JPH0557B2 - - Google Patents
Info
- Publication number
- JPH0557B2 JPH0557B2 JP63283499A JP28349988A JPH0557B2 JP H0557 B2 JPH0557 B2 JP H0557B2 JP 63283499 A JP63283499 A JP 63283499A JP 28349988 A JP28349988 A JP 28349988A JP H0557 B2 JPH0557 B2 JP H0557B2
- Authority
- JP
- Japan
- Prior art keywords
- wave latency
- sound
- wave
- detection device
- potential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000000638 stimulation Effects 0.000 claims description 25
- 238000001356 surgical procedure Methods 0.000 claims description 18
- 238000005259 measurement Methods 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 14
- 210000000133 brain stem Anatomy 0.000 claims description 8
- 238000002695 general anesthesia Methods 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 4
- 210000000653 nervous system Anatomy 0.000 claims description 4
- 238000000034 method Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 3
- 230000010370 hearing loss Effects 0.000 description 3
- 231100000888 hearing loss Toxicity 0.000 description 3
- 208000016354 hearing loss disease Diseases 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 206010011878 Deafness Diseases 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 206010063292 Brain stem syndrome Diseases 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 210000000860 cochlear nerve Anatomy 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
Landscapes
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、ABR[聴性脳幹反応(Auditory
Brainstem Response)]における波の潜時を
検出する装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is based on the ABR
This relates to a device for detecting wave latency in Brainstem Response).
(発明の背景)
ABRとは、聴覚神経系を興奮させることによ
つて得られる脳幹部での電位を頭皮上より記録し
たもので、音刺激から10msの間に発生する6〜
7個の電位により構成されている。(Background of the invention) ABR is a recording of the potential in the brainstem obtained by exciting the auditory nervous system from the scalp.
It is composed of seven potentials.
この反応は、意識や睡眠状態の影響を受けにく
く、極めて再現性の良い安定した記録が得られる
が非常に小さな電位であるために、1000〜2000回
の加算が必要である。 This reaction is not easily affected by the state of consciousness or sleep, and stable recording with excellent reproducibility can be obtained, but since the potential is very small, 1000 to 2000 additions are required.
ABRは各波形の起源も明らかにされており、
診断的価値が極めて高く、難聴や脳幹障害の診断
に幅広い臨床応用が期待されている。 The origin of each waveform in ABR has also been clarified,
It has extremely high diagnostic value and is expected to have a wide range of clinical applications in the diagnosis of hearing loss and brain stem disorders.
ABRの波形を検討するのに重要な指標となる
のは、各反応成分の再現性、潜時、振幅である。 Important indicators for examining ABR waveforms are the reproducibility, latency, and amplitude of each response component.
一般的に最も安定した記録が得られるのは波
(第5番目の波)で、自覚いき値の0〜20dB上で
全例にその出現を見ることができる。 In general, the most stable recording is obtained with the wave (fifth wave), which can be seen in all cases between 0 and 20 dB above the subjective threshold.
通常、潜時の測定はこの波をもつて行われ、
波潜時(音刺激を与えてから波を生じるまで
の時間)が長くなると難聴や脳幹障害の発生する
恐れがあると考えられている。 Latency measurements are usually made using this wave,
It is thought that if the wave latency (the time from when a sound stimulus is applied to when a wave is generated) becomes long, there is a risk of hearing loss and brain stem damage.
そこで、手術等の場において、被術者が全身麻
酔下で手術前の状態にある時と、被術者が手術中
にある時の波潜時を測定し、その延長率が高く
なつたときは手術を中断、或は取り止めるといつ
た手段が採られている。 Therefore, in a surgical setting, we measured the wave latency when the patient was under general anesthesia in the pre-surgical state and when the patient was undergoing surgery, and found that when the prolongation rate was high. Measures have been taken to suspend or cancel the surgery.
(従来の技術)
従来、この波の潜時を測定するには、ABR
波形をモニターに映し出し、ME(メデイカルエ
ンジニア)が手作業でモニター中の波のピーク
点にカーソルを重ねて、そのカーソルの位置から
潜時を計測し、その値から潜時の延長率などを算
出するようにしている。(Conventional technology) Conventionally, to measure the latency of this wave, ABR
The waveform is displayed on a monitor, and the ME (medical engineer) manually places a cursor over the peak point of the wave being monitored, measures the latency from the cursor position, and calculates the latency extension rate etc. from that value. I try to do that.
(発明が解決しようとする課題)
しかしながら、かかる方法によるといちいちカ
ーソルを動かすのに手間がかかつて面倒であり、
時間的にも素早い測定ができないし、また測定ミ
スを生じる恐れもある。(Problem to be Solved by the Invention) However, according to this method, it is time-consuming and troublesome to move the cursor each time.
It is not possible to measure quickly in terms of time, and there is also a risk of measurement errors.
本発明の目的は、以上の技術的課題を解決し、
ABRにおける波の潜時を自動的に検出する装
置を提供することにある。 The purpose of the present invention is to solve the above technical problems,
An object of the present invention is to provide a device for automatically detecting wave latency in ABR.
(課題を解決するための手段)
そこで、本発明では、聴覚神経系へ音刺激を加
える聴覚刺激部と、音刺激で発生した脳幹部での
電位を検知する電位計測部と、電位の最大値の発
生後一定時間の間に電位が極大値を有するか否か
を調べて、極大値を有するとき音刺激から該極大
値を発生するまでの時間を波の潜時とし、極大
値を有さないとき音刺激から電位の最大値を発生
するまでの時間を波の潜時とする演算部とを備
えたABRの波潜時検出装置を構成した。(Means for Solving the Problems) Therefore, the present invention provides an auditory stimulation unit that applies sound stimulation to the auditory nervous system, a potential measurement unit that detects the potential in the brain stem generated by the sound stimulation, and a maximum value of the potential. Check whether the potential has a local maximum value within a certain period of time after the occurrence of the wave, and if it has a local maximum value, the time from the sound stimulation to the generation of the local maximum value is taken as the wave latency, and the wave latency is determined. An ABR wave latency detection device was constructed, which includes an arithmetic unit that uses the time from sound stimulation to the generation of the maximum potential value as the wave latency.
そしてまた、この装置の演算部において、被術
者が全身麻酔下で手術前の状態にある時の波潜
時と被術者が手術中にある時の波の潜時を比較
してその延長率を求める、該延長率が大きくなつ
たときは警告音を鳴らすようにしてABRの波
潜時検出装置を構成したものである。 In addition, the calculation section of this device compares the wave latency when the patient is under general anesthesia and in the pre-surgery state with the wave latency when the patient is undergoing surgery, and calculates the extension of the wave latency. The ABR wave latency detection device is configured to calculate the extension ratio and to sound an alarm when the extension ratio becomes large.
(実施例) 以下本発明の実施例を説明する。(Example) Examples of the present invention will be described below.
第1図は、本発明にかかるABRの波潜時検
出装置Aを示すものである。 FIG. 1 shows an ABR wave latency detection device A according to the present invention.
1は被術者aの聴覚神経系へ音刺激を加える聴
覚刺激部、2は音刺激で発生した被術者aの脳幹
部での電位を検知する電位計測部、3はそれらの
制御、演算等を行うCPU、4はCPU3からの信
号で警告音を発生する警報器である。 1 is an auditory stimulation unit that applies sound stimulation to the auditory nervous system of subject a, 2 is a potential measurement unit that detects the potential in the brain stem of subject a generated by sound stimulation, and 3 is the control and calculation thereof. 4 is an alarm that generates a warning sound in response to a signal from the CPU 3.
そして、これら聴覚刺激部1及び電位計測部
2、警報器4は、バス5によつてCPU3に接続
されてそれぞれ制御されるようになつている。 The auditory stimulation section 1, the potential measurement section 2, and the alarm device 4 are connected to the CPU 3 via a bus 5 and controlled respectively.
聴覚刺激部1において、10はヘツドホンであ
り、11はヘツドホン10を鳴らす聴覚用刺激装
置、12は聴覚用刺激装置11の音量を調節する
コントローラーである。 In the auditory stimulation unit 1, 10 is a headphone, 11 is an auditory stimulation device that sounds the headphone 10, and 12 is a controller that adjusts the volume of the auditory stimulation device 11.
ヘツドホン10は片側の耳(検耳)のみに音刺
激を加えるようになつており、他方の耳(非検
耳)に対してはホワイトノイズを送つて、周囲の
雑音の影響を受けないようにマスキングを行つて
いる。 The headphone 10 is designed to apply sound stimulation to only one ear (ear test), and sends white noise to the other ear (ear test) to prevent it from being affected by surrounding noise. I'm doing masking.
本実施例のように、ヘツドホンを使用するのが
最も一般的ではあるが、幼児などに対してはスピ
ーカーやイヤホン等を使用する場合もある。 Although it is most common to use headphones as in this embodiment, speakers, earphones, etc. may also be used for infants and the like.
聴覚用刺激装置11から発せられる刺激音は、
一般にはクリツク音(0.1ms矩型波)が用いられ
るが、その他にもトーンピツプやトーンバースト
が用いることができる。 The stimulation sound emitted from the auditory stimulation device 11 is
Generally, a click sound (0.1 ms square wave) is used, but tone pip or tone burst can also be used.
電位計測部2において、20は被術者aの頭頂
部に装着せしめた電極であり、21は電極接続
器、22は電極20で検知された電位を増幅する
生理学用増幅器である。 In the potential measurement section 2, 20 is an electrode attached to the top of the head of the subject a, 21 is an electrode connector, and 22 is a physiological amplifier that amplifies the potential detected by the electrode 20.
そして、CPU3からの信号で、聴覚刺激部1
から被術者aに刺激音が加えられ、この刺激音に
よつて脳幹部の聴覚神経が興奮し、音刺激から
10ms程度の間に6〜7個の電位変化が発生する。 Then, the auditory stimulation unit 1 receives a signal from the CPU 3.
A stimulus sound is applied to subject a, and this stimulus sound excites the auditory nerves in the brainstem, and the sound stimulation causes
Six to seven potential changes occur in about 10 ms.
かかる電位変化は、電位計測部2で検知されて
CPU3に送られ、記憶、演算等の処理が為され
ると共に、その変化の様子がプロツタ30やモニ
ター31においてグラフとして描かれる。 This potential change is detected by the potential measuring section 2.
The data is sent to the CPU 3 where it undergoes processing such as storage and calculation, and its changes are drawn as a graph on the plotter 30 and monitor 31.
第2図は、以上のようにして測定された電位変
化を示すグラフであつて、横軸は音刺激を与えて
から経過した時間(潜時t)である。 FIG. 2 is a graph showing potential changes measured as described above, in which the horizontal axis represents the time (latency t) that has passed since the sound stimulus was applied.
イ図は、電位変化の典型的なパターンを示して
おり、波の振幅が最も大きく、波は波より
も低い振幅である。 Figure A shows a typical pattern of potential changes, with the waves having the highest amplitude and the waves having lower amplitude than the waves.
ロ図は波が波よりも高くなつたパターンを
示しており、ハ図は波と波が同じ振幅となつ
たパターン、ニ図は波と波が融合波となつた
パターン、ホ図は波と波が明瞭に表れないパ
ターンを示している。 Diagram B shows a pattern where the waves are higher than the waves, diagram C shows a pattern where the waves are the same amplitude, diagram D shows a pattern where the waves become a fused wave, and diagram E shows a pattern where the waves become higher than the waves. It shows a pattern in which the waves are not clearly visible.
なお、何れのパターンにおいても、ピーク位置
は波もしくは波にあり、また、波と波の
間隔は比較的短く、特に波と波の間隔に比べ
てかなり小さいものである。 Note that in any pattern, the peak position is on a wave or waves, and the interval between waves is relatively short, and in particular, it is quite small compared to the interval between waves.
そして、手術等の場においてこれらから手術中
の波潜時を測定し、被術者が全身麻酔下で手術
前の状態にある時の波潜時と比べてその延長率
が高くなつたときは手術を中断、或は取り止める
といつた手段が採られている。 Then, the wave latency during surgery is measured from these at the surgical site, and if the prolongation rate is higher than the wave latency when the patient is under general anesthesia and in the state before surgery. Measures such as suspending or canceling surgery are being taken.
従来、波潜時を測定するには、モニター等に
ABR波形を映し出し、MEが手作業でモニター
中の波の位置にカーソルを重ねて、そのカーソ
ルの位置から潜時を計測し、その値から潜時の延
長率などを算出するようにしているが、かかる方
法によるといちいちカーソルを動かすのに手間が
かかつて面倒であり、時間的にも素早い測定がで
きないし、測定ミスを生じる恐れもある。 Conventionally, to measure wave latency, a monitor, etc.
The ABR waveform is displayed, the ME manually places a cursor over the wave position being monitored, measures the latency from the cursor position, and calculates the latency extension rate etc. from that value. According to such a method, it is time-consuming and troublesome to move the cursor each time, it is not possible to measure quickly in terms of time, and there is a risk of measurement errors.
本発明は、CPU3において演算処理的に波
潜時を検出するようにして以上の技術的課題の解
決を図つたものである。 The present invention aims to solve the above technical problems by detecting the wave latency using arithmetic processing in the CPU 3.
第3図を基にしてその手段を順に説明する。 The means will be explained in order based on FIG.
先ず、ABR測定で求めた電位曲線上を捜査
し、ピーク位置を検出する。 First, the potential curve obtained by ABR measurement is searched to detect the peak position.
そのピーク位置についての潜時を測定する。 The latency for that peak position is measured.
次に、ピーク位置を起点として電位曲線上を
順次微分して行き、ピーク発生後一定時間の間
に電位曲線が極大値を有するか否かを調べる。 Next, the potential curve is sequentially differentiated starting from the peak position, and it is determined whether the potential curve has a maximum value within a certain period of time after the peak occurs.
なお、極大値の有否を調べる時間は波と
波の間隔よりもやや長い程度のものであつて、
波と波の間隔よりも小さいものとしなけれ
ばならない。この時間の大きさには個人差があ
るが、通常0.44ms程度が適当である。 Note that the time to check for the presence or absence of the maximum value is slightly longer than the interval between waves,
It must be smaller than the spacing between waves. Although the length of this time varies from person to person, approximately 0.44 ms is usually appropriate.
極大値を有するときは、ABR測定での音刺
激から極大値を発生するまでの時間を測定し、
その値を波潜時とする。 When the maximum value is detected, measure the time from the sound stimulation to the generation of the maximum value in ABR measurement,
Let that value be the wave latency.
極大値を有さないときは、で測定した値を
波潜時とする。 When there is no maximum value, the value measured at is taken as the wave latency.
かかる手段によれば、第2図イに示したような
典型的なパターンにおいては、の過程で波が
検出され、の過程で波潜時が測定される。 According to such means, in a typical pattern as shown in FIG. 2A, a wave is detected in the process of , and the wave latency is measured in the process of .
そして、波と波の間隔が長いのでの過程
では極大値無しと判断され、の過程で波潜時
が決定される。 Since the interval between waves is long, it is determined that there is no local maximum value in the process, and the wave latency is determined in the process.
一方、第2図ロに示したような波が波より
も高くなるようなパターンにおいては、の過程
で波が検出され、の過程で波潜時が測定さ
れる。 On the other hand, in a pattern where the wave is higher than the wave as shown in FIG. 2B, the wave is detected in the process of , and the wave latency is measured in the process of .
しかし、波と波の間隔が短かくの過程で
極大値有りと判断されるので、の過程で極大値
から波潜時が測定される。 However, since it is determined that there is a maximum value in the process where the interval between waves is short, the wave latency is measured from the maximum value in the process.
なお、その他第2図ハ〜ホに示したようなパタ
ーンにおいても、同様に確実に波潜時が測定さ
れることになる。 Note that the wave latency can be similarly reliably measured in other patterns such as those shown in FIG.
しかして、検出装置AのCPU3において、以
上のような演算処理を行うことにより波潜時が
自動的に検出されるので、迅速かつ正確な測定が
できる。 The CPU 3 of the detection device A automatically detects the wave latency by performing the above-mentioned arithmetic processing, so that rapid and accurate measurement can be performed.
次に、被術者の波潜時が延長したことを術者
に知らせるようにした手段について、第4図を基
にして説明する。 Next, a means for notifying the operator that the patient's wave latency has increased will be explained based on FIG. 4.
′ 先ず、手術前の被術者が全身麻酔下にある
状態においてABR測定を行い、モニター31
の電位曲線上の波のピーク位置にカーソルを
重ねる。' First, ABR measurement is performed with the patient under general anesthesia before surgery, and the monitor 31
Place the cursor on the wave peak position on the potential curve.
′ カーソル位置から波潜時を計測し、その
値をCPU3に記憶する。' Measure the wave latency from the cursor position and store the value in CPU3.
′ 次に、先に第3図で説明した〜の手段
により、手術中における波潜時を測定する。'Next, the wave latency during the surgery is measured by the means described above with reference to FIG.
′ CPU3において波潜時の延長率を計算す
る。なお、計算は以下の式による。' Calculate the wave latency extension rate in CPU3. Note that the calculation is based on the following formula.
延長率=
波潜時の延び/全身麻酔下で手術前の波潜時×10
0(%)
′ 延長率の値に応じて周波数を選択し、その
警告音を警報器4から発する。Extension rate = Prolongation of wave latency / Wave latency before surgery under general anesthesia x 10
0 (%) ' A frequency is selected according to the value of the extension rate, and the alarm 4 emits the corresponding warning sound.
′ 計測終了でなければ、′の過程に戻る。′ If the measurement is not completed, return to the process of ′.
かかる手段によれば、自動的に検出した波潜
時の延長率を音で術者に知らせるので、モニター
等をいちいち覗き込む必要がなく、術者は手を休
めずに手術を続けることができる。 According to this method, the automatically detected extension rate of the wave latency is notified to the surgeon by sound, so there is no need to look into a monitor, etc., and the surgeon can continue the surgery without taking a break. .
そして、術者は警告音の変化で波潜時の延長
を把握し、危険と感じたときは手術を中断、或は
取り止めるといつた手段を採ることができる。 Then, the operator can grasp the extension of the wave latency from changes in the warning sound, and if he feels it is dangerous, he can take measures such as interrupting or canceling the operation.
波潜時の延長率はどの程度までが安全域なの
かは現在ではまだ完全には確定されていないの
で、実施例のように、延長率の値に対して細かく
段階分けし、各々の段階で警告音が変化するよう
にすると、経験的に安全域を把握し易いという利
点がある。 At present, it has not yet been completely determined to what extent the extension rate of wave latency is a safe range, so as in the example, the value of the extension rate is divided into fine stages, and the Changing the warning sound has the advantage of making it easier to understand the safety range empirically.
なお、延長率の段階分けするCPU3の設定値
や段階数は任意に変えることができるのはもちろ
んであり、実施例の数値や段階数に限定されるも
のではない。また、警告音は以上のような延長率
の増加につれて高くなるものに限らず、延長率の
低下とともに低くなるものなどでも構わないし、
警告音を音楽やメツセージ等にして、延長率が変
化すると音楽の曲目やメツセージの内容等が切り
替わるようにしても良い。第5図は、CDプレー
ヤー32を利用してCPU3からの信号で曲目を
切り替えることができるようにしたものを示して
いる。33はアンプ、34はスピーカーである。 Note that it goes without saying that the set value of the CPU 3 and the number of stages for dividing the extension rate into stages can be changed arbitrarily, and are not limited to the numerical values and the number of stages in the embodiment. Also, the warning sound is not limited to one that increases as the extension rate increases, as described above, but may also decrease as the extension rate decreases.
The warning sound may be set to music, a message, etc., and the music track, message content, etc. may be changed when the extension rate changes. FIG. 5 shows an arrangement in which a CD player 32 is used to change the track list by a signal from the CPU 3. 33 is an amplifier, and 34 is a speaker.
警告音を音楽やメツセージ等にすると延長率の
変化を把握し易いという利点がある。 The advantage of using music, messages, etc. as the warning sound is that it is easier to understand changes in the extension rate.
なお、現在のところ延長率が20%以上となつた
ときに難聴や脳幹障害の発生した事実が知られて
おり、従つて延長率が20%になる前には手術を中
止する必要がある。 Currently, it is known that hearing loss and brain stem damage occur when the extension rate reaches 20% or more, so it is necessary to stop the surgery before the extension rate reaches 20%.
また、波潜時は一変に急激な増加することは
希であるので、第4図で説明したように手術前の
全身麻酔下での波潜時を手動で計測することに
よつてその値を目安とすることができ、以後の自
動計測の信頼度を高めることができる。 In addition, since it is rare for the wave latency to suddenly increase suddenly, the value can be determined by manually measuring the wave latency under general anesthesia before surgery, as explained in Figure 4. It can be used as a guideline, and the reliability of subsequent automatic measurements can be increased.
(発明の効果)
以上何れにしても、本発明によれば人為的な作
業無しで波潜時を検出できるので、手間や面倒
がなくなり、迅速かつ正確な測定が可能となる。(Effects of the Invention) In any case, according to the present invention, wave latency can be detected without any manual work, thereby eliminating time and effort and enabling quick and accurate measurement.
また、従来MEに負担していた労力が軽減され
るので、MEは他の作業などを行うことが可能に
なる。 Additionally, the labor that was traditionally burdened on the ME is reduced, allowing the ME to perform other tasks.
そして、波潜時の延長率を音で術者に知らせ
ることにより、術者はモニター等をいちいち覗き
込む必要がなく、手を休めずに手術を続けられ
る。 By notifying the surgeon of the rate of extension of the wave latency through sound, the surgeon does not have to look into a monitor or other equipment and can continue the surgery without taking a break.
また、術者は警告音の変化で波潜時の延長を
確実に把握し、危険と感じたときは手術を中断、
或は取り止めるといつた手段を採ることができ、
安全な手術ができるという特徴がある。 In addition, the surgeon can clearly grasp the extension of the wave latency by changes in the warning sound, and if he feels it is dangerous, he can stop the surgery.
Alternatively, you can take measures such as canceling the
It has the advantage of being a safe surgery.
第1図は波潜時検出装置のブロツク図、第2
図イ〜ホは電位変化のグラフ、第3,4図は本発
明を説明するフローチヤート、第5図は警告音を
音楽にする場合のブロツク図である。
A……波潜時検出装置、1……聴覚刺激部、
2……電位計測部、3……CPU、4……警報器、
5……バス。
Figure 1 is a block diagram of the wave latency detection device, Figure 2
Figures A to E are graphs of potential changes, Figures 3 and 4 are flowcharts for explaining the present invention, and Figure 5 is a block diagram when the warning sound is set to music. A... Wave latency detection device, 1... Auditory stimulation unit,
2...Potential measurement section, 3...CPU, 4...Alarm device,
5...Bus.
Claims (1)
音刺激で発生した脳幹部での電位を検知する電位
計測部と、電位の最大値の発生後一定時間の間に
電位が極大値を有するか否かを調べて、極大値を
有するとき音刺激から該極大値を発生するまでの
時間を波の潜時とし、極大値を有さないとき音
刺激から電位の最大値を発生するまでの時間を
波の潜時とする演算部とを備えたABRの波潜
時検出装置。 2 演算部において、被術者が全身麻酔下で手術
前の状態にある時の波の潜時と被術者が手術中
にある時の波の潜時を比較してその延長率を求
め、該延長率が大きくなつたときに警告音を鳴ら
すように構成した請求項第1項に記載のABRの
波潜時検出装置。 3 上記警告音は段階的に変化する請求項第2項
に記載のABRの波潜時検出装置。 4 波潜時の延長率が増加すると警告音が高く
なる請求項第3項に記載のABRの波潜時検出
装置。 5 波潜時の延長率が低下すると警告音が低く
なる請求項第3項に記載のABRの波潜時検出
装置。 6 上記警告音は音楽であつて、波潜時の延長
率が変化すると音楽の曲目が切り替わる請求項第
3項に記載のABRの波潜時検出装置。 7 上記警告音はメツセージであつて、波潜時
の延長率が変化するとメツセージの内容が切り替
わる請求項第3項に記載のABRの波潜時検出
装置。[Claims] 1. An auditory stimulation unit that applies sound stimulation to the auditory nervous system;
A potential measurement unit detects the potential in the brain stem generated by sound stimulation, and checks whether the potential has a maximum value within a certain period of time after the maximum value of the potential occurs, and when the potential has the maximum value, the sound stimulation is detected. and an arithmetic unit that determines the time from the sound stimulation to the generation of the maximum value as the wave latency, and the time from the sound stimulation until the generation of the maximum value of the potential when there is no local maximum value as the wave latency. ABR wave latency detection device. 2. In the calculation section, compare the wave latency when the patient is under general anesthesia and in the pre-surgery state with the wave latency when the patient is undergoing surgery, and calculate the extension rate; The ABR wave latency detection device according to claim 1, wherein the ABR wave latency detection device is configured to sound a warning sound when the extension rate becomes large. 3. The ABR wave latency detection device according to claim 2, wherein the warning sound changes in stages. 4. The ABR wave latency detection device according to claim 3, wherein the warning sound becomes louder as the wave latency extension rate increases. 5. The ABR wave latency detection device according to claim 3, wherein the warning sound decreases as the wave latency extension rate decreases. 6. The ABR wave latency detection device according to claim 3, wherein the warning sound is music, and the music track changes when the wave latency extension rate changes. 7. The ABR wave latency detection device according to claim 3, wherein the warning sound is a message, and the content of the message changes as the wave latency extension rate changes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63283499A JPH02128754A (en) | 1988-11-09 | 1988-11-09 | Method and apparatus for detecting v-wave latent time of abr |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63283499A JPH02128754A (en) | 1988-11-09 | 1988-11-09 | Method and apparatus for detecting v-wave latent time of abr |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02128754A JPH02128754A (en) | 1990-05-17 |
JPH0557B2 true JPH0557B2 (en) | 1993-01-05 |
Family
ID=17666336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63283499A Granted JPH02128754A (en) | 1988-11-09 | 1988-11-09 | Method and apparatus for detecting v-wave latent time of abr |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02128754A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005060831A1 (en) * | 2003-12-23 | 2005-07-07 | University Technologies International Inc. | Detection of acoustic nerve tumors |
SE527967C2 (en) * | 2004-12-08 | 2006-07-25 | Schizodetect Ab | A system for detecting schizophrenia in a person |
JP4547498B2 (en) * | 2005-03-02 | 2010-09-22 | 国立大学法人 千葉大学 | Evoked potential test apparatus and evoked potential test system using the same |
KR100839109B1 (en) * | 2006-09-20 | 2008-06-19 | [주]이어로직코리아 | The Method and Device for Objective Automated Audiometry |
JP5097994B2 (en) * | 2008-09-03 | 2012-12-12 | 独立行政法人農業・食品産業技術総合研究機構 | Brainstem dysfunction detection method, system, and program |
-
1988
- 1988-11-09 JP JP63283499A patent/JPH02128754A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH02128754A (en) | 1990-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6157857A (en) | Apparatus for determining sleep staging | |
Gatehouse | The time course and magnitude of perceptual acclimatization to frequency responses: Evidence from monaural fitting of hearing aids | |
Jerger et al. | Effect of sleep on the auditory steady state evoked potential | |
US20130131543A1 (en) | Tinnitus testing device and method | |
KR101207697B1 (en) | An objective tinnitus testing device using evoked response potential and the method to detect tinnitus objectively using this device | |
JPH09271516A (en) | Method and apparatus for judging anesthesia depth | |
JP2009520522A (en) | Making patients' consciousness level audible | |
EP3375350A1 (en) | Biological information monitor, biological information measurement system, program used in biological information monitor, and nontemporary computer readable medium storing program used in biological information monitor | |
WO1979000614A1 (en) | Hearing faculty testing and apparatus therefor | |
JP2005534453A (en) | A device that modulates neuronal activity in the brain by sensory stimulation and detection of brain activity | |
CA2362357A1 (en) | System and method for processing low signal-to-noise ratio signals | |
JP2001231768A (en) | Hearing evaluation device provided with patient connection for evaluation capability | |
US20070244411A1 (en) | Method and system for monitoring intracranial pressure | |
Simpson et al. | Effect of propofol anaesthesia on the event-related potential mismatch negativity and the auditory-evoked potential N1 | |
US20040249296A1 (en) | Alarm activated acoustic measuring signals for patient monitoring | |
JPH0557B2 (en) | ||
Stitt et al. | Modification of the rat's startle reaction by an antecedent change in the acoustic environment. | |
De Beer et al. | Midlatency auditory evoked potentials as indicators of perceptual processing during general anaesthesia | |
Bauch et al. | Brainstem responses to tone pip and click stimuli | |
Górska et al. | Low-and medium-rate auditory steady-state responses in patients with prolonged disorders of consciousness correlate with Coma Recovery Scale-Revised score | |
JP6692351B2 (en) | Method for determining the perceptual ability of a subject | |
JP2008516701A (en) | Physiological monitoring method and apparatus | |
JP3314521B2 (en) | Heart rate variability waveform analysis method and apparatus | |
Schweitzer et al. | Intensity effects of the auditory evoked brain response to stimulus onset and cessation | |
Buunen et al. | Combined psychophysical and electrophysiological study on the role of combination tones in the perception of phase changes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |