JPH0552438A - Absorption heat pump - Google Patents
Absorption heat pumpInfo
- Publication number
- JPH0552438A JPH0552438A JP23105791A JP23105791A JPH0552438A JP H0552438 A JPH0552438 A JP H0552438A JP 23105791 A JP23105791 A JP 23105791A JP 23105791 A JP23105791 A JP 23105791A JP H0552438 A JPH0552438 A JP H0552438A
- Authority
- JP
- Japan
- Prior art keywords
- absorber
- condenser
- heat exchanger
- evaporator
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、暖房運転などに使用す
る吸収ヒートポンプに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption heat pump used for heating operation and the like.
【0002】[0002]
【従来の技術】従来、この種のヒートポンプ装置として
は、例えば特開昭58−60172号公報に提案された
装置が知られている。ここに提案されたヒートポンプ装
置は単効用機器2台の組み合わせにより、2つの独立し
たサイクルを熱媒を介して接続させたものであり、装置
全体が大きくコンパクト化を図るのが困難であると云う
問題があった。2. Description of the Related Art Conventionally, as this type of heat pump device, for example, a device proposed in Japanese Patent Laid-Open No. 58-60172 is known. The heat pump device proposed here is one in which two independent cycles are connected through a heating medium by combining two single-effect devices, and it is difficult to make the entire device large and compact. There was a problem.
【0003】また、装置の成績係数(以下、COPと記
す)も必ずしも満足の行くものではなかった。すなわ
ち、一重効用のヒートポンプのCOPは一般に0.5前
後であるため、第一吸収式冷凍機の再生器での加熱量Q
G1を1としたとき蒸発器での熱量QE1は0.5となり、
温水系への放熱量QAC1 はQG1とQE1の和であるから QAC1 =QG1+QE1=1+0.5=1.5 である。そして、このQAC1 の熱量が第二吸収式冷凍機
の蒸発器での熱量となるため、第二吸収式冷凍機の再生
器における加熱量QG2は QG2=1.5÷0.5=3.0 となる。したがって、第二吸収式冷凍機での温水系への
放熱量QAC2 は QAC2 =QAC1 +QG2=1.5+3.0=4.5 であるため、装置全体(温水システム)のCOPは COP=QAC2 ÷(QG1+QG2) =4.5÷(1.0+3.0) =1.125 と低く、この点の改善も求められていた。Further, the coefficient of performance of the apparatus (hereinafter referred to as COP) is not always satisfactory. That is, since the COP of a single-effect heat pump is generally around 0.5, the heating amount Q in the regenerator of the first absorption refrigerator is
When G1 is 1, the heat quantity Q E1 in the evaporator is 0.5,
The amount of heat radiation Q AC1 to the hot water system is the sum of Q G1 and Q E1 and therefore Q AC1 = Q G1 + Q E1 = 1 + 0.5 = 1.5. Since the heat quantity of Q AC1 becomes the heat quantity of the evaporator of the second absorption refrigerator, the heating quantity Q G2 in the regenerator of the second absorption refrigerator is Q G2 = 1.5 ÷ 0.5 = It becomes 3.0. Therefore, the heat radiation amount Q AC2 to the hot water system in the second absorption refrigerator is Q AC2 = Q AC1 + Q G2 = 1.5 + 3.0 = 4.5, and the COP of the entire device (hot water system) is COP. = Q AC2 ÷ (Q G1 + Q G2 ) = 4.5 ÷ (1.0 + 3.0) = 1.125, which is low, and improvement in this point has also been demanded.
【0004】[0004]
【発明が解決しようとする課題】したがって、本発明は
吸収ヒートポンプのコンパクト化を図ると共に、COP
の改善を図ろうとするものである。Therefore, the present invention aims at downsizing of the absorption heat pump, and at the same time, COP
It is intended to improve.
【0005】[0005]
【課題を解決するための手段】本発明は上記従来技術の
課題を解決するためになされたもので、高温再生器、低
温再生器、第一凝縮器、第二凝縮器、第一蒸発器、第二
蒸発器、第一吸収器、第二吸収器、高温熱交換器、中温
熱交換器、低温熱交換器とからなり、吸収液管路を第一
吸収器の稀液が低温熱交換器を経たのち第二吸収器から
の稀液と混合され、中温熱交換器を経て低温再生器に流
入したのち高温熱交換器を経て高温再生器に流入し、冷
媒を蒸発分離して濃縮された濃液が高温熱交換器、中温
熱交換器を経て一部が第二吸収器に、残部が低温熱交換
器を経て第一吸収器に還流可能に設け、冷媒管路を高温
再生器で生成した冷媒蒸気の一部が低温再生器を経て第
一凝縮器に流入したのち第一蒸発器に流入すると共に、
前記生成冷媒蒸気の残部が直接第二凝縮器に流入したの
ち第二蒸発器に流入可能に設け、冷水管路を下水処理
水、河川水などが第一蒸発器を経て下水、河川などに排
水可能に設け、中間温水管路を第一吸収器、第一凝縮
器、第二蒸発器の順に循環可能に設け、第二吸収器、第
二凝縮器の順に設けた高温水管路から高温水を取り出す
ことを特徴とする吸収ヒートポンプであり、第二凝縮器
から第二蒸発器に至る冷媒管路と、第一凝縮器から第二
蒸発器に至る中間温水管路との間に、冷媒中間温水熱交
換器を設けた吸収ヒートポンプであり、第二凝縮器から
第二蒸発器に至る冷媒管路と、稀液の一部を第一吸収器
から低温再生器に直接流入可能に設けた吸収液管路との
間に、ドレン熱交換器を設けた吸収ヒートポンプであ
る。The present invention has been made in order to solve the above-mentioned problems of the prior art. A high temperature regenerator, a low temperature regenerator, a first condenser, a second condenser, a first evaporator, It consists of a second evaporator, a first absorber, a second absorber, a high temperature heat exchanger, a medium temperature heat exchanger and a low temperature heat exchanger. After being mixed with the dilute liquid from the second absorber, it flows into the low temperature regenerator through the medium temperature heat exchanger, then flows into the high temperature regenerator through the high temperature heat exchanger, and the refrigerant is evaporated and separated to be concentrated. The concentrated liquid passes through the high-temperature heat exchanger and the medium-temperature heat exchanger so that part of the concentrated liquid can flow back to the second absorber, and the rest can flow back to the first absorber via the low-temperature heat exchanger. Part of the refrigerant vapor that has flowed into the first condenser through the low temperature regenerator and then into the first evaporator,
The remaining part of the generated refrigerant vapor is allowed to directly flow into the second condenser, and then is allowed to flow into the second evaporator. It is possible to circulate the intermediate hot water pipe in the order of the first absorber, the first condenser and the second evaporator, and the high temperature water is supplied from the high temperature water pipe provided in the order of the second absorber and the second condenser. It is an absorption heat pump characterized by taking out, between the refrigerant line from the second condenser to the second evaporator, and the intermediate hot water pipe from the first condenser to the second evaporator, the refrigerant intermediate hot water An absorption heat pump provided with a heat exchanger, a refrigerant line from the second condenser to the second evaporator, and an absorption liquid provided so that a part of the dilute liquid can directly flow from the first absorber to the low temperature regenerator. It is an absorption heat pump having a drain heat exchanger provided between the pipe and the pipe.
【0006】[0006]
【作用】請求項1に係わる吸収ヒートポンプにおいて
は、温度、圧力レベルの異なる第一吸収器、第二吸収器
からの稀液は混合されたのち、低温再生器、高温再生器
へと導かれ、冷媒蒸気を発生分離して濃縮され、高温再
生器からの濃液は所定の比率で第一吸収器と第二吸収器
とに流入する。また、高温再生器で蒸発分離された冷媒
は第二凝縮器と低温再生器を経て第一凝縮器へと導かれ
たのち、それぞれ第二蒸発器、第一蒸発器へと流入す
る。このようにして、第一蒸発器、第一吸収器、第一凝
縮器、低温再生器、高温再生器により二重効用吸収ヒー
トポンプが形成され、第二蒸発器、第二吸収器、第二凝
縮器、高温再生器により単効用吸収ヒートポンプが形成
されているので、第一蒸発器における下水処理水などか
らの入熱を、二重効用吸収ヒートポンプサイクルにより
中間温水側へ放熱させ、これを第二蒸発器に入熱させる
ことにより、第二吸収器、第二凝縮器の順に配管した高
温水管路から高温水を効率良く供給することができる。In the absorption heat pump according to the first aspect, the dilute liquids from the first and second absorbers having different temperatures and pressure levels are mixed and then introduced into the low temperature regenerator and the high temperature regenerator, The refrigerant vapor is generated, separated and concentrated, and the concentrated liquid from the high temperature regenerator flows into the first absorber and the second absorber at a predetermined ratio. Further, the refrigerant evaporated and separated by the high temperature regenerator is guided to the first condenser via the second condenser and the low temperature regenerator, and then flows into the second evaporator and the first evaporator, respectively. In this way, a double-effect absorption heat pump is formed by the first evaporator, the first absorber, the first condenser, the low temperature regenerator, and the high temperature regenerator, and the second evaporator, the second absorber, and the second condenser. Since the single-effect absorption heat pump is formed by the reactor and high-temperature regenerator, the heat input from the sewage treatment water in the first evaporator is radiated to the intermediate hot water side by the double-effect absorption heat pump cycle, and this is By inputting heat to the evaporator, high-temperature water can be efficiently supplied from the high-temperature water pipe line that connects the second absorber and the second condenser in this order.
【0007】請求項2に係わる吸収ヒートポンプにおい
ては、第二凝縮器から第二蒸発器に流入する冷媒が冷媒
中間温水熱交換器で中間温水と熱交換して冷却され、第
二蒸発器で冷媒が気化する際の所用熱量が大きくなるた
め、エリミネータを介して隣接する第二吸収器での発熱
量が増大し、高温水管路を流れる温水が効率的に加熱さ
れる。In the absorption heat pump according to the second aspect, the refrigerant flowing from the second condenser to the second evaporator is cooled by exchanging heat with the intermediate hot water in the refrigerant intermediate hot water heat exchanger and cooled in the second evaporator. Since the amount of heat required for vaporizing is increased, the amount of heat generated in the adjacent second absorber via the eliminator is increased, and the hot water flowing through the hot water pipeline is efficiently heated.
【0008】請求項3に係わる吸収ヒートポンプにおい
ては、第一吸収器から低温再生器に直接流入する一部の
稀液がドレン熱交換器で高温の冷媒により加熱され、低
温再生器(および高温再生器)に高温になって流入する
ため、冷媒を蒸発分離する効率が向上し、第二凝縮器か
ら第二蒸発器に流入する冷媒は逆に熱を奪われて温度が
低下し、冷媒が温度降下するのに必要な自己フラッシュ
量が減少するため冷媒の有効利用が促進され、高温水管
路を流れる温水が効果的に加熱される。In the absorption heat pump according to the third aspect of the present invention, a part of the dilute liquid that directly flows from the first absorber to the low temperature regenerator is heated by the high temperature refrigerant in the drain heat exchanger, and the low temperature regenerator (and the high temperature regenerator). The efficiency of evaporating and separating the refrigerant is improved, and the refrigerant flowing from the second condenser to the second evaporator is deprived of heat and its temperature is lowered. Since the amount of self-flash required for descending is reduced, the effective use of the refrigerant is promoted, and the hot water flowing through the hot water pipeline is effectively heated.
【0009】[0009]
【実施例】図中1aは高温再生器、1bは低温再生器、
2aは第一凝縮器、2bは第二凝縮器、3aは第一蒸発
器、3bは第二蒸発器、4aは第一吸収器、4bは第二
吸収器、5aは高温熱交換器、5bは低温熱交換器であ
り、何れも従来周知のものと変わるものではなく、以下
に記すように配管接続される他、特に記載しない限り、
従来システムと同様全ての機器が順調に機能するように
接続される。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the figure, 1a is a high temperature regenerator, 1b is a low temperature regenerator,
2a is a first condenser, 2b is a second condenser, 3a is a first evaporator, 3b is a second evaporator, 4a is a first absorber, 4b is a second absorber, 5a is a high temperature heat exchanger, 5b. Is a low temperature heat exchanger, which is not different from the conventionally known one, and is connected by piping as described below, unless otherwise specified,
Like the conventional system, all devices are connected so that they can function smoothly.
【0010】(実施例1)図1に示した吸収ヒートポン
プにおいては、第一吸収器4aの稀液が低温熱交換器5
bを経たのち第二吸収器4bからの稀液と混合され、中
温熱交換器5cを経て低温再生器1bに流入し、高温熱
交換器5aを経て高温再生器1aに流入し、冷媒を蒸発
分離して生成された濃液が高温熱交換器5a、中温熱交
換器5cを経て一部が第二吸収器4bに、残部が低温熱
交換器5bを経て第一吸収器4aに還流可能に吸収液管
路6が配管接続されている。P1、P2、P3は、吸収
液管路6のそれぞれの位置に設置された、吸収液を循環
させるためのポンプである。(Example 1) In the absorption heat pump shown in FIG. 1, the dilute liquid of the first absorber 4a is a low temperature heat exchanger 5
After passing through b, it is mixed with the dilute liquid from the second absorber 4b, flows into the low temperature regenerator 1b via the medium temperature heat exchanger 5c, flows into the high temperature regenerator 1a via the high temperature heat exchanger 5a, and evaporates the refrigerant. The concentrated liquid produced by the separation can be returned to the second absorber 4b through the high temperature heat exchanger 5a and the intermediate temperature heat exchanger 5c, and the rest to the first absorber 4a through the low temperature heat exchanger 5b. The absorbing liquid pipe 6 is connected by piping. P1, P2, and P3 are pumps for circulating the absorbing liquid, which are installed at respective positions of the absorbing liquid pipe 6.
【0011】高温再生器1aにおいて発生分離した冷媒
蒸気の一部が低温再生器1bを経由して第一凝縮器2a
に流入したのち第一蒸発器3aに流入可能に、また、前
記生成した冷媒蒸気の残部が第二凝縮器2bに直接流入
したのち第二蒸発器3bに流入可能に冷媒管路7が配管
接続されている。A part of the refrigerant vapor generated and separated in the high temperature regenerator 1a passes through the low temperature regenerator 1b, and then the first condenser 2a.
Is connected to the first evaporator 3a and the rest of the generated refrigerant vapor directly flows into the second condenser 2b and then into the second evaporator 3b. Has been done.
【0012】そして、中間温水管路8が第一吸収器4
a、第一凝縮器2a、第二蒸発器3bの順に循環可能に
配管接続され、冷水管路9が下水処理水、河川水などを
第一蒸発器3aの内部に導いたのち下水、河川などに排
水可能に配管されている。P4は中間温水管路8に設け
たポンプである。Then, the intermediate hot water pipe line 8 is connected to the first absorber 4
a, the first condenser 2a, and the second evaporator 3b are circulatively connected in a circulatory manner, and the cold water pipe 9 guides sewage treatment water, river water, etc. into the first evaporator 3a, and then sewage, river, etc. It is piped for drainage. P4 is a pump provided in the intermediate hot water pipe line 8.
【0013】また、第二吸収器4b、第二凝縮器2bの
順に高温水管路10が配管され、第二吸収器4bにおい
ては高温再生器1aから供給された濃液が冷媒を吸収す
る際に生じる熱により、また第二凝縮器2bにおいては
高温再生器1aから供給される高温の冷媒蒸気によって
それぞれ加熱されるため、高温水管路10の吐出側から
高温水(例えば80℃)の取り出しが可能となってい
る。Further, a high temperature water pipe 10 is arranged in the order of the second absorber 4b and the second condenser 2b, and when the concentrated liquid supplied from the high temperature regenerator 1a absorbs the refrigerant in the second absorber 4b. It is possible to take out high-temperature water (for example, 80 ° C.) from the discharge side of the high-temperature water pipe 10 because it is heated by the heat generated and in the second condenser 2b by the high-temperature refrigerant vapor supplied from the high-temperature regenerator 1a. Has become.
【0014】高温再生器1aで生成する冷媒および濃液
を分配することにより単効用ヒートポンプと二重効用ヒ
ートポンプとが形成される。 一般に、二重効用ヒートポンプの中間温水側COP;2.0 〃 熱源水側COP ;1.0 単効用ヒートポンプの温水側COP ;1.5 〃 中間温水側COP ;0.5 であるので、二重効用側の高温再生器入熱量を1とする
と、中間水側への出熱は2.0。これを単効用側の熱源
水として入熱させるため、単効用側の高温再生器への入
熱量は、2.0÷0.5=4.0である。したがって、
システム全体のCOPは COP=4.0×1.5÷(1+4.0)=1.2 であり、従来の吸収ヒートポンプのCOP(1.12
5)より約7%(1.2÷1.125≒1.07)の改
善が図られたことが分かる。By distributing the refrigerant and the concentrated liquid generated in the high temperature regenerator 1a, a single effect heat pump and a double effect heat pump are formed. Generally, the double-effect heat pump has an intermediate hot water side COP; 2.0 〃 heat source water side COP; 1.0, a single effect heat pump hot water side COP; 1.5 〃 intermediate hot water side COP; If the heat input to the high temperature regenerator on the utility side is 1, the heat output to the intermediate water side is 2.0. Since this is input as heat source water on the single-effect side, the heat input to the high-temperature regenerator on the single-effect side is 2.0 ÷ 0.5 = 4.0. Therefore,
The COP of the entire system is COP = 4.0 × 1.5 ÷ (1 + 4.0) = 1.2, which is the COP (1.12) of the conventional absorption heat pump.
From 5), it can be seen that an improvement of about 7% (1.2 ÷ 1.125≈1.07) was achieved.
【0015】また、 QE1;第一蒸発器3aにおける交換熱量 QE2;第二蒸発器3bにおける交換熱量 N1 ;第一蒸発器3aにおける冷媒蒸発量 N2 ;第二蒸発器3bにおける冷媒蒸発量 G10;第一吸収器4aより流出する稀液量(濃度58
%) G20;第二吸収器4bより流出する稀液量(濃度60
%) G11;第一吸収器4aに流入する濃液量(濃度63.5
%) G21;第二吸収器4bに流入する濃液量(濃度63.5
%) とすると、 G10×0.58=G11×0.635 G20×0.60=G21×0.635 N1 =G10−G11 N2 =G20−G21 N1 :N2 ≒QE1:QE2=1:2.0 なる関係より、 G21/G11=3.28 したがって、高温再生器1aからの濃液は第一吸収器4
aと第二吸収器4bとに1:3.28の比率で分配され
て流入する。In addition, QE1The amount of heat exchanged in the first evaporator 3a QE2The amount of heat exchanged in the second evaporator 3b N1 The refrigerant evaporation amount N in the first evaporator 3a2 The refrigerant evaporation amount G in the second evaporator 3bTenThe amount of rare liquid flowing out from the first absorber 4a (concentration 58
%) G20The amount of rare liquid flowing out from the second absorber 4b (concentration 60
%) G11The amount of concentrated liquid flowing into the first absorber 4a (concentration 63.5
%) Gtwenty oneThe amount of concentrated liquid flowing into the second absorber 4b (concentration 63.5
%), GTen× 0.58 = G11× 0.635 G20× 0.60 = Gtwenty one× 0.635 N1 = GTen-G11 N2 = G20-Gtwenty one N1 : N2 ≒ QE1: QE2= 1: 2.0, Gtwenty one/ G11= 3.28 Therefore, the concentrated liquid from the high temperature regenerator 1a is the first absorber 4
a and the second absorber 4b are distributed at a ratio of 1: 3.28.
Flows in.
【0016】また、 NLG;低温再生器1bにおける冷媒発生量 nC1;低温再生器1bを経て第一凝縮器2aに導かれる
冷媒蒸気量 nC2;第二凝縮器2bに導かれる冷媒蒸気量 とすると、 NLG+nC1=N1 nC2=N2 NLG=4/6×nC1 なる関係より、 N1 :N2 =10/6×nC1:nC2=1:2.0 ∴nC1/nC2=3/10 したがって、高温再生器1aで発生する冷媒(蒸気)は
低温再生器1bと第二凝縮器2bに3:10の比率で分
配されて流入する。In addition, NLGThe amount of refrigerant generated in the low temperature regenerator 1b nC1Is guided to the first condenser 2a via the low temperature regenerator 1b
Refrigerant vapor amount nC2The amount of refrigerant vapor introduced to the second condenser 2b is NLG+ NC1= N1 nC2= N2 NLG= 4/6 × nC1 From the relationship, N1 : N2 = 10/6 × nC1: NC2= 1: 2.0 ∴nC1/ NC2= 3/10 Therefore, the refrigerant (steam) generated in the high temperature regenerator 1a is
The low temperature regenerator 1b and the second condenser 2b are divided at a ratio of 3:10.
It is distributed and flows in.
【0017】なお、第二凝縮器2bから第二蒸発器3b
に至る冷媒管路7と、第一凝縮器2aから第二蒸発器3
bに至る中間温水管路8との間に、冷媒中間温水熱交換
器5dを設けることも可能であり、このような構成の吸
収ヒートポンプにおいては、第二凝縮器2bから第二蒸
発器3bに流入する冷媒が冷媒中間温水熱交換器5dに
おいて中間温水と熱交換して冷却され、冷媒が温度降下
するのに必要な自己フラッシュ量が減少するため冷媒の
有効利用が促進され、高温水管路10を流れる温水が効
率的に加熱される。Incidentally, from the second condenser 2b to the second evaporator 3b.
To the refrigerant pipe 7 and the first condenser 2a to the second evaporator 3
It is also possible to provide a refrigerant intermediate hot water heat exchanger 5d between the intermediate hot water pipe line 8 reaching b, and in the absorption heat pump having such a configuration, from the second condenser 2b to the second evaporator 3b. The inflowing refrigerant is cooled by exchanging heat with the intermediate hot water in the refrigerant intermediate hot water heat exchanger 5d, and the amount of self-flash required for the temperature drop of the refrigerant is reduced, so that the effective use of the refrigerant is promoted, and the high temperature water pipeline 10 The hot water flowing through is efficiently heated.
【0018】(実施例2)図2は、図1に示した吸収ヒ
ートポンプの第二凝縮器2bから第二蒸発器3bに至る
冷媒管路7と、稀液を第一吸収器4aから低温熱交換器
5bと中温熱交換器5cとを経由して低温再生器1bに
送っている吸収液管路6の低温熱交換器5b手前で分岐
し、稀液の一部を低温再生器1bに直接流入可能に設け
た稀液分岐管路61との間にドレン熱交換器5eを設け
た実施例である。(Embodiment 2) FIG. 2 shows a refrigerant line 7 from the second condenser 2b to the second evaporator 3b of the absorption heat pump shown in FIG. Before the low-temperature heat exchanger 5b of the absorption liquid pipe 6 which is being sent to the low-temperature regenerator 1b via the exchanger 5b and the medium-temperature heat exchanger 5c, is branched and a part of the dilute liquid is directly supplied to the low-temperature regenerator 1b. This is an example in which the drain heat exchanger 5e is provided between the dilute liquid branch pipe line 61 provided so as to be able to flow in.
【0019】この吸収ヒートポンプにおいては、稀液分
岐管路61を通って低温再生器1bに流入する稀液がド
レン熱交換器5eにおいて高温の冷媒により加熱され、
低温再生器1b(および高温再生器1a)に高温になっ
て流入するため、冷媒を蒸発分離する効率が向上し、第
二凝縮器2bから第二蒸発器3bに流入する冷媒は逆に
熱を奪われて温度が低下し、冷媒が温度降下するのに必
要な自己フラッシュ量が減少するため冷媒の有効利用が
促進され、高温水管路10を流れる温水が効果的に加熱
される。In this absorption heat pump, the dilute liquid flowing into the low temperature regenerator 1b through the dilute liquid branch pipe line 61 is heated by the high temperature refrigerant in the drain heat exchanger 5e,
Since the temperature of the refrigerant flows into the low temperature regenerator 1b (and the high temperature regenerator 1a) at a high temperature, the efficiency of evaporating and separating the refrigerant is improved, and the refrigerant flowing from the second condenser 2b to the second evaporator 3b conversely generates heat. The temperature of the refrigerant is deprived of the refrigerant, and the amount of self-flash required for the temperature of the refrigerant to decrease is reduced. Therefore, the effective use of the refrigerant is promoted, and the hot water flowing through the high temperature water conduit 10 is effectively heated.
【0020】なお、前記冷媒中間温水熱交換器5dと、
このドレン熱交換器5eとは同時に取付けることも可能
である。The refrigerant intermediate hot water heat exchanger 5d,
It is also possible to attach the drain heat exchanger 5e at the same time.
【0021】[0021]
【発明の効果】本発明の吸収ヒートポンプは、上記した
ように単効用機器を単に2台組み合わせただけあった従
来の装置を、1台の装置にまとめ上げたものであり、大
幅な省スペース化が図れる。また、二重効用サイクルと
単効用サイクルとの組み合わせであるため、従来装置に
比べてCOPが約7%改善され、12℃程度の河川水を
低温熱源として利用し、80℃程度の高温水を効率良く
取り出すことができる。As described above, the absorption heat pump of the present invention is a combination of the conventional devices having only two single-effect devices combined into a single device, thus saving a large amount of space. Can be achieved. In addition, since it is a combination of a double-effect cycle and a single-effect cycle, COP is improved by about 7% compared to the conventional device, river water of about 12 ° C is used as a low-temperature heat source, and high-temperature water of about 80 ° C is used. It can be taken out efficiently.
【図1】実施例1の説明図である。FIG. 1 is an explanatory diagram of a first embodiment.
【図2】実施例2の説明図である。FIG. 2 is an explanatory diagram of a second embodiment.
1a 高温再生器 1b 低温再生器 2a 第一凝縮器 2b 第二凝縮器 3a 第一蒸発器 3b 第二蒸発器 4a 第一吸収器 4b 第二吸収器 5a 高温熱交換器 5b 低温熱交換器 5c 中温熱交換器 5d 冷媒中間温水熱交換器 5e ドレン熱交換器 6 吸収液管路 7 冷媒管路 8 中間温水管路 9 冷水管路 10 高温水管路 P1 ポンプ P2 ポンプ P3 ポンプ P4 ポンプ 1a high temperature regenerator 1b low temperature regenerator 2a first condenser 2b second condenser 3a first evaporator 3b second evaporator 4a first absorber 4b second absorber 5a high temperature heat exchanger 5b low temperature heat exchanger 5c middle Heat exchanger 5d Refrigerant intermediate hot water heat exchanger 5e Drain heat exchanger 6 Absorbing liquid conduit 7 Refrigerant conduit 8 Intermediate hot water conduit 9 Cold water conduit 10 High temperature water conduit P1 pump P2 pump P3 pump P4 pump
───────────────────────────────────────────────────── フロントページの続き (72)発明者 村山 智之 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 香川 洋太郎 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tomoyuki Murayama 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Yotaro Kagawa 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Denki Within the corporation
Claims (3)
第二凝縮器、第一蒸発器、第二蒸発器、第一吸収器、第
二吸収器、高温熱交換器、中温熱交換器、低温熱交換器
とからなり、吸収液管路を第一吸収器の稀液が低温熱交
換器を経たのち第二吸収器からの稀液と混合され、中温
熱交換器を経て低温再生器に流入したのち高温熱交換器
を経て高温再生器に流入し、冷媒を蒸発分離して濃縮さ
れた濃液が高温熱交換器、中温熱交換器を経て一部が第
二吸収器に、残部が低温熱交換器を経て第一吸収器に還
流可能に設け、冷媒管路を高温再生器で生成した冷媒蒸
気の一部が低温再生器を経て第一凝縮器に流入したのち
第一蒸発器に流入すると共に、前記生成冷媒蒸気の残部
が直接第二凝縮器に流入したのち第二蒸発器に流入可能
に設け、冷水管路を下水処理水、河川水などが第一蒸発
器を経て下水、河川などに排水可能に設け、中間温水管
路を第一吸収器、第一凝縮器、第二蒸発器の順に循環可
能に設け、第二吸収器、第二凝縮器の順に設けた高温水
管路から高温水を取り出すことを特徴とする吸収ヒート
ポンプ。1. A high temperature regenerator, a low temperature regenerator, a first condenser,
It consists of a second condenser, a first evaporator, a second evaporator, a first absorber, a second absorber, a high temperature heat exchanger, a medium temperature heat exchanger and a low temperature heat exchanger. The dilute liquid of the absorber passes through the low temperature heat exchanger, is mixed with the dilute liquid from the second absorber, flows into the low temperature regenerator through the medium temperature heat exchanger, and then flows into the high temperature regenerator through the high temperature heat exchanger. The concentrated liquid obtained by evaporating and separating the refrigerant is provided so that it can be returned to the first absorber via the high-temperature heat exchanger and the medium-temperature heat exchanger, part of which is in the second absorber, and the remainder is in the low-temperature heat exchanger. , A part of the refrigerant vapor generated in the high-temperature regenerator through the refrigerant pipe flows into the first condenser after passing through the low-temperature regenerator, and then flows into the first evaporator, while the remaining part of the generated refrigerant vapor is directly condensed into the second condenser. It is installed so that it can flow into the second evaporator after it has flowed into the reactor, and the sewage treatment water, river water, etc. pass through the first evaporator to the sewage, river It can be drained to the middle hot water pipeline, and the first absorber, the first condenser, and the second evaporator can be circulated in that order. An absorption heat pump that takes out high-temperature water.
路と、第一凝縮器から第二蒸発器に至る中間温水管路と
の間に、冷媒中間温水熱交換器を設けた請求項1記載の
吸収ヒートポンプ。2. A refrigerant intermediate hot water heat exchanger is provided between the refrigerant conduit from the second condenser to the second evaporator and the intermediate hot water conduit from the first condenser to the second evaporator. The absorption heat pump according to claim 1.
路と、稀液の一部を第一吸収器から低温再生器に直接流
入可能に設けた吸収液管路との間に、ドレン熱交換器を
設けた請求項1記載の吸収ヒートポンプ。3. A refrigerant line from the second condenser to the second evaporator, and an absorption liquid line provided so that a part of the dilute liquid can directly flow from the first absorber to the low temperature regenerator. The absorption heat pump according to claim 1, further comprising a drain heat exchanger.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03231057A JP3083360B2 (en) | 1991-08-20 | 1991-08-20 | Absorption heat pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03231057A JP3083360B2 (en) | 1991-08-20 | 1991-08-20 | Absorption heat pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0552438A true JPH0552438A (en) | 1993-03-02 |
JP3083360B2 JP3083360B2 (en) | 2000-09-04 |
Family
ID=16917614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03231057A Expired - Fee Related JP3083360B2 (en) | 1991-08-20 | 1991-08-20 | Absorption heat pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3083360B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100608410B1 (en) * | 2005-03-24 | 2006-08-02 | 엘에스전선 주식회사 | Absorption chiller of double effect |
JP2011242016A (en) * | 2010-05-14 | 2011-12-01 | Ebara Refrigeration Equipment & Systems Co Ltd | Absorption heat pump |
JP2011242015A (en) * | 2010-05-14 | 2011-12-01 | Ebara Refrigeration Equipment & Systems Co Ltd | Absorption heat pump |
JP2018096673A (en) * | 2016-12-08 | 2018-06-21 | 荏原冷熱システム株式会社 | Absorption type heat exchanging system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6076115B2 (en) * | 2013-02-12 | 2017-02-08 | 三菱鉛筆株式会社 | Cosmetic container |
-
1991
- 1991-08-20 JP JP03231057A patent/JP3083360B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100608410B1 (en) * | 2005-03-24 | 2006-08-02 | 엘에스전선 주식회사 | Absorption chiller of double effect |
JP2011242016A (en) * | 2010-05-14 | 2011-12-01 | Ebara Refrigeration Equipment & Systems Co Ltd | Absorption heat pump |
JP2011242015A (en) * | 2010-05-14 | 2011-12-01 | Ebara Refrigeration Equipment & Systems Co Ltd | Absorption heat pump |
JP2018096673A (en) * | 2016-12-08 | 2018-06-21 | 荏原冷熱システム株式会社 | Absorption type heat exchanging system |
Also Published As
Publication number | Publication date |
---|---|
JP3083360B2 (en) | 2000-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002018849A1 (en) | Absorption refrigerating machine | |
JP2782555B2 (en) | Absorption heat pump | |
US3495420A (en) | Two stage generator absorption unit with condensate heat exchanger | |
US5467614A (en) | Dual-circuit, multiple-effect refrigeration system and method | |
JPH0552438A (en) | Absorption heat pump | |
JPH06185828A (en) | Absorption heat pump using low temperature heat source | |
JP3083361B2 (en) | Absorption heat pump | |
JPS5886357A (en) | Air-conditioning method utilizing solar heat and its device | |
US5293759A (en) | Direct heat recovery absorption refrigeration system | |
JP2000205691A (en) | Absorption refrigerating machine | |
JP3297720B2 (en) | Absorption refrigerator | |
JP3173057B2 (en) | Absorption heat pump | |
JP3401546B2 (en) | Absorption refrigerator | |
JP2000154946A (en) | Triple effect absorption refrigeration machine | |
JP2657703B2 (en) | Absorption refrigerator | |
JPH04116352A (en) | Absorption cooler/heater | |
JP2004245443A (en) | Absorption chiller and heater | |
JP2002098435A (en) | Absorption freezer | |
JP3158518B2 (en) | Absorption heat pump controller | |
JP2892519B2 (en) | Absorption heat pump equipment | |
JP3404225B2 (en) | Absorption refrigerator | |
JP3401545B2 (en) | Absorption refrigerator | |
JP4175612B2 (en) | Single-effect absorption chiller / heater | |
JP2787182B2 (en) | Single / double absorption chiller / heater | |
JPS5899661A (en) | Engine waste-heat recovery absorption type cold and hot water machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |