JPH0572976B2 - - Google Patents

Info

Publication number
JPH0572976B2
JPH0572976B2 JP61040890A JP4089086A JPH0572976B2 JP H0572976 B2 JPH0572976 B2 JP H0572976B2 JP 61040890 A JP61040890 A JP 61040890A JP 4089086 A JP4089086 A JP 4089086A JP H0572976 B2 JPH0572976 B2 JP H0572976B2
Authority
JP
Japan
Prior art keywords
measurement surface
optical sensor
output
sample
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61040890A
Other languages
Japanese (ja)
Other versions
JPS62198736A (en
Inventor
Nobuhiko Ogura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP4089086A priority Critical patent/JPS62198736A/en
Priority to US07/019,402 priority patent/US4823169A/en
Priority to DE3750963T priority patent/DE3750963T2/en
Priority to EP87102732A priority patent/EP0234579B1/en
Publication of JPS62198736A publication Critical patent/JPS62198736A/en
Publication of JPH0572976B2 publication Critical patent/JPH0572976B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N2021/4776Miscellaneous in diffuse reflection devices
    • G01N2021/478Application in testing analytical test strips

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 (発明の分野) 本発明は、試料の測定面に照射光を照射し、該
測定面から反射された反射光を光センサを有する
受光器で受光して該測定面の反射濃度の測定を行
なう反射濃度測定装置に関する。
Detailed Description of the Invention (Field of the Invention) The present invention is directed to irradiating a measurement surface of a sample with irradiation light, receiving the reflected light from the measurement surface with a light receiver having an optical sensor, and detecting the measurement surface. The present invention relates to a reflection density measuring device for measuring the reflection density of.

(従来技術および発明の技術的背景) 近年、例えば血液や尿等の試料液の小滴を点着
供給するだけで該試料液中に含まれている特定の
化学成分または有形成分を定量分析することので
きるドライタイプの化学分析スライドが開発され
(特公昭53−21677号、特開昭55−164356号等)、
実用化されている。
(Prior Art and Technical Background of the Invention) In recent years, it has become possible to quantitatively analyze specific chemical components or formed components contained in a sample liquid such as blood or urine by simply applying small droplets of the sample liquid. Dry-type chemical analysis slides that can be used for
It has been put into practical use.

このような化学分析スライドを用いる試料液中
の化学成分等の分析は、試料液を化学分析スライ
ドに点着供給した後、これをインキユベータ(恒
温機)内で所定時間恒温保持(インキユベーシヨ
ン)して呈色反応(色素生成反応)させ、その呈
色光学濃度を光学的に測定し、即ち、試料液中の
被測定成分と化学分析スライドの試薬層に含まれ
る試薬との組み合わせにより予め選定された波長
を含む測定用照射光をこの化学分析スライドに照
射してその反射光学濃度を測定し、これにより主
として比色法の原理により被測定物質の含有量を
定量分析することにより行なわれる。
In order to analyze the chemical components in a sample liquid using such a chemical analysis slide, the sample liquid is dotted onto the chemical analysis slide, and then kept at a constant temperature for a predetermined period of time in an incubator (incubator). ) to cause a coloring reaction (dye-forming reaction), and optically measure the coloring optical density. This chemical analysis slide is irradiated with measuring irradiation light containing a selected wavelength and its reflected optical density is measured, thereby quantitatively analyzing the content of the substance to be measured mainly based on the principle of colorimetry. .

上記反射光学濃度の測定は反射濃度測定装置に
より行なわれる。かかる反射濃度測定装置におい
ては、該装置に試料即ち上記化学分析スライドを
装着し、この試料の測定面に上記測定用の照射光
を照射し、該測定面から反射された反射光を光セ
ンサを有する受光器で受光することにより該測定
面の反射濃度の測定が行なわれる。
The reflection optical density is measured using a reflection density measuring device. In such a reflection density measuring device, a sample, that is, the chemical analysis slide described above is mounted on the device, the measurement surface of the sample is irradiated with the measurement irradiation light, and the light reflected from the measurement surface is sent to the optical sensor. The reflection density of the measurement surface is measured by receiving the light with a light receiver.

しかしながら、かかる反射濃度測定装置により
反射濃度を測定する場合、上記試料の装着精度、
試料自体の寸法精度あるいは試料のたわみ変形等
により試料の測定面が各測定毎に基準位置からず
れる。即ち試料の測定面が基準位置から上下方向
(測定面に垂直な方向)に変動する恐れがあり、
もしその後に測定面の上下変動が生じると測定面
と光センサとの位置関係が変化し、その結果測定
濃度が変化するという問題がある。
However, when measuring reflection density using such a reflection density measuring device, the mounting accuracy of the sample,
The measurement surface of the sample deviates from the reference position for each measurement due to dimensional accuracy of the sample itself or flexural deformation of the sample. In other words, there is a risk that the measurement surface of the sample may move vertically (perpendicular to the measurement surface) from the reference position.
If the measurement surface subsequently fluctuates up and down, the positional relationship between the measurement surface and the optical sensor changes, resulting in a problem in that the measured concentration changes.

(発明の目的) 本発明の目的は、上記事情に鑑み、試料の測定
面が多少上下変動してもそれによる測定濃度の変
動が極めて小さい反射濃度測定装置を提供するこ
とにある。
(Object of the Invention) In view of the above-mentioned circumstances, an object of the present invention is to provide a reflection density measuring device in which even if the measurement surface of a sample changes slightly up and down, the fluctuation in the measured density due to the change is extremely small.

(発明の構成) 本発明に係る反射濃度測定装置は、上記目的を
達成するため、試料測定面からの反射光を受光す
る光センサを有する受光器の測定面側の光学素子
の中心から試料を照射する照射光の光軸までの距
離rをr0、上記光学素子の中心から上記試料測定
面までの高さhをh0、上記光学素子と上記試料測
定面とのなす角θをθ0とした場合において、上記
h0を、上記r0とθ0との組合せの下でhを変動させ
た場合の上記光センサの出力の変動を示す出力
曲線、即ちrがr0、θがθ0の場合のhととの関
係を示す出力曲線における該出力がピーク値を
取るときの高さh(その高さhの近傍であつて実
質的に高さhであると認められる距離も含む)で
あることを特徴とする。
(Structure of the Invention) In order to achieve the above object, the reflection density measuring device according to the present invention measures a sample from the center of an optical element on the measurement surface side of a light receiver that has an optical sensor that receives reflected light from the sample measurement surface. The distance r to the optical axis of the irradiation light is r 0 , the height h from the center of the optical element to the sample measurement surface is h 0 , and the angle θ between the optical element and the sample measurement surface is θ 0 In this case, the above
h 0 is an output curve showing the variation in the output of the optical sensor when h is varied under the above combination of r 0 and θ 0 , that is, h when r is r 0 and θ is θ 0 . It is characterized by being the height h (including the distance near the height h and considered to be substantially the height h) when the output takes a peak value in the output curve showing the relationship between the shall be.

即ち、本発明は、ある適当なrとθとを選定す
ればそのrとθとの下におけるhととの関係を
示す出力曲線は通常放物線状の曲線となり、所定
のhのところではピーク値を取るという事実に
着目し、実際の装置を構成するにあたつてその装
置におけるr、θ、hを、その様な適当なr、θ
およびその適当なr、θの下においてがピーク
値を取るhとすることによつて、試料測定面が多
少上下動しても、即ちhが多少変動してもそれに
よる出力(測定濃度)はあまり変動しないよう
に構成したことを特徴とするものである。
That is, in the present invention, if a certain appropriate r and θ are selected, the output curve showing the relationship between h under r and θ usually becomes a parabolic curve, and at a predetermined h, the output curve shows the relationship between h and r and θ. When constructing an actual device, the r, θ, and h of the device are
By setting h to take a peak value under appropriate r and θ, even if the sample measurement surface moves up and down a little, that is, even if h fluctuates a little, the resulting output (measured concentration) will remain the same. It is characterized by being configured so that it does not fluctuate much.

(実施態様) 以下、図面を参照しながら本発明の実施態様に
ついて詳細に説明する。
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明に係る反射濃度測定装置の一実
施態様を示す縦断面概念図である。
FIG. 1 is a conceptual longitudinal cross-sectional view showing one embodiment of the reflection density measuring device according to the present invention.

図示の装置は、試料10を保持する試料保持部
12と、該試料の測定面10aの反射濃度測定に
適した照射光を発する光源14と、該光源14か
ら発せられた照射光を導いて上記試料測定面10
aに垂直に入射せしめるようにする光フアイバ1
6と、該光フアイバ16から出射された照射光を
集光する集光レンズ18と、試料測定面10aか
ら反射された反射光を受光するシリコンフオトダ
イオード等の光センサ20から成る受光器30と
を備えて成る。
The illustrated apparatus includes a sample holder 12 that holds a sample 10, a light source 14 that emits irradiation light suitable for measuring the reflection density of a measurement surface 10a of the sample, and a light source 14 that guides the irradiation light emitted from the light source 14 to Sample measurement surface 10
an optical fiber 1 which is made to enter perpendicularly to a
6, a condensing lens 18 that condenses the irradiation light emitted from the optical fiber 16, and an optical sensor 20 such as a silicon photodiode that receives the reflected light reflected from the sample measurement surface 10a. It consists of:

また、図示装置においては、上記光フアイバ1
6、集光レンズ18、試料保持台12および光セ
ンサ20を、該試料保持台12上に正規寸法の試
料10を正規状態で保持せしめた場合、上記光セ
ンサの中心20aから試料の測定面10aまでの
高さhがh0、上記試料の測定面10aと光センサ
20とのなす角θがθ0、上記光センサの中心20
aから上記照射光の光軸22までの距離rがr0
なる様な位置関係にそれぞれ配設して成ると共
に、さらに、上記h0は、上記r0とθ0との組合せの
下で上記hを変動させた場合の上記光センサ20
の出力の変動を表わす出力曲線における該出力
がピーク値を取るときのhであるように配設し
て成る。
In addition, in the illustrated device, the optical fiber 1
6. When the condensing lens 18, the sample holder 12, and the optical sensor 20 are used to hold the sample 10 of regular size on the sample holder 12 in a normal state, the distance from the center 20a of the optical sensor to the measurement surface 10a of the sample is The height h up to is h 0 , the angle θ between the measurement surface 10a of the sample and the optical sensor 20 is θ 0 , and the center 20 of the optical sensor
They are arranged in a positional relationship such that the distance r from a to the optical axis 22 of the irradiation light is r 0 , and furthermore, the h 0 is determined by the combination of r 0 and θ 0 . The above optical sensor 20 when the above h is varied
The output curve is arranged so that h is the peak value of the output in the output curve representing the fluctuation of the output.

即ち、第1図に示す様な光学系装置において
は、適当なrとθとを選定すれば、そのrとθと
の組合せの下におけるhととの関係を示す出力
曲線が通常アーチ状の曲線となり、所定のhのと
ころで光センサ20の出力がピーク値を取るよ
うな状態になる。上記装置におけるr0とθ0は、そ
の様にhととの関係を示す出力曲線がアーチ状
の曲線となる様に適宜選定された値であり、かつ
h0はそのアーチ状出力曲線において出力がピー
ク値を取るときの値であるように設定されてい
る。
That is, in the optical system shown in FIG. 1, if appropriate r and θ are selected, the output curve showing the relationship between h and h under the combination of r and θ will normally be arch-shaped. A curve is formed, and the output of the optical sensor 20 reaches a peak value at a predetermined h. In the above device, r 0 and θ 0 are values that are appropriately selected so that the output curve showing the relationship with h becomes an arch-shaped curve, and
h 0 is set to be the value when the output takes the peak value in the arched output curve.

上記の如きアーチ状の出力曲線の一例を第2図
に示す。この第2図に示されている曲線は、第1
図に示す様な光学系装置において、r=8.75mm、
θ=45°の下でhを約5.0mmから約6.5mmまでの間で
変動させた場合の光センサ出力の変動状態を示
すものであり、h≒5.7mmで出力がピーク値を
取る。
An example of the above-mentioned arch-shaped output curve is shown in FIG. The curve shown in FIG.
In the optical system shown in the figure, r=8.75mm,
This shows the fluctuation state of the optical sensor output when h is varied from about 5.0 mm to about 6.5 mm under θ=45°, and the output reaches a peak value at h≈5.7 mm.

本実施態様においては、前述の如くh0が、r0
θ0の下における出力曲線がピーク値を取るときの
hであるように設定されているので、例えば試料
保持部による試料の保持精度や試料自体の寸法精
度により各測定毎に上記hが変化したり、あるい
は長時間測定中に試料自体がたわんで上記hが変
化したりした場合においても、そのhの変化によ
る光センサ出力の変動は第2図に示す如くΔ
とわずかであり、h0が出力曲線のピーク値にお
けるh以外の場合のの場合の変動分Δ2に比
べてはるかに小さい。
In this embodiment, as described above, h 0 is r 0 ,
Since the output curve under θ 0 is set to be h when the peak value is taken, the above h may change for each measurement due to, for example, the holding accuracy of the sample by the sample holder and the dimensional accuracy of the sample itself. Even if the above h changes due to bending of the sample itself during long-term measurement, the fluctuation in the optical sensor output due to the change in h will be Δ as shown in Figure 2.
1 , which is much smaller than the variation Δ 2 in the case where h 0 is other than h at the peak value of the output curve.

なお、上記実施態様におけるr0とθ0とは、それ
らの組合せの下におけるhととの関係を表わす
出力曲線がアーチ状になるものであつたが、本発
明におけるr0とθ0とは、それらの組合せの下にお
ける上記出力曲線がピーク値を有する、換言すれ
ば変曲点を有する曲線になるようなものであれば
良く、必ずしもアーチ状の曲線を形成する場合に
限らない。
Note that r 0 and θ 0 in the above embodiment have an arch-like output curve representing the relationship with h under their combination, but r 0 and θ 0 in the present invention are , the output curve under these combinations may have a peak value, in other words, it may be a curve having an inflection point, and is not necessarily limited to forming an arch-shaped curve.

第3図、第4図は本発明に係る反射濃度測定装
置の他の実施態様を示す縦断面概略図である。こ
れらの図面において、第1図に示した実施態様と
同一の機能を有する要素には同じ符号を付し説明
は省略する。第3図に示す実施態様は受光器30
を光センサ20と光センサ20の測定面側に配さ
れたレンズ24によつて構成している。この実施
態様では、試料の測定面10aとレンズ24との
なす角θをθ0、レンズ24の中心24aから照射
光の光軸22までの距離rをr0となるように設定
し、さらにこのr0とθ0の組合せの下で、レンズ2
4の中心24aから測定面10aまでの高さhを
光センサ20の出力がピーク値をとるときの高
さh0であるように設定して成る。また、第4図に
示す実施態様は受光器30を光センサ20と光セ
ンサ20の測定面側に配したアパーチヤ28が設
けられた光学絞り26によつて構成している。こ
の実施態様では、試料の測定面10aと絞り26
とのなす角θをθ0、絞り26の中心(アパーチヤ
28の中心)26aから照射光の光軸22までの
距離rをr0となるように設定し、さらにこのr0
θ0の組合せの下で、絞り24の中心24aから測
定面10aまでの高さhを光センサ20の出力
がピーク値をとる高さh0に設定してなる。
3 and 4 are schematic vertical cross-sectional views showing other embodiments of the reflection density measuring device according to the present invention. In these drawings, elements having the same functions as those in the embodiment shown in FIG. 1 are denoted by the same reference numerals, and explanations thereof will be omitted. The embodiment shown in FIG.
is composed of an optical sensor 20 and a lens 24 arranged on the measurement surface side of the optical sensor 20. In this embodiment, the angle θ between the measurement surface 10a of the sample and the lens 24 is set to be θ 0 , the distance r from the center 24a of the lens 24 to the optical axis 22 of the irradiation light is set to be r 0 , and furthermore, this Under the combination of r 0 and θ 0 , lens 2
The height h from the center 24a of 4 to the measurement surface 10a is set to be the height h 0 when the output of the optical sensor 20 takes a peak value. Further, in the embodiment shown in FIG. 4, the light receiver 30 is constituted by the optical sensor 20 and an optical diaphragm 26 provided with an aperture 28 disposed on the measurement surface side of the optical sensor 20. In this embodiment, the measurement surface 10a of the sample and the aperture 26
The angle θ formed by The height h from the center 24a of the diaphragm 24 to the measurement surface 10a is set to the height h0 at which the output of the optical sensor 20 reaches its peak value.

これらの実施態様においてもレンズ24の中心
24aあるいは絞り26の中心26aから測定面
10aまでの高さhをセンサ20の出力がピー
ク値をとるh0に設定しているので、機会精度ある
いは経時変化により上記hが変動しても光センサ
20の出力を変動を最小にすることができる。
なお、上記実施態様では受光器の数が1つであつ
たが、2個以上の受光器を有する場合であつても
良く、その場合は少なくとも1つの受光器が上記
条件を満足するr0,θ0,h0の下に位置決めされて
いるものであれば良い。
In these embodiments as well, the height h from the center 24a of the lens 24 or the center 26a of the diaphragm 26 to the measurement surface 10a is set to h 0 at which the output of the sensor 20 takes the peak value, so that the chance accuracy or the change over time is Therefore, even if h changes, the fluctuation in the output of the optical sensor 20 can be minimized.
In the above embodiment, the number of light receivers is one, but it is also possible to have two or more light receivers, in which case at least one light receiver satisfies the above conditions r 0 , It is sufficient if it is positioned below θ 0 and h 0 .

本発明に係る反射濃度測定装置は、その要旨を
越えない範囲で種々変更可能であり、上記実施態
様に限定されるものではない。
The reflection density measuring device according to the present invention can be modified in various ways without departing from the gist thereof, and is not limited to the embodiments described above.

(発明の効果) 本発明に係る反射濃度測定装置は、上述の如
く、その装置における上記r,h,θがr0,h0
θ0であり、それらは、h0がr0とθ0との組合せの下
における上記hととの関係を示す出力曲線の出
力がピーク値を取るときのhであるように選定
されているが、種々の原因により測定面が上下動
してもその上下動による光センサの出力の変動
は極めて小さく、従つて測定濃度誤差の少ないよ
り高精度の測定を行なうことができるという効果
を奏する。
(Effects of the Invention) As described above, in the reflection density measuring device according to the present invention, the r, h, and θ in the device are r 0 , h 0 ,
θ 0 , and they are selected such that h 0 is h when the output of the output curve showing the relationship with the above h under the combination of r 0 and θ 0 takes a peak value. However, even if the measurement surface moves up and down due to various causes, the variation in the output of the optical sensor due to the up and down movement is extremely small, and therefore, it is possible to perform more accurate measurement with less measurement density error.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置の一実施態様を示す
縦断面概念図、第2図は第1図に示す実施態様装
置における適当なr,θの下の出力曲線の一例を
示す図、第3図、第4図は本発明に係る他の実施
態様の装置を示す縦断面略図である。 10……試料、10a……試料測定面、14…
…光源、20……光センサ、20a……光センサ
の中心、24……レンズ、26……光学絞り、3
0……受光器。
FIG. 1 is a conceptual longitudinal cross-sectional view showing one embodiment of the device according to the present invention, FIG. 2 is a diagram showing an example of the output curve under appropriate r and θ in the embodiment device shown in FIG. 3 and 4 are schematic vertical cross-sectional views showing other embodiments of the device according to the present invention. 10...Sample, 10a...Sample measurement surface, 14...
...Light source, 20... Optical sensor, 20a... Center of optical sensor, 24... Lens, 26... Optical aperture, 3
0... Light receiver.

Claims (1)

【特許請求の範囲】 1 試料の測定面に照射光を照射し、該測定面か
ら反射された反射光を光センサを有する受光器で
受光して該測定面の反射濃度の測定を行なう反射
濃度測定装置において、 上記受光器の測定面側の光学素子の中心から上
記照射光の光軸までの距離rがr0、上記光学素子
の中心から上記測定面までの高さhがh0、上記光
学素子と上記測定面とのなす角度θがθ0であり、 かつ、上記高さh0は、上記距離r0と角度θ0との
組合せの下で上記高さhを変動させた場合の上記
光センサの出力の変動を表わす出力曲線におけ
る該出力がピーク値を取るときの高さhである
ことを特徴とする友射濃度測定装置。 2 上記受光器が光センサのみから成る特許請求
の範囲第1項記載の反射濃度測定装置。 3 上記受光器が光センサと光センサの測定面側
に配されたレンズとから成ることを特徴とする特
許請求の範囲第1項記載の反射濃度測定装置。 4 上記受光器が光センサと光センサの測定面側
に配された光学絞りとから成ることを特徴とする
特許請求の範囲第1項記載の反射濃度測定装置。
[Scope of Claims] 1 Reflection density in which the measurement surface of a sample is irradiated with irradiation light and the reflected light reflected from the measurement surface is received by a light receiver having an optical sensor to measure the reflection density of the measurement surface. In the measuring device, the distance r from the center of the optical element on the measurement surface side of the light receiver to the optical axis of the irradiation light is r 0 , the height h from the center of the optical element to the measurement surface is h 0 , and The angle θ between the optical element and the measurement surface is θ 0 , and the height h 0 is the height h when the height h is varied under the combination of the distance r 0 and the angle θ 0 . A radiation concentration measuring device characterized in that the output is at a height h when the output takes a peak value in an output curve representing fluctuations in the output of the optical sensor. 2. The reflection density measuring device according to claim 1, wherein the light receiver comprises only an optical sensor. 3. The reflection density measuring device according to claim 1, wherein the light receiver comprises an optical sensor and a lens disposed on the measurement surface side of the optical sensor. 4. The reflection density measuring device according to claim 1, wherein the light receiver comprises an optical sensor and an optical aperture disposed on the measurement surface side of the optical sensor.
JP4089086A 1986-02-26 1986-02-26 Measuring instrument for reflection density Granted JPS62198736A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4089086A JPS62198736A (en) 1986-02-26 1986-02-26 Measuring instrument for reflection density
US07/019,402 US4823169A (en) 1986-02-26 1987-02-26 Reflection density measuring system
DE3750963T DE3750963T2 (en) 1986-02-26 1987-02-26 Reflectometer.
EP87102732A EP0234579B1 (en) 1986-02-26 1987-02-26 Reflection density measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4089086A JPS62198736A (en) 1986-02-26 1986-02-26 Measuring instrument for reflection density

Publications (2)

Publication Number Publication Date
JPS62198736A JPS62198736A (en) 1987-09-02
JPH0572976B2 true JPH0572976B2 (en) 1993-10-13

Family

ID=12593107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4089086A Granted JPS62198736A (en) 1986-02-26 1986-02-26 Measuring instrument for reflection density

Country Status (1)

Country Link
JP (1) JPS62198736A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126924A (en) * 1993-10-29 1995-05-16 Murata Mach Ltd Spinning device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924236A (en) * 1982-07-14 1984-02-07 バイエル・ダイアグノステイツク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Device for measuring reflectivity
JPS6117046A (en) * 1984-07-02 1986-01-25 Fuji Photo Film Co Ltd Method for determining position of light source in reflected light measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924236A (en) * 1982-07-14 1984-02-07 バイエル・ダイアグノステイツク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Device for measuring reflectivity
JPS6117046A (en) * 1984-07-02 1986-01-25 Fuji Photo Film Co Ltd Method for determining position of light source in reflected light measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126924A (en) * 1993-10-29 1995-05-16 Murata Mach Ltd Spinning device

Also Published As

Publication number Publication date
JPS62198736A (en) 1987-09-02

Similar Documents

Publication Publication Date Title
JP4933271B2 (en) Handheld device with a disposable element for chemical analysis of multiple specimens
JP2001296246A (en) Measurement device for immunochromatography test piece
US5039225A (en) Apparatus for measurement of reflection density
US3531211A (en) Optical system and method for cylindrical cuvettes
JPH0572976B2 (en)
EP0303707A4 (en) Optical measurement method and apparatus therefor in automatic analyzer.
JP4797233B2 (en) Compact sample concentration measuring device
US6642058B2 (en) Analysis method using dry chemical analysis element
JP2002527744A (en) In particular, optical measuring heads for automatic analyzers of chemical or biochemical reactions
EP0774656B1 (en) Method of optically measuring liquid in porous material
JP2000507353A (en) Quantitative analysis and evaluation system for test elements
JP4737896B2 (en) Sample concentration measuring device
JPS628740B2 (en)
JPH056138B2 (en)
JP2002267664A (en) Measuring apparatus for immunochromatographic test piece
JPS6111642A (en) Chemical analysis instrument
JP2601727Y2 (en) Liquid analyzer
JP2007127449A (en) Measuring container
JPH0545175B2 (en)
CA2073344C (en) Fluorescence assay apparatus
JPS63159736A (en) Concentration measuring method for uranium or plutonium
JPH0577022B2 (en)
JPS62245944A (en) Light source device for concentration measurement
JP2008267959A (en) Inspection apparatus
JPH06100548B2 (en) Reflection density measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees