JPH0557194A - Production of catalyst for purifying exhaust gas - Google Patents

Production of catalyst for purifying exhaust gas

Info

Publication number
JPH0557194A
JPH0557194A JP3166010A JP16601091A JPH0557194A JP H0557194 A JPH0557194 A JP H0557194A JP 3166010 A JP3166010 A JP 3166010A JP 16601091 A JP16601091 A JP 16601091A JP H0557194 A JPH0557194 A JP H0557194A
Authority
JP
Japan
Prior art keywords
molecular sieve
catalyst
phosphate molecular
exhaust gas
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3166010A
Other languages
Japanese (ja)
Inventor
Hiromasa Suzuki
宏昌 鈴木
Yoshihide Watanabe
佳英 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP3166010A priority Critical patent/JPH0557194A/en
Publication of JPH0557194A publication Critical patent/JPH0557194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To directly and strongly bond a phosphate molecular sieve to the surface of a monolithic ceramics carrier without using a binder. CONSTITUTION:In the production of a catalyst for purifying exhaust gas, a monolithic ceramics carrier is subjected to hydrothermal treatment along with a synthetic raw material of a phosphate molecular sieve to crystallize the phosphate molecular sieve on the surfaces of the cells of the monolithic ceramics carrier and at least one kind of a transition metal is supported on the phosphate molecular sieve by ion exchange.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車等の内燃機関や
硝酸製造工場などから排出される排気ガス中の窒素酸化
物を浄化する排気ガス浄化用触媒の製造方法に関し、更
に詳しくは、バインダーを用いることなくモノリシック
セラミックス担体に燐酸塩モレキュラーシーブを直接結
晶化してなる排気ガス浄化用触媒の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an exhaust gas purifying catalyst for purifying nitrogen oxides in exhaust gas discharged from an internal combustion engine such as an automobile or a nitric acid manufacturing plant. The present invention relates to a method for producing an exhaust gas purifying catalyst in which a phosphate molecular sieve is directly crystallized on a monolithic ceramic carrier without using a catalyst.

【0002】[0002]

【従来の技術】アルミノ燐酸塩モレキュラーシーブやシ
リコアルミノ燐酸塩モレキュラーシーブなどの燐酸塩モ
レキュラーシーブは各種触媒として使用されており、自
動車等の内燃機関などから排出される排気ガス中の窒素
酸化物等を浄化する排気ガス浄化用触媒としても、例え
ば、銅、コバルト、白金等の遷移金属をイオン交換、含
浸等の方法により担持した燐酸塩モレキュラーシーブを
ウォッシュコート法によりモノリシック担体にコートし
た触媒が使用されている。かかる燐酸塩モレキュラーシ
ーブを触媒として接触工程に用いる際には、ペレット状
にして用いるか、またはモノリシックセラミックス担体
にウォッシュコートにより燐酸塩モレキュラーシーブを
コーティングして用いられてきた。しかし、ペレット状
触媒は圧力低下が大きいという問題があり、ウォッシュ
コートした触媒ではバインダーを用いないと触媒層の担
体への密着力が十分でなく、担体から触媒が剥離すると
いう問題があった。しかしながら、バインダーの添加量
の増加に伴いバインダーがCuイオンなどの触媒活性点を
覆ってしまうため、触媒活性が低下するという問題があ
った。この添加量を減少させると、その減少に伴って触
媒層の剥離が問題になってくる。
2. Description of the Related Art Phosphate molecular sieves such as aluminophosphate molecular sieves and silicoaluminophosphate molecular sieves are used as various catalysts to remove nitrogen oxides in exhaust gas discharged from internal combustion engines of automobiles. As the exhaust gas purification catalyst to be purified, for example, a catalyst in which a monolithic carrier is coated with a phosphate molecular sieve carrying a transition metal such as copper, cobalt or platinum by a method such as ion exchange or impregnation is used. ing. When such a phosphate molecular sieve is used as a catalyst in the contacting step, it has been used in the form of pellets, or a monolithic ceramic carrier is coated with a phosphate molecular sieve by wash coating. However, the pellet-shaped catalyst has a problem that the pressure drop is large, and the wash-coated catalyst has a problem that the adhesion of the catalyst layer to the carrier is not sufficient and the catalyst is peeled from the carrier unless a binder is used. However, there is a problem in that the catalytic activity decreases because the binder covers the catalytically active sites such as Cu ions as the amount of the binder added increases. When this addition amount is reduced, the peeling of the catalyst layer becomes a problem with the reduction.

【0003】[0003]

【発明が解決しようとする課題】従って、本発明は前記
した従来の燐酸塩モレキュラーシーブの問題点を排除
し、ハニカムなどのモノリシックセラミックス担体の表
面に燐酸塩モレキュラーシーブを結晶化させて強固に結
合した排気ガス浄化用触媒の製造方法を提供することを
目的とする。
Therefore, the present invention eliminates the above-mentioned problems of the conventional phosphate molecular sieve, and crystallizes the phosphate molecular sieve on the surface of a monolithic ceramics carrier such as a honeycomb to firmly bond them. An object of the present invention is to provide a method for producing the exhaust gas purifying catalyst.

【0004】[0004]

【課題を解決するための手段】本発明に従えば、モノリ
シックセラミックス担体を、燐酸塩モレキュラーシーブ
の合成原料と共に、水熱処理してモノリシックセラミッ
クス担体のセル表面上に燐酸塩モレキュラーシーブを結
晶化させ、次いで該燐酸塩モレキュラーシーブに少なく
とも1種の遷移金属をイオン交換担持せしめることから
なる排気ガス浄化用触媒の製造方法が提供される。
According to the present invention, a monolithic ceramic carrier is hydrothermally treated together with a synthetic raw material of a phosphate molecular sieve to crystallize the phosphate molecular sieve on the cell surface of the monolithic ceramic carrier. Then, there is provided a method for producing an exhaust gas purifying catalyst, which comprises ion-exchange supporting at least one transition metal on the phosphate molecular sieve.

【0005】即ち、本発明の具体的態様に従えば、モノ
リシックセラミックス担体を水和酸化アルミニウム又は
アルミニウムイソプロポキシド、燐酸、シリカゾル、テ
ンプレート剤としてのn−トリエチルアミンなどの燐酸
塩モレキュラーシーブの合成原料と共に攪拌機能を有す
るオートクレーブに装入し、水熱処理を施すことによ
り、アルミノ燐酸塩モレキュラーシーブやシリコアルミ
ノ燐酸塩モレキュラーシーブを担体表面に結晶化させる
ことができる。
That is, according to a specific embodiment of the present invention, a monolithic ceramic carrier is used together with hydrated aluminum oxide or aluminum isopropoxide, phosphoric acid, silica sol, and a synthetic raw material for a phosphate molecular sieve such as n-triethylamine as a template agent. The aluminophosphate molecular sieve or the silicoaluminophosphate molecular sieve can be crystallized on the surface of the carrier by charging into an autoclave having a stirring function and subjecting to hydrothermal treatment.

【0006】前記した本発明の触媒製造方法に際して、
モノリシックセラミックス担体に、常法に従って、予め
活性アルミナ又はシリカ−アルミナをコーティングして
おくことにより、担体と前記燐酸塩モレキュラーシーブ
との反応を制御することで担体の水熱分解を抑制するこ
とができる。
In the above-mentioned method for producing the catalyst of the present invention,
By coating the monolithic ceramics carrier with activated alumina or silica-alumina in advance according to a conventional method, the hydrothermal decomposition of the carrier can be suppressed by controlling the reaction between the carrier and the phosphate molecular sieve. ..

【0007】本発明の触媒製造方法において、用いるモ
ノリシックセラミックス担体としては、従来から広く用
いられているマグネシウム、アルミニウム、シリカなど
からなる酸化物(例えばコージェライト)のほかにアル
ミニウム、燐などを主成分とする酸化物(例えばアルミ
ナ)を用いることができる。担体の形状には特に制限は
ないが、例えばモノリス形状とすることができる。
In the catalyst production method of the present invention, as the monolithic ceramic carrier used, in addition to oxides (eg, cordierite) composed of magnesium, aluminum, silica, etc., which have been widely used, aluminum, phosphorus, etc. are the main components. An oxide (for example, alumina) can be used. The shape of the carrier is not particularly limited, but may be, for example, a monolith shape.

【0008】本発明に従えば、前記モノリシックセラミ
ックス担体と前記燐酸塩モレキュラーシーブの合成原料
とを水熱処理するが、水熱処理条件は、例えば温度 150
〜 210℃及び圧力10〜20kg/cm2 で5〜65時間処理する
ことによってアルミノ燐酸塩モレキュラーシーブ又はシ
リコアルミノ燐酸塩モレキュラーシーブなどの燐酸塩モ
レキュラーシーブをモノリシックセラミックス担体上に
結晶化させることができる。
According to the present invention, the monolithic ceramics carrier and the synthetic raw material of the phosphate molecular sieve are hydrothermally treated.
Phosphate molecular sieves such as aluminophosphate molecular sieves or silicoaluminophosphate molecular sieves can be crystallized on a monolithic ceramic support by treatment at -210 ° C and pressures of 10-20 kg / cm 2 for 5-65 hours.

【0009】前記燐酸塩モレキュラーシーブをモノリシ
ックセラミックス担体上に結晶化させるに際して、n−
トリエチルアミン、n−ブチルアミン、テトラ−n−プ
ロピルアンモニウムヒドロキシド、テトラエチルアンモ
ニウムヒドロキシドなどのテンプレート剤のほかに種結
晶として少量のゼオライトを添加することにより、所望
の燐酸塩モレキュラーシーブを効率よくモノリシックセ
ラミックス担体上に結晶化させることができる。
In crystallizing the phosphate molecular sieve on a monolithic ceramic carrier, n-
By adding a small amount of zeolite as a seed crystal in addition to a template agent such as triethylamine, n-butylamine, tetra-n-propylammonium hydroxide or tetraethylammonium hydroxide, the desired phosphate molecular sieve can be efficiently used as a monolithic ceramic carrier. Can be crystallized on top.

【0010】本発明によれば、次にモノリシックセラミ
ックス担体上に直接結晶化させた燐酸塩モレキュラーシ
ーブに、常法に従って遷移金属(例えばCu、Co、Pt、P
d、Niなど) をイオン交換させる。このイオン交換法は
従来法と何等変わるものではなく任意の方法を使用する
ことができる。前記燐酸塩モレキュラーシーブへの担持
量にも特に制限はなく、一般にはモレキュラーシーブ 1
00重量部当り遷移金属2〜4重量部、好ましくは1〜10
重量部である。
According to the invention, the phosphate molecular sieves, which are then crystallized directly on the monolithic ceramic support, are then subjected to the transition metals (eg Cu, Co, Pt, P) according to conventional methods.
(d, Ni, etc.) are ion-exchanged. This ion exchange method is not different from the conventional method and any method can be used. There is no particular limitation on the amount of the above-mentioned phosphate molecular sieve supported, and generally, the molecular sieve 1
2 to 4 parts by weight of transition metal, preferably 1 to 10 parts by weight per 00 parts by weight
Parts by weight.

【0011】[0011]

【作用】前記したように、本発明に従えば、バインダー
を使用しないためバインダーによる触媒活性点への影響
が全くなくなり、被覆触媒量当りの触媒活性が向上す
る。そのほか従来のウォッシュコートによる触媒調製で
は、作業性を考慮するとモノリシックセラミックス担体
にゼオライトを1コートするのに、本発明方法と比べて
ゼオライトが約4〜5倍量必要となり、更に本発明によ
るモノリシックセラミックス担体への結晶化によれば、
結晶化とウォッシュコートの両工程を一工程にすること
ができ、作業工程数の低減も達せられる。
As described above, according to the present invention, since the binder is not used, the influence of the binder on the catalytic active site is completely eliminated, and the catalytic activity per coated catalyst amount is improved. In addition, in the conventional catalyst preparation by washcoating, considering the workability, one coat of zeolite is required to coat the monolithic ceramic carrier with zeolite in an amount of about 4 to 5 times that of the method of the present invention. According to the crystallization on the carrier,
Both the crystallization process and the wash coating process can be combined into one process, and the number of working processes can be reduced.

【0012】[0012]

【実施例】以下、実施例によって本発明を更に具体的に
説明するが、本発明をこれらの実施例に限定するもので
ないことはいうまでもない。
The present invention will be described in more detail with reference to the following examples, but it goes without saying that the present invention is not limited to these examples.

【0013】実施例1:触媒調製 以下の手順でモノリシックセラミックス担体上にシリコ
アルミノ燐酸塩モレキュラーシーブを結晶化させた。水
50重量部、アルミニウムイソプロポキシド16重量部、燐
酸48重量部、シリカゾル (SiO2 20重量%)4重量部及
びn−トリエチルアミン20重量部からなる反応性ゲル体
1kgを、円筒形状をしたモノリシックセラミックス支持
体(あらかじめ活性アルミナをコートしたもの)60gと
共に攪拌機能を有するオートクレーブに中に装入し、自
己圧力下(最高30kg/cm2G) 、 180℃で65時間水熱処理
をした。シリコアルミノ燐酸塩モレキュラーシーブをモ
ノリシックセラミックス担体上に結晶化させた。これを
水で洗浄し、空気中 550℃で 3.5時間加熱して有機テン
プレート剤を除去し、0.02M酢酸銅1リットルにてイオ
ン交換し、 500℃で3時間焼成して実施例触媒Aを得
た。モノリシックセラミックス担体に結晶化したシリコ
アルミノ燐酸塩モレキュラーシーブの量は 6.2gで、得
られた触媒のイオン交換により担持されたCuの量は CuO
換算で 3.0重量%であった。
Example 1 Catalyst Preparation A silicoaluminophosphate molecular sieve was crystallized on a monolithic ceramic support by the following procedure. water
Cylindrical monolithic ceramic of 1 kg of reactive gel body consisting of 50 parts by weight, aluminum isopropoxide 16 parts by weight, phosphoric acid 48 parts by weight, silica sol (SiO 2 20% by weight) 4 parts by weight and n-triethylamine 20 parts by weight. 60 g of a support (previously coated with activated alumina) was charged into an autoclave having a stirring function, and subjected to hydrothermal treatment at 180 ° C. for 65 hours under self-pressure (maximum 30 kg / cm 2 G). The silicoaluminophosphate molecular sieves were crystallized on a monolithic ceramic support. This was washed with water, heated in air at 550 ° C. for 3.5 hours to remove the organic template agent, ion-exchanged with 1 liter of 0.02 M copper acetate, and calcined at 500 ° C. for 3 hours to obtain Example catalyst A. It was The amount of crystallized silicoaluminophosphate molecular sieves on the monolithic ceramics carrier was 6.2 g, and the amount of Cu supported by ion exchange of the obtained catalyst was CuO.
It was 3.0% by weight in conversion.

【0014】比較例1:触媒調製 水50重量部、アルミニウムイソプロポキシド16重量部、
燐酸48重量部、シリカゾル (SiO2 20重量%)4重量部
及びn−トリエチルアミン20重量部からなる反応性ゲル
体1kgをオートクレーブに装入し、自己圧力下(最高30
kg/cm2G) 、180 ℃で65時間水熱処理し、シリコアルミ
ノ燐酸塩モレキュラーシーブを結晶化させた。これを水
により洗浄し、空気中 550℃で 3.5時間加熱して有機テ
ンプレート剤を除去し、0.02M酢酸銅1リットルにてイ
オン交換し、 500℃で3時間焼成して触媒を得た。得ら
れた触媒のCu担持量は CuO換算で2.99重量%であった。
これをウォッシュコートによりモノリシックセラミック
ス担体上にコーティングして 500℃で3時間焼成し、比
較触媒Bを得た。ウォッシュコートのスラリー組成は、
重量部でCu担持シリコアルミノ燐酸塩モレキュラーシー
ブ:シリカゾル(SiO2 20重量%):水=9:5:4で
行い、被覆量は6.97g(Cu担持シリコアルミノ燐酸塩モ
レキュラーシーブ6.27g)であった。
Comparative Example 1: 50 parts by weight of catalyst preparation water, 16 parts by weight of aluminum isopropoxide,
1 kg of a reactive gel body consisting of 48 parts by weight of phosphoric acid, 4 parts by weight of silica sol (20% by weight of SiO 2 ) and 20 parts by weight of n-triethylamine was charged into an autoclave, and under self-pressure (max.
kg / cm 2 G) and hydrothermal treatment at 180 ° C. for 65 hours to crystallize the silicoaluminophosphate molecular sieve. This was washed with water, heated in air at 550 ° C. for 3.5 hours to remove the organic template agent, ion-exchanged with 1 liter of 0.02 M copper acetate, and calcined at 500 ° C. for 3 hours to obtain a catalyst. The amount of Cu supported on the obtained catalyst was 2.99% by weight in terms of CuO.
This was coated on the monolithic ceramics carrier by wash coating and baked at 500 ° C. for 3 hours to obtain comparative catalyst B. The washcoat slurry composition is
In parts by weight, Cu-supported silicoaluminophosphate molecular sieve: silica sol (SiO 2 20% by weight): water = 9: 5: 4 was used, and the coating amount was 6.97 g (Cu-supported silicoaluminophosphate molecular sieve 6.27 g).

【0015】実施例2:触媒の耐剥離性比較 上記で調製した触媒A及びBを水と共に容器に入れ、超
音波をかけて触媒の剥離率を測定した。結果を表1に示
す。
Example 2: Comparison of stripping resistance of catalysts Catalysts A and B prepared above were put in a container together with water and subjected to ultrasonic waves to measure the stripping rate of the catalyst. The results are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例3:触媒の活性評価 触媒A及びBの自動車排気ガスを模擬したモデルガス中
の炭化水素(HC) 、一酸化炭素 (CO) 、酸化窒素 (NO)
の浄化率を求めた。モデルガス組成は空燃比(A/F)
約18であり、0.11%CO、 4.3%O2 、0.03%H2 、11.9
%CO2 、0.08%C3H6及び0.1%NOであり、実験はSV
(触媒層へのガスを導入する空間速度) 420,000h-1
触媒層の温度 300℃、 400℃及び 500℃に於いて活性評
価を行った。結果を表2に示す。
Example 3: Activity evaluation of catalysts Hydrocarbons (HC), carbon monoxide (CO), and nitric oxide (NO) in model gases simulating automobile exhaust gases of catalysts A and B.
Was obtained. Model gas composition is air-fuel ratio (A / F)
About 18, 0.11% CO, 4.3% O 2 , 0.03% H 2 , 11.9
% CO 2 , 0.08% C 3 H 6 and 0.1% NO, SV
(Space velocity of introducing gas into the catalyst layer) 420,000 h -1 ,
The activity was evaluated at the catalyst layer temperatures of 300 ° C, 400 ° C and 500 ° C. The results are shown in Table 2.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】前記したように、本発明に従えば、モノ
リシックセラミックス担体のセル表面上に直接アルミノ
燐酸塩モレキュラーシーブ又はシリコアルミノ燐酸塩モ
レキュラーシーブを結晶化させるため、触媒の製造工程
でバインダーを使用する必要がなく、そのために従来の
触媒のように、浄化率の低下や触媒層の剥離の問題が全
くなくなり、更にウォッシュコートの工程を省略するこ
とができる。なお、本発明は、自動車排気ガス浄化用触
媒に限らず、モノリシックセラミックス担体にアルミノ
燐酸塩モレキュラーシーブやシリコアルミノ燐酸塩モレ
キュラーシーブ等を担持して使用する触媒の製造に応用
することもできる。
As described above, according to the present invention, a binder is used in the process of producing a catalyst in order to crystallize aluminophosphate molecular sieve or silicoaluminophosphate molecular sieve directly on the cell surface of a monolithic ceramic carrier. Therefore, unlike the conventional catalyst, there is no problem of reduction in purification rate and peeling of the catalyst layer, and the washcoating step can be omitted. The present invention is not limited to automobile exhaust gas purification catalysts, and can be applied to the production of catalysts in which aluminophosphate molecular sieves, silicoaluminophosphate molecular sieves, etc. are carried on a monolithic ceramic carrier and used.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 モノリシックセラミックス担体を、燐酸
塩モレキュラーシーブの合成原料と共に、水熱処理して
モノリシックセラミックス担体のセル表面上に燐酸塩モ
レキュラーシーブを結晶化させ、次いで該燐酸塩モレキ
ュラーシーブに少なくとも1種の遷移金属をイオン交換
担持せしめることを特徴とする排気ガス浄化用触媒の製
造方法。
1. A monolithic ceramic carrier is hydrothermally treated together with a synthetic raw material of a phosphate molecular sieve to crystallize the phosphate molecular sieve on the cell surface of the monolithic ceramic carrier, and then at least one kind of the phosphate molecular sieve is used. A method for producing an exhaust gas purifying catalyst, characterized in that the above transition metal is carried by ion exchange.
JP3166010A 1991-07-06 1991-07-06 Production of catalyst for purifying exhaust gas Pending JPH0557194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3166010A JPH0557194A (en) 1991-07-06 1991-07-06 Production of catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3166010A JPH0557194A (en) 1991-07-06 1991-07-06 Production of catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPH0557194A true JPH0557194A (en) 1993-03-09

Family

ID=15823226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3166010A Pending JPH0557194A (en) 1991-07-06 1991-07-06 Production of catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPH0557194A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601662B2 (en) 2007-02-27 2009-10-13 Basf Catalysts Llc Copper CHA zeolite catalysts
US7722845B2 (en) 2007-02-27 2010-05-25 Basf Corporation Bifunctional catalysts for selective ammonia oxidation
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
US8293199B2 (en) 2009-12-18 2012-10-23 Basf Corporation Process for preparation of copper containing molecular sieves with the CHA structure, catalysts, systems and methods
US8293198B2 (en) 2009-12-18 2012-10-23 Basf Corporation Process of direct copper exchange into Na+-form of chabazite molecular sieve, and catalysts, systems and methods
US8603432B2 (en) 2007-04-26 2013-12-10 Paul Joseph Andersen Transition metal/zeolite SCR catalysts
US8617474B2 (en) 2008-01-31 2013-12-31 Basf Corporation Systems utilizing non-zeolitic metal-containing molecular sieves having the CHA crystal structure
CN110479359A (en) * 2019-08-27 2019-11-22 无锡威孚环保催化剂有限公司 Low silica-alumina ratio high stability cupric molecular sieve catalyst and preparation method thereof
US10583424B2 (en) 2008-11-06 2020-03-10 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9656254B2 (en) 2007-02-27 2017-05-23 Basf Corporation Copper CHA zeolite catalysts
US7722845B2 (en) 2007-02-27 2010-05-25 Basf Corporation Bifunctional catalysts for selective ammonia oxidation
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
US8119088B2 (en) 2007-02-27 2012-02-21 Basf Corporation SCR on low thermal mass filter substrates
US11529619B2 (en) 2007-02-27 2022-12-20 Basf Corporation Copper CHA zeolite catalysts
US7601662B2 (en) 2007-02-27 2009-10-13 Basf Catalysts Llc Copper CHA zeolite catalysts
US8404203B2 (en) 2007-02-27 2013-03-26 Basf Corporation Processes for reducing nitrogen oxides using copper CHA zeolite catalysts
US10654031B2 (en) 2007-02-27 2020-05-19 Basf Corporation Copper CHA zeolite catalysts
US9839905B2 (en) 2007-02-27 2017-12-12 Basf Corporation Copper CHA zeolite catalysts
US8735311B2 (en) 2007-02-27 2014-05-27 Basf Corporation Copper CHA zeolite catalysts
US9138732B2 (en) 2007-02-27 2015-09-22 Basf Corporation Copper CHA zeolite catalysts
US9162218B2 (en) 2007-02-27 2015-10-20 Basf Corporation Copper CHA zeolite catalysts
US12064727B2 (en) 2007-04-26 2024-08-20 Johnson Matthey Public Limited Company Transition metal/zeolite SCR catalysts
US8603432B2 (en) 2007-04-26 2013-12-10 Paul Joseph Andersen Transition metal/zeolite SCR catalysts
US11478748B2 (en) 2007-04-26 2022-10-25 Johnson Matthey Public Limited Company Transition metal/zeolite SCR catalysts
US8617474B2 (en) 2008-01-31 2013-12-31 Basf Corporation Systems utilizing non-zeolitic metal-containing molecular sieves having the CHA crystal structure
US10105649B2 (en) 2008-01-31 2018-10-23 Basf Corporation Methods utilizing non-zeolitic metal-containing molecular sieves having the CHA crystal structure
US11660585B2 (en) 2008-11-06 2023-05-30 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios
US10583424B2 (en) 2008-11-06 2020-03-10 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios
US8293198B2 (en) 2009-12-18 2012-10-23 Basf Corporation Process of direct copper exchange into Na+-form of chabazite molecular sieve, and catalysts, systems and methods
US8293199B2 (en) 2009-12-18 2012-10-23 Basf Corporation Process for preparation of copper containing molecular sieves with the CHA structure, catalysts, systems and methods
CN110479359A (en) * 2019-08-27 2019-11-22 无锡威孚环保催化剂有限公司 Low silica-alumina ratio high stability cupric molecular sieve catalyst and preparation method thereof

Similar Documents

Publication Publication Date Title
CN105312081B (en) For NOxReduced novel metal-containing zeolite β
US10105649B2 (en) Methods utilizing non-zeolitic metal-containing molecular sieves having the CHA crystal structure
JP5762816B2 (en) Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-membered ring pore opening structure, a process for its production and its use
JP6370713B2 (en) Method and apparatus for treating a gas stream containing nitrogen oxides
EP3490934B1 (en) Process for the preparation of a zeolitic material having a fau-type framework structure
CN113474290B (en) Molecular sieve intergrowth, preparation and methods of use of chas and afts having a "sfw-GME tail
US6759358B2 (en) Method for washcoating a catalytic material onto a monolithic structure
JP2529739B2 (en) Exhaust gas purification catalyst and method
JPH0557194A (en) Production of catalyst for purifying exhaust gas
WO2020039015A1 (en) Passive nitrogen oxide adsorber
JPH02251246A (en) Catalyst for purifying exhaust gas
WO1991006508A1 (en) Catalyst for nitrogen oxide decomposition and method of cleaning nitrogen oxide-containing exhaust gas
JPH0640964B2 (en) Exhaust gas purification catalyst manufacturing method
CN110961147A (en) AEI/RTH structure symbiotic composite molecular sieve, preparation method and SCR application thereof
JP3450441B2 (en) Method for producing monolith catalyst for purifying exhaust gas, monolith catalyst, and method for removing nitrogen oxides in exhaust gas
JPH0824656A (en) Catalyst for purifying exhaust gas
JPH04193347A (en) Catalyst for purification of exhaust gas
JP3361130B2 (en) Method for producing ZSM-5 used for exhaust gas purifying catalyst
JP3482658B2 (en) Nitrogen oxide removal method
KR20240159854A (en) Copper and manganese containing chabazite SCR catalyst for N2O reduction
JP2601018B2 (en) Exhaust gas purification catalyst
JP3152375B2 (en) Automotive exhaust gas purification catalyst and method for producing the same
JP2964508B2 (en) Exhaust gas purification method
JPH04271843A (en) Production of catalyst for purification of exhaust gas
JPH05168937A (en) Exhaust gas purifying catalyst