JPH0568841B2 - - Google Patents
Info
- Publication number
- JPH0568841B2 JPH0568841B2 JP59251544A JP25154484A JPH0568841B2 JP H0568841 B2 JPH0568841 B2 JP H0568841B2 JP 59251544 A JP59251544 A JP 59251544A JP 25154484 A JP25154484 A JP 25154484A JP H0568841 B2 JPH0568841 B2 JP H0568841B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic properties
- magnet
- sintering
- sintering temperature
- decrease
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005291 magnetic effect Effects 0.000 claims description 24
- 238000005245 sintering Methods 0.000 claims description 23
- 229910045601 alloy Inorganic materials 0.000 claims description 12
- 239000000956 alloy Substances 0.000 claims description 12
- 229910052684 Cerium Inorganic materials 0.000 claims description 6
- 229910052779 Neodymium Inorganic materials 0.000 claims description 6
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 5
- 229910052723 transition metal Inorganic materials 0.000 claims description 4
- 150000003624 transition metals Chemical group 0.000 claims description 4
- 150000002910 rare earth metals Chemical class 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 17
- 230000007423 decrease Effects 0.000 description 12
- 239000000843 powder Substances 0.000 description 8
- 229910052796 boron Inorganic materials 0.000 description 6
- 230000005347 demagnetization Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 238000004663 powder metallurgy Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000003679 aging effect Effects 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、Nd2Fe14B系合金磁石で代表される
希土類金属Rと遷移金属TとからなるR2T14B系
金属間化合物磁石の焼結性と、焼結温度に対する
磁石特性の安定性の改良に関係するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an R 2 T 14 B-based intermetallic compound magnet consisting of a rare earth metal R and a transition metal T, typified by an Nd 2 Fe 14 B-based alloy magnet. This is related to improving the sinterability of the magnet and the stability of the magnetic properties with respect to the sintering temperature.
R・Fe・B系磁石の製造方法については、2
つの方法に大別される。ひとつは、溶解している
合金を急冷した後、時効し、粉砕した磁石粉末を
磁場中で配向して製造される高分子複合型磁石で
ある。他方は、溶解して得られた磁石合金のイン
ゴツトを微粉砕し、磁場中で成形した後、焼結し
て製造される焼結型磁石である。本発明は後者の
焼結型磁石で製造した磁石に関するものである。
For the manufacturing method of R・Fe・B magnets, see 2.
It is broadly divided into two methods. One is a polymer composite magnet, which is manufactured by rapidly cooling a molten alloy, aging it, and orienting the crushed magnet powder in a magnetic field. The other type of magnet is a sintered magnet, which is manufactured by pulverizing an ingot of a magnetic alloy obtained by melting, molding it in a magnetic field, and then sintering it. The present invention relates to a magnet manufactured using the latter type of sintered magnet.
R・Fe・B系磁石の粉末治金法によつて製造
される焼結型磁石に関係する文献として、特開昭
59−46008、特開昭59−89401、日本応用磁気学会
第35回研究会資料(昭和59年5月)があげられ
る。 As a document related to sintered magnets manufactured by powder metallurgy of R/Fe/B magnets, JP-A-Sho
59-46008, Japanese Unexamined Patent Publication No. 59-89401, and materials from the 35th research meeting of the Japanese Society of Applied Magnetics (May 1980).
これらの文献には、溶解して得られたインゴツ
トを粉砕し、この微粉末を成形して得られる圧粉
体を焼結して得られた種々のR・Fe・B系磁石
の特性について記載してある。焼結後の放冷、急
冷や熱処理についての記述、及びNb添加と磁石
特性に関する若干の記述がなされているが、圧粉
体の焼結性の改善や、焼結温度に対する磁石特性
の安定性等については、何ら記述されていない。 These documents describe the characteristics of various R, Fe, and B magnets obtained by pulverizing an ingot obtained by melting, molding this fine powder, and sintering the green compact obtained. It has been done. There are descriptions of cooling after sintering, quenching, and heat treatment, and some descriptions of Nb addition and magnetic properties, but there are also some descriptions of the improvement of the sinterability of compacted powder and the stability of magnetic properties with respect to sintering temperature. There is no mention of anything like that.
本発明は、R2T14B系磁石合金の焼結性の改善
及び、減磁曲線の角型性の向上による焼結温度に
対する磁石特性の安定化を実現しようとするもの
である。また、上記文献では、焼結後の熱処理に
よつて高い磁石特性を得ているものも見られる
が、本発明の合金においては、多少の時効効果も
認められるが、焼結処理後でも十分に高い磁石特
性が得られており、処理工程の簡略化に伴う省エ
ネルギー、省設備を達成される。
The present invention aims to improve the sinterability of an R 2 T 14 B-based magnet alloy and to stabilize the magnetic properties with respect to the sintering temperature by improving the squareness of the demagnetization curve. In addition, in the above-mentioned literature, there are cases in which high magnetic properties are obtained by heat treatment after sintering, but in the alloy of the present invention, although some aging effect is observed, even after sintering treatment, sufficient magnetic properties are obtained. High magnetic properties have been obtained, and energy and equipment savings can be achieved by simplifying the processing process.
一般に、本系磁石の粉末治金法による製造工程
は、溶解、粉砕、磁場中配向、圧縮成形、焼結、
時効の順に進められる。溶解は、アーク、高周波
等の真空または不活性雰囲気中で行なう。粉砕
は、粗粉砕と微粉砕に分けられ、粗粉砕は、ジヨ
ークラツシヤー鉄乳鉢やロールミル等で行なわれ
る。微粉砕は、ボールミル、振動ミル、ジエツト
ミル等で行なわれる。磁場中配向及び圧縮成形
は、金型を用いて磁場中で同時に行なわれるのが
通例である。焼結は1000〜1150℃の範囲で、不活
性雰囲気中で行なわれる。時効は必要に応じ、
300〜900℃程度の温度で行なわれる。
Generally, the manufacturing process of this type of magnet using the powder metallurgy method includes melting, crushing, orientation in a magnetic field, compression molding, sintering,
They proceed in the order of the statute of limitations. Melting is performed in a vacuum or inert atmosphere using arc, high frequency, etc. Grinding is divided into coarse grinding and fine grinding, and coarse grinding is carried out using a geo crusher iron mortar, roll mill, or the like. Fine pulverization is performed using a ball mill, vibration mill, jet mill, or the like. Orientation in a magnetic field and compression molding are usually performed simultaneously in a magnetic field using a mold. Sintering is carried out in the range 1000-1150°C in an inert atmosphere. The statute of limitations is determined as necessary.
It is carried out at a temperature of about 300 to 900 degrees Celsius.
本発明は、主に焼結温度と磁石特性に関係して
いる。焼結型磁石において、一般に焼結温度を低
下させる方向にもつていくことにより、減磁曲線
の角型性及びHcが向上する。一方、焼結温度が
上昇すると、角型性、Hcが低下する傾向が見ら
れる。本発明者は、R2T14B系磁石合金(但し、
RはNd、Pr及びCeを必須成分として含む希土類
元素、Tは実質的にFeからなる遷移金属)にお
いて、Tの置換物として5at%以下のNbを含有
し、焼結性と、焼結温度の高温側における減磁曲
線の角型性の低下を小さくできることを発見し
た。この現象は、焼結温度の低下による省エネル
ギー化だけでなく、広い焼結温度範囲で高い磁石
特性が得られるという効果がある。また、焼結
後、特に時効処理を施さなくとも高い磁石特性が
得られるという利点もある。 The present invention is primarily concerned with sintering temperature and magnetic properties. In a sintered magnet, the squareness of the demagnetization curve and Hc are generally improved by lowering the sintering temperature. On the other hand, as the sintering temperature increases, squareness and Hc tend to decrease. The present inventor has developed an R 2 T 14 B-based magnet alloy (however,
R is a rare earth element containing Nd, Pr, and Ce as essential components, T is a transition metal consisting essentially of Fe), which contains 5 at% or less Nb as a substitute for T, and has a high sinterability and sintering temperature. It was discovered that the decrease in the squareness of the demagnetization curve on the high temperature side can be reduced. This phenomenon not only saves energy by lowering the sintering temperature, but also has the effect of providing high magnetic properties over a wide sintering temperature range. Another advantage is that high magnetic properties can be obtained without any particular aging treatment after sintering.
本発明による合金の組成において、Nbの含有
量を0〜5at%としたのは、微量のNb添加でも十
分に効果が期待できること、一方、5at%を越え
る領域では、焼結性が低下する傾向が現われ始め
るはかりでなく、Nb添加によるBrの低下と、減
磁曲線の角型性の低下と、BHCの低下が顕著にな
り、(BH)maxが急激に減少するためである。
Nbの添加効果が最も有効な領域は、1〜2wt%
程度であつた。
In the composition of the alloy according to the present invention, the Nb content is set to 0 to 5 at% because a sufficient effect can be expected even with the addition of a small amount of Nb, whereas sinterability tends to decrease in the range exceeding 5 at%. This is because the addition of Nb causes a decrease in Br, a decrease in the squareness of the demagnetization curve, and a significant decrease in BHC , resulting in a sharp decrease in (BH)max.
The area where the addition effect of Nb is most effective is 1 to 2 wt%
It was moderately hot.
1 純度98%以上のNd、Fe、B、Nbを使用し
て、アルゴン雰囲気中で、高周波加熱により、
それぞれNd16.5B7.5Fe(76-x)Nbxでx=0又はx
=2の組成を有するR2Fe14Bの主生成相とする
2種のインゴツトを得た。次にこの合金粉末を
粗粉砕した後、ボールミルにて、それぞれ平均
粒径3μmに湿式粉砕した。次にこの微粉末を
10KOeの磁界中、1ton/cm2の圧力で成形した。
この圧粉対を1040〜1100℃までの各温度で、1
時間真空中で保持した後、1時間Ar中で保持
した。その後、100℃/hr以下の冷却速度で徐
冷した。
1 Using Nd, Fe, B, and Nb with a purity of 98% or more, high-frequency heating is performed in an argon atmosphere.
respectively Nd 16.5 B 7.5 Fe (76-x) Nb x =0 or x
Two types of ingots were obtained in which the main phase was R 2 Fe 14 B having a composition of 2. Next, this alloy powder was roughly pulverized and then wet-pulverized in a ball mill to an average particle size of 3 μm. Next, add this fine powder
Molding was carried out at a pressure of 1 ton/cm 2 in a magnetic field of 10 KOe.
This compacted powder pair was heated for 1 hour at each temperature from 1040 to 1100℃.
It was kept in vacuum for an hour and then in Ar for 1 hour. Thereafter, it was slowly cooled at a cooling rate of 100° C./hr or less.
その焼結体の密度dと磁石特性(BH)
max、BHCと、焼結温度との関係を第1図に示
す。 Density d of the sintered body and magnetic properties (BH)
Figure 1 shows the relationship between max, BHC and sintering temperature.
Nbの添加により、焼結性が向上するため低
い温度で焼結が進行するとともに、高温領域に
おけるBHCの低下も少なく、広い焼結温度範囲
で、高い(BH)maxが得られている。Nb添
加によるBHCの向上には、減磁曲線の角型性の
向上が最も大きく寄与していた。 The addition of Nb improves sinterability, so sintering progresses at low temperatures, and there is little decrease in B H C at high temperatures, resulting in a high (BH) max over a wide sintering temperature range. . The improvement in the squareness of the demagnetization curve made the greatest contribution to the improvement in BHC by Nb addition.
2 純度98%以上のCe、Pr、Nd、B、Nbを使
用し、実施例1と同様にして、(Ce5・Pr15・
Nd80)16B7Fe(77-x)Nbxでx=0、2、4、6の
組成を有するR2Fe14Bを主生成相とする4種の
インゴツトを得た。2 Using Ce, Pr, Nd, B, and Nb with a purity of 98% or more, in the same manner as in Example 1, (Ce 5・Pr 15・
Four types of ingots containing R 2 Fe 14 B as the main phase with compositions of x=0, 2, 4, and 6 were obtained using Nd 80 ) 16 B 7 Fe (77-x) Nb x .
次にこの合金粉末を粗粉砕した後、上記合金
の組成式でx=0、1、2、3、4、5、6と
なるように秤量し、ボールミルにて、それぞれ
平均粒径3μmに粉砕した。次にこの微粉末を
10KOeの磁界中、1ton/cm2の圧力で成形した。
この圧粉体を1080℃の温度で、1時間真空中で
保持した後、1時間Ar中で保持した。その後、
100℃/hr以下の冷却速度で徐冷した。 Next, after coarsely pulverizing this alloy powder, it was weighed so that x = 0, 1, 2, 3, 4, 5, 6 according to the above alloy composition formula, and pulverized in a ball mill to an average particle size of 3 μm. did. Next, add this fine powder
Molding was carried out at a pressure of 1 ton/cm 2 in a magnetic field of 10 KOe.
This compact was held at a temperature of 1080° C. in vacuum for 1 hour, and then in Ar for 1 hour. after that,
Slow cooling was performed at a cooling rate of 100°C/hr or less.
その焼結体の磁石特性(BH)max、Br、B
HCを第2図に示す。Nbの添加によりBrは徐々
に減少する傾向を示すが、BHCは増加の傾向を
示し、Nbがx=6以上ではBrの減少と減磁曲
線の角型の低下が顕著となるためBHCの低下も
大きくなり、(BH)maxは急激に低下する。 Magnetic properties (BH)max, Br, B of the sintered body
HC is shown in Figure 2. With the addition of Nb, Br shows a tendency to gradually decrease, but B H C shows a tendency to increase, and when Nb is x = 6 or more, the decrease in Br and the squareness of the demagnetization curve become remarkable . The decrease in H C also increases, and (BH)max decreases rapidly.
以上の実施例で示される如く、(Ce、Pr、
Nd)2Fe14B系磁石の粉末治金法による製造にお
いて、Nbの含有量を0〜5at%(0を含まず)含
有することにより、焼結性の促進と、広い焼結温
度範囲での高い磁石特性が実現される。 As shown in the above examples, (Ce, Pr,
In the production of Nd) 2 Fe 14 B-based magnets using the powder metallurgy method, the Nb content of 0 to 5 at% (excluding 0) promotes sinterability and can be used over a wide sintering temperature range. High magnetic properties are achieved.
以上の実施例では、Ce、Pr、Nd、Fe、Bを主
原料とした合金についてのNb添加効果について
のみ述べたが、Ce、Pr、Ndと同族であるYおよ
び他の希土元素Rと、FeやCo、Niを含めた遷移
金属TからなるR2T14B系磁石合金についても同
様に適用できることは用意に類推できる。 In the above examples, only the effect of adding Nb to alloys containing Ce, Pr, Nd, Fe, and B as main raw materials was described, but when it is added to Y and other rare earth elements R, which are homologous to Ce, Pr, and Nd, It can easily be inferred that the same applies to R 2 T 14 B-based magnet alloys made of transition metals T including Fe, Co, and Ni.
第1図は、実施例1におけるNd16.5B7.5Fe(76-x)
Nbx(x=0、2)の焼結温度に対する焼結密度
と磁石特性(BH)max、BHCとの関係を示す。第
2図は、実施例2における(Ce5・Pr15・
Nd80)16B7Fe(77-x)Nbx(x=0〜6)のxと磁石
特性(BH)max、Br、BHCとの関係を示す。
Figure 1 shows Nd 16.5 B 7.5 Fe (76-x) in Example 1.
The relationship between the sintered density and magnetic properties (BH) max, B H C with respect to the sintering temperature of Nb x (x = 0, 2) is shown. Figure 2 shows (Ce 5・Pr 15・
The relationship between x of Nd 80 ) 16 B 7 Fe (77-x) Nb x (x=0 to 6) and magnetic properties (BH) max, Br, and B H C is shown.
Claims (1)
びCeを必須成分として含む希土類元素、Tは実
質的にFeからなる遷移金属)において、Tの置
換物として5at%以下のNbを含有し、焼結性と、
広い焼結温度範囲での磁石特性を高めたことを特
徴とする希土類磁石。1 R 2 T 14 In a B-based magnet alloy (where R is a rare earth element containing Nd, Pr, and Ce as essential components, and T is a transition metal consisting essentially of Fe), 5at% or less of Nb is substituted for T. Contains sinterability and
A rare earth magnet characterized by improved magnetic properties over a wide sintering temperature range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59251544A JPS61147504A (en) | 1984-11-30 | 1984-11-30 | Rare earth magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59251544A JPS61147504A (en) | 1984-11-30 | 1984-11-30 | Rare earth magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61147504A JPS61147504A (en) | 1986-07-05 |
JPH0568841B2 true JPH0568841B2 (en) | 1993-09-29 |
Family
ID=17224402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59251544A Granted JPS61147504A (en) | 1984-11-30 | 1984-11-30 | Rare earth magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61147504A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6994755B2 (en) * | 2002-04-29 | 2006-02-07 | University Of Dayton | Method of improving toughness of sintered RE-Fe-B-type, rare earth permanent magnets |
US6966953B2 (en) * | 2002-04-29 | 2005-11-22 | University Of Dayton | Modified sintered RE-Fe-B-type, rare earth permanent magnets with improved toughness |
JP2013191616A (en) * | 2012-03-12 | 2013-09-26 | Nitto Denko Corp | Rare earth permanent magnet and method of manufacturing the same |
CN103041905A (en) * | 2012-12-28 | 2013-04-17 | 攀钢集团攀枝花钢铁研究院有限公司 | Method and system for crumbling and grinding carbide slag |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5989401A (en) * | 1982-11-15 | 1984-05-23 | Sumitomo Special Metals Co Ltd | Permanent magnet |
-
1984
- 1984-11-30 JP JP59251544A patent/JPS61147504A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5989401A (en) * | 1982-11-15 | 1984-05-23 | Sumitomo Special Metals Co Ltd | Permanent magnet |
Also Published As
Publication number | Publication date |
---|---|
JPS61147504A (en) | 1986-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0216368B2 (en) | ||
JPH01219143A (en) | Sintered permanent magnet material and its production | |
JPH0345885B2 (en) | ||
JPH0345883B2 (en) | ||
JPH0568841B2 (en) | ||
JPH0680608B2 (en) | Rare earth magnet manufacturing method | |
JPH0576161B2 (en) | ||
JPH0345884B2 (en) | ||
JPH0344405B2 (en) | ||
JPS6233402A (en) | Manufacture of rare-earth magnet | |
JPS6320411A (en) | Production of material for permanent magnet | |
JPH058562B2 (en) | ||
JPH0426524B2 (en) | ||
JPH0582319A (en) | Permanent magnet | |
JPS63282239A (en) | Permanent magnet alloy | |
JPS6263645A (en) | Production of permanent magnet material | |
JPS61143553A (en) | Production of material for permanent magnet | |
JPH08148317A (en) | Production of rare earth magnet | |
JPH0122970B2 (en) | ||
JPS6316603A (en) | Manufacture of sintered rare-earth magnet | |
JPS6238841B2 (en) | ||
JPH024942A (en) | Permanent magnetic alloy | |
JPS5848607A (en) | Production of rare earth cobalt magnet | |
JPH1012474A (en) | Manufacture of rare-earth permanent magnet and rare-earth permanent magnet | |
JPS62167842A (en) | Production of rare earth magnet |