for growing a compound semiconductor crystal, and more particularly to an improved method for increasing the reaction efficiency of a raw material gas to enable good atomic layer epitaxy with a small amount of the raw material gas.
【0002】電子デバイスの微細化を進めてその性能を
向上し、更には従来のバルク材料にはない物性を実現し
て新しい機能を有する電子デバイスを開発するなどの目
的で化合物半導体結晶及びその不純物濃度を原子層単位
で制御することが強く望まれている。Compound semiconductor crystals and impurities thereof are used for the purpose of developing electronic devices having new functions by advancing the miniaturization of electronic devices to improve their performance, and also to realize physical properties not found in conventional bulk materials. It is strongly desired to control the concentration in atomic layer units.
【0003】[0003]
【従来の技術】図2に、原子層エピタキシャル成長装置
の構成図を示す。図において、1は石英反応管であり、
2は基板3を保持するカーボン製サセプタであり、4は
基板3を加熱する高周波加熱器であり、5、6、7はそ
れぞれ石英反応管1へ供給するガスを切り換える切り換
えバルブであり、8は原料を気化するバブラであり、9
は排気口であり、10は石英反応管1内の圧力を制御する
圧力制御手段である。2. Description of the Related Art FIG. 2 shows a schematic diagram of an atomic layer epitaxial growth apparatus. In the figure, 1 is a quartz reaction tube,
2 is a carbon susceptor for holding the substrate 3, 4 is a high-frequency heater for heating the substrate 3, 5, 6, and 7 are switching valves for switching the gas supplied to the quartz reaction tube 1, and 8 is It is a bubbler that vaporizes raw materials.
Is an exhaust port, and 10 is a pressure control means for controlling the pressure in the quartz reaction tube 1.
【0004】例えばガリウムヒ素(GaAs)結晶を成
長する場合には、ガリウム原料としてトリメチルガリウ
ム((CH3 )3 Ga)を使用し、ヒ素原料としてアル
シン(AsH3 )を使用する。高周波加熱器4を使用し
て基板3を500℃の温度に加熱し、表1に示すスケジ
ュールに従ってパージ用の水素ガスと原料ガスとを交互
に石英反応管1内に供給する工程を繰り返し実行する。
すなわち、まず切り換えバルブ7を介して水素ガスを3
秒間石英反応管1内に供給してパージした後、3℃の温
度に保持されたバブラ8を使用して(CH3 )3 Gaを
気化させ、気化した(CH3 )3 Gaを切り換えバルブ
5を介して供給量40SCCMをもって4秒間石英反応
管1内に供給する。次に、再び水素ガスを3秒間供給し
てパージした後、切り換えバルブ6を介してAsH3 を
供給量xSCCMをもって3秒間供給する。水素や原料
ガスは、石英反応管1内に供給されていない期間中は切
り換えバルブ5、6、7を介してそれぞれ排気されてい
る。また、石英反応管1内の圧力は圧力制御手段10によ
って20Torr程度に制御される。For example, when growing a gallium arsenide (GaAs) crystal, trimethylgallium ((CH 3 ) 3 Ga) is used as a gallium raw material and arsine (AsH 3 ) is used as an arsenic raw material. The process of heating the substrate 3 to a temperature of 500 ° C. using the high frequency heater 4 and alternately supplying the hydrogen gas for purging and the raw material gas into the quartz reaction tube 1 is repeated according to the schedule shown in Table 1. ..
That is, first, hydrogen gas is supplied to the
After supplying for 2 seconds into the quartz reaction tube 1 and purging, (CH 3 ) 3 Ga is vaporized using a bubbler 8 held at a temperature of 3 ° C., and the vaporized (CH 3 ) 3 Ga is switched to a valve 5. Is supplied to the quartz reaction tube 1 for 4 seconds with a supply amount of 40 SCCM. Next, hydrogen gas is again supplied for 3 seconds to purge, and then AsH 3 is supplied through the switching valve 6 for 3 seconds with the supply amount xSCCM. Hydrogen and source gas are exhausted through the switching valves 5, 6, and 7 while the quartz reaction tube 1 is not supplied. The pressure inside the quartz reaction tube 1 is controlled to about 20 Torr by the pressure control means 10.
【0005】[0005]
【表1】 この成長結果から1サイクルあたりの成長膜厚の1分
子層の厚さに対する比とAsH3 の供給量(x)との関
係を求めると図4に示すグラフが得られる。[Table 1] From this growth result, the relationship between the ratio of the growth film thickness per cycle to the thickness of the monolayer and the supply amount (x) of AsH 3 is obtained, and the graph shown in FIG. 4 is obtained.
【0006】なお、(CH3 )3 Gaについては、図3
に示すように供給時間を4秒間以上にすれば1サイクル
あたりの成長膜厚が1分子層厚になることが確認されて
いる。As for (CH 3 ) 3 Ga, FIG.
It has been confirmed that the growth film thickness per cycle becomes one molecular layer thickness when the supply time is 4 seconds or more, as shown in FIG.
【0007】[0007]
【発明が解決しようとする課題】原子層エピタキシにお
いては、成長に寄与する反応は基板表面のみで発生し、
しかも反応温度は低く設定されている。また、原料ガス
は石英反応管1内に供給されていない期間中は装置外に
排気されている。したがって原子層エピタキシにおける
原料ガスの反応効率は通常の気相成長法に比べて著しく
低い。特に、ヒ素の原料であるAsH3 の場合には、図
4に示すように供給量を200SCCM以下に低減する
ことができないので、反応効率が極めて低い。In atomic layer epitaxy, reactions that contribute to growth occur only on the substrate surface,
Moreover, the reaction temperature is set low. Further, the raw material gas is exhausted to the outside of the apparatus while it is not being supplied into the quartz reaction tube 1. Therefore, the reaction efficiency of the source gas in atomic layer epitaxy is remarkably lower than that in the ordinary vapor phase growth method. Particularly, in the case of AsH 3 which is a raw material of arsenic, the supply amount cannot be reduced to 200 SCCM or less as shown in FIG. 4, so that the reaction efficiency is extremely low.
【0008】本発明の目的は、この欠点を解消すること
にあり、原料ガスの反応効率を高めて少量の原料ガスで
良質の原子層エピタキシを可能にする化合物半導体結晶
成長方法を提供することにある。An object of the present invention is to eliminate this drawback, and to provide a compound semiconductor crystal growth method which improves the reaction efficiency of the source gas and enables high quality atomic layer epitaxy with a small amount of the source gas. is there.
【0009】[0009]
【課題を解決するための手段】上記の目的は、化合物半
導体を構成する元素のそれぞれの原料ガスを交互に成長
装置に供給してなす化合物半導体結晶成長方法におい
て、前記の成長装置内に触媒を導入することによって達
成される。なお、前記の触媒は白金、ニッケル、モリブ
デン、または、タングステンよりなることが好ましく、
また、前記の触媒を特定の原料ガスの供給に同期させて
加熱することが好ましい。そして、前記の化合物半導体
を構成する元素としてはガリウムとヒ素とが好適であ
り、前記の特定の原料ガスとしてはヒ素の原料ガスが好
適である。SUMMARY OF THE INVENTION The above-mentioned object is to provide a compound semiconductor crystal growth method in which source gases of elements constituting a compound semiconductor are alternately supplied to a growth apparatus, and a catalyst is provided in the growth apparatus. It is achieved by introducing. The catalyst is preferably platinum, nickel, molybdenum, or tungsten,
Further, it is preferable to heat the catalyst in synchronization with the supply of the specific raw material gas. Further, gallium and arsenic are preferable as the elements constituting the compound semiconductor, and arsenic source gas is preferable as the specific source gas.
【0010】[0010]
【作用】例えばGaAs結晶を成長する場合に、ヒ素の
原料として供給されるAsH3 は、白金等の触媒作用に
よって分解が促進されてヒ素(As)の供給効率が向上
するので、少量のAsH3 供給量で原子層成長が可能に
なる。なお、触媒を加熱することによってAsH3 の分
解をさらに促進することができるが、ガリウムの原料で
ある(CH3 )3Gaの分解が促進されると、セルフリ
ミッティング効果が得られなくなり、好ましくないの
で、この場合にはAsH3 を供給する期間中のみ触媒を
加熱するようにする。[Action] For example, in the case of growing a GaAs crystal, AsH 3 supplied as a raw material of arsenic, because decomposed by the catalytic action of platinum or the like is promoted to improve the efficiency of supply of arsenic (As), a small amount of AsH 3 Amount of supply enables atomic layer growth. The decomposition of AsH 3 can be further promoted by heating the catalyst, but if the decomposition of (CH 3 ) 3 Ga, which is a raw material of gallium, is promoted, the self-limiting effect cannot be obtained, which is preferable. Therefore, in this case, the catalyst is heated only during the period of supplying AsH 3 .
【0011】[0011]
【実施例】以下、図面を参照して、本発明の一実施例に
係る化合物半導体結晶成長方法についてGaAs基板上
にGaAs層を原子層エピタキシャル成長する場合を例
として説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A compound semiconductor crystal growth method according to an embodiment of the present invention will be described below with reference to the drawings by taking as an example the case of atomic layer epitaxial growth of a GaAs layer on a GaAs substrate.
【0012】図1に原子層エピタキシャル成長装置の構
成図を示す。図2で示したものと同一のものは同一記号
で示してあり、11は本発明に係る触媒であり、触媒には
白金、ニッケル、モリブデン、タングステン等が使用さ
れる。12は触媒を加熱する電源である。FIG. 1 is a block diagram of an atomic layer epitaxial growth apparatus. The same parts as those shown in FIG. 2 are shown by the same symbols, and 11 is a catalyst according to the present invention, and platinum, nickel, molybdenum, tungsten or the like is used for the catalyst. 12 is a power source for heating the catalyst.
【0013】高周波加熱器4を使用して基板3を500
℃の温度に加熱し、表2に示すスケジュールに従ってパ
ージ用水素ガスと原料ガスとを交互に石英反応管1内に
供給する工程を177周期繰り返し実行する。すなわ
ち、まず切り換えバルブ7を介して水素ガスを3秒間石
英反応管1内に供給してパージした後、3℃の温度に保
持されたバブラ8を使用して(CH3 )3 Gaを気化せ
せ、気化した(CH3 ) 3 Gaを切り換えバルブ5を介
して供給量40SCCMをもって4秒間石英反応管1内
に供給する。次に、再び水素ガスを3秒間供給してパー
ジした後、切り換えバルブ6を介してAsH3 を供給量
xSCCMをもって3秒間供給する。AsH3 を供給す
る期間中は電源12を使用して触媒11を加熱する。なお、
石英反応管1内の圧力は圧力制御手段10によって20T
orrに保持される。Using the high frequency heater 4, the substrate 3 is set to 500
Heat to a temperature of ° C and follow the schedule shown in Table 2.
Hydrogen gas for raw material and source gas are alternately placed in the quartz reaction tube 1.
The supplying step is repeatedly executed for 177 cycles. Sanawa
First of all, the hydrogen gas is first passed through the switching valve 7 for 3 seconds.
After supplying into the UK reaction tube 1 and purging, keep the temperature at 3 ° C.
Use the bubbler 8 you have (CH3)3Vaporize Ga
Let it vaporize (CH3) 3Switching Ga through valve 5
Then, in the quartz reaction tube 1 for 4 seconds with a supply amount of 40 SCCM
Supply to. Next, supply hydrogen gas again for 3 seconds and
Then, the AsH via the switching valve 63Supply amount
Supply with xSCCM for 3 seconds. AsH3Supply
During a certain period, the power supply 12 is used to heat the catalyst 11. In addition,
The pressure in the quartz reaction tube 1 is 20T by the pressure control means 10.
held in orr.
【0014】[0014]
【表2】 [Table 2]
【0015】上記の成長結果から1サイクルあたりの成
長膜厚の1分子層厚に対する比とAsH3 供給量xとの
関係を求めると、図5に示すグラフが得られる。AsH
3 の供給量を3SCCM程度に減少させても原子層エピ
タキシャル成長が可能であり、AsH3 の供給量を従来
技術の1/50以下に低減することができた。From the above growth results, the relationship between the ratio of the grown film thickness per cycle to the monolayer thickness and the AsH 3 supply amount x is obtained, and the graph shown in FIG. 5 is obtained. AsH
Atomic layer epitaxial growth was possible even when the supply amount of 3 was reduced to about 3 SCCM, and the supply amount of AsH 3 could be reduced to 1/50 or less of that in the conventional technique.
【0016】なお、触媒11の設置領域は図1に示すよう
に反応管1の入口に限定されるものではなく、特定ガス
供給回路、この例においてはAsH3供給回路に設置し
てもよいことは云うまでもない。The installation area of the catalyst 11 is not limited to the inlet of the reaction tube 1 as shown in FIG. 1, but may be installed in a specific gas supply circuit, in this example, an AsH 3 supply circuit. Needless to say.
【0017】[0017]
【発明の効果】以上説明したとおり、本発明に係る化合
物半導体結晶成長方法においては、成長装置内に触媒を
導入することによって、例えばGaAsを成長する場合
には原料のAsH3 の分解が促進されてヒ素の供給効率
が向上するので、少量のAsH 3 供給量をもって原子層
エピタキシャル成長が可能になり、原子層エピタキシ技
術の実用化に大きく貢献するものである。As described above, the compound according to the present invention
In the semiconductor crystal growth method, a catalyst is
For example, when growing GaAs by introducing
Is the raw material AsH3Decomposition of arsenic is promoted and arsenic supply efficiency
As a small amount of AsH 3Atomic layer with supply
Epitaxial growth becomes possible, and atomic layer epitaxy technology
This will greatly contribute to the practical application of surgery.
【図1】本発明の化合物半導体結晶成長方法の実施に使
用される原子層エピタキシャル成長装置の構成図であ
る。FIG. 1 is a configuration diagram of an atomic layer epitaxial growth apparatus used for carrying out a compound semiconductor crystal growth method of the present invention.
【図2】従来技術の化合物半導体結晶成長方法の実施に
使用される原子層エピタキシャル成長装置の構成図であ
る。FIG. 2 is a configuration diagram of an atomic layer epitaxial growth apparatus used for carrying out a prior art compound semiconductor crystal growth method.
【図3】1サイクルあたりの成長膜厚の1分子層厚に対
する比と(CH3 )3 Gaの供給時間との関係を示すグ
ラフである。FIG. 3 is a graph showing the relationship between the ratio of the growth film thickness per cycle to the monolayer thickness and the (CH 3 ) 3 Ga supply time.
【図4】従来技術における1サイクルあたりの成長膜厚
の1分子層厚に対する比とAsH3 供給量との関係を示
すグラフである。FIG. 4 is a graph showing the relationship between the ratio of the growth film thickness per cycle to the monolayer thickness and the AsH 3 supply amount in the conventional technique.
【図5】本発明における1サイクルあたりの成長膜厚の
1分子層厚に対する比とAsH 3 供給量との関係を示す
グラフである。FIG. 5 shows the growth film thickness per cycle in the present invention.
Ratio to 1 molecular layer thickness and AsH 3Show relationship with supply
It is a graph.
1 石英反応管 2 サセプタ 3 基板 4 高周波加熱器 5、6、7 切り換えバルブ 8 バブラ 9 排気口 10 圧力制御手段 11 触媒 12 触媒加熱用電源 1 quartz reaction tube 2 susceptor 3 substrate 4 high frequency heater 5, 6, 7 switching valve 8 bubbler 9 exhaust port 10 pressure control means 11 catalyst 12 power source for catalyst heating
Claims (3)
の原料ガスを交互に成長装置に供給し、原子層単位で成
膜を行う化合物半導体結晶成長方法において、 前記成長装置内に触媒を導入してなすことを特徴とする
化合物半導体結晶成長方法。1. A compound semiconductor crystal growth method in which source gases of respective elements constituting a compound semiconductor are alternately supplied to a growth apparatus to form a film in atomic layer units, wherein a catalyst is introduced into the growth apparatus. A method for growing a compound semiconductor crystal, which comprises:
させて加熱することを特徴とする請求項1記載の化合物
半導体結晶成長方法。2. The method for growing a compound semiconductor crystal according to claim 1, wherein the catalyst is heated in synchronization with the supply of a specific source gas.
ウムとヒ素とであり、前記特定の原料ガスはヒ素の原料
ガスであることを特徴とする請求項2記載の化合物半導
体結晶成長方法。3. The compound semiconductor crystal growth method according to claim 2, wherein the elements constituting the compound semiconductor are gallium and arsenic, and the specific source gas is a source gas of arsenic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23065691A JPH0574717A (en) | 1991-09-11 | 1991-09-11 | Compound semiconductor crystal growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23065691A JPH0574717A (en) | 1991-09-11 | 1991-09-11 | Compound semiconductor crystal growth method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0574717A true JPH0574717A (en) | 1993-03-26 |
Family
ID=16911227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23065691A Withdrawn JPH0574717A (en) | 1991-09-11 | 1991-09-11 | Compound semiconductor crystal growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0574717A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7732325B2 (en) | 2002-01-26 | 2010-06-08 | Applied Materials, Inc. | Plasma-enhanced cyclic layer deposition process for barrier layers |
US7781326B2 (en) | 2001-02-02 | 2010-08-24 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
JP2012169553A (en) * | 2011-02-16 | 2012-09-06 | Tokyo Electron Ltd | Substrate processing device |
US10280509B2 (en) | 2001-07-16 | 2019-05-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
-
1991
- 1991-09-11 JP JP23065691A patent/JPH0574717A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7781326B2 (en) | 2001-02-02 | 2010-08-24 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
US10280509B2 (en) | 2001-07-16 | 2019-05-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
US7732325B2 (en) | 2002-01-26 | 2010-06-08 | Applied Materials, Inc. | Plasma-enhanced cyclic layer deposition process for barrier layers |
JP2012169553A (en) * | 2011-02-16 | 2012-09-06 | Tokyo Electron Ltd | Substrate processing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5270247A (en) | Atomic layer epitaxy of compound semiconductor | |
JP2003508932A (en) | Improved apparatus and method for growing thin films | |
JPS6134928A (en) | Growing process of element semiconductor single crystal thin film | |
JPH0574717A (en) | Compound semiconductor crystal growth method | |
JP2736655B2 (en) | Compound semiconductor crystal growth method | |
JPH05186295A (en) | Method for growing crystal | |
JPH02199820A (en) | Vapor phase treatment apparatus | |
JP3090232B2 (en) | Compound semiconductor thin film formation method | |
JPH02116120A (en) | Crystal growth method | |
JPH03185716A (en) | Method of growing compound semiconductor crystal | |
JPH02230722A (en) | Vapor growth method of compound semiconductor | |
JPH04151822A (en) | Vapor growth method for compound semiconductor organic metal | |
JP3052269B2 (en) | Vapor phase growth apparatus and growth method thereof | |
JPH0323624A (en) | Method and apparatus for vapor growth | |
JP3574494B2 (en) | Nitride compound semiconductor crystal growth method and growth apparatus | |
JPS60131968A (en) | Vapor growth deposition device | |
JPH0547668A (en) | Crystal growth method for compound semiconductor | |
JPH0547674A (en) | Apparatus and method for vapor growth | |
JPH0897149A (en) | Organic metal vapor growth method, and organic metal vapor growth device | |
JP2577543B2 (en) | Single crystal thin film growth equipment | |
JPH0529228A (en) | Atomic layer crystal deposition method and device | |
JP3063317B2 (en) | Vapor growth method of semiconductor thin film | |
JPH02203517A (en) | Selective vapor-phase epitaxy of iii-v compound semiconductor | |
JPH03119721A (en) | Crystal growth | |
JP2753832B2 (en) | III-V Vapor Phase Growth of Group V Compound Semiconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19981203 |