JPH054833B2 - - Google Patents
Info
- Publication number
- JPH054833B2 JPH054833B2 JP26714086A JP26714086A JPH054833B2 JP H054833 B2 JPH054833 B2 JP H054833B2 JP 26714086 A JP26714086 A JP 26714086A JP 26714086 A JP26714086 A JP 26714086A JP H054833 B2 JPH054833 B2 JP H054833B2
- Authority
- JP
- Japan
- Prior art keywords
- quantum well
- layer
- light
- region
- well region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 claims description 17
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 6
- 238000005253 cladding Methods 0.000 description 6
- 239000000969 carrier Substances 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) この発明は半導体レーザに関するものである。[Detailed description of the invention] (Industrial application field) This invention relates to a semiconductor laser.
(従来の技術)
従来開発された半導体レーザとして第2図に示
すような量子井戸構造半導体レーザがある(アプ
ライド フイジツクス レターズ,〔Applied
physics Letters,45,1,1984〕)。この半導体
レーザは、多重量子井戸層21の両側に多重量子
井戸構造を亜鉛拡散により無秩序化して形成した
無秩序領域22を有し、この無秩序領域22によ
りキヤリア及び光の閉じ込めを行なつている。(Prior art) As a conventionally developed semiconductor laser, there is a quantum well structure semiconductor laser as shown in Figure 2 (Applied Physics Letters, [Applied
physics Letters, 45, 1, 1984]). This semiconductor laser has disordered regions 22 formed by disordering a multiquantum well structure by zinc diffusion on both sides of a multiple quantum well layer 21, and these disordered regions 22 confine carriers and light.
(発明が解決しようとする問題点)
しかしながら、亜鉛の拡散により、多重量子井
戸層21の結晶性が劣化してしまうから、第2図
の構造の半導体レーザは発振閾値電流が大きいと
いう欠点を有していた。(Problem to be Solved by the Invention) However, since the crystallinity of the multiple quantum well layer 21 deteriorates due to the diffusion of zinc, the semiconductor laser having the structure shown in FIG. 2 has the drawback of a large oscillation threshold current. Was.
本発明の目的は、この問題点を解決し、発振閾
値電流が小さい半導体レーザを提供することにあ
る。 An object of the present invention is to solve this problem and provide a semiconductor laser with a small oscillation threshold current.
(問題点を解決するための手段)
前述の問題点を解決するために本発明が提供す
る半導体レーザは、層厚が電子のドブロイ波長程
度である量子井戸層をすくなくとも1つ以上有
し、前記量子井戸層が、共振器長方向にストライ
プ状である発光量子井戸領域と、この発光量子井
戸領域に隣接する閉じ込め領域とからなり、前記
発光量子井戸領域の層が前記閉じ込め領域の層よ
り厚いことを特徴とする。(Means for Solving the Problems) In order to solve the above-mentioned problems, a semiconductor laser provided by the present invention has at least one quantum well layer whose layer thickness is about the de Broglie wavelength of electrons, The quantum well layer includes a light-emitting quantum well region having a stripe shape in the cavity length direction and a confinement region adjacent to the light-emitting quantum well region, and the layer of the light-emitting quantum well region is thicker than the layer of the confinement region. It is characterized by
(作用)
井戸量子層内でのキヤリアの層厚方向のエネル
ギーは、井戸層が薄くなるに従つて高くなつてい
く。このため、上述の構造の半導体レーザでは、
閉じ込め領域でのキヤリアのエネルギーが発光量
子井戸領域に比べ高く、閉じ込め領域に注入され
たキヤリアは発光量子井戸領域に移動し、キヤリ
アは発光量子井戸領域にとじ込められた状態とな
つている。また、屈折率も量子井戸中の励起子の
効果により、発光量子井戸領域と閉じ込め領域と
で異なるため、光も発光量子井戸領域に閉じ込め
られる。このため高性能な半導体レーザ特性を得
ることができる。(Function) The energy of the carrier in the layer thickness direction within the well quantum layer increases as the well layer becomes thinner. Therefore, in the semiconductor laser with the above structure,
The energy of carriers in the confinement region is higher than that in the light-emitting quantum well region, and the carriers injected into the confinement region move to the light-emitting quantum well region, and the carriers are confined in the light-emitting quantum well region. Further, since the refractive index differs between the light-emitting quantum well region and the confinement region due to the effect of excitons in the quantum well, light is also confined in the light-emitting quantum well region. Therefore, high performance semiconductor laser characteristics can be obtained.
(実施例)
次に図面を参照して本発明の実施例について説
明する。(Example) Next, an example of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例を示す断面図であ
る。本実施例はn形GaAsからなる半導体基板1
上に半導体を結晶成長しており、n形GaAsから
なるバツフアー層(厚さ0.2μm)2、n形Al0.7
Ga0.3Asからなるn形クラツド層(厚さ1μm)
3、Al0.3Ga0.7Asからなる光ガイド層(厚さ0.1μ
m)4、GaAsからなるストライプ状(ストライ
プ幅3μm)の発光量子井戸領域5a(層厚0.02μ
m)とGaAsからなる閉じ込め領域(層厚0.005μ
m)5bとから構成される量子井戸層5、Al0.3
Ga0.3Asからなる光ガイド層(厚さ0.1μm)6、
p形Al0.7Ga0.3Asからなるp形クラツド層7,
p形GaAsからなるキヤツプ層8、Sio2膜9、p
電極10、n電極11から構成されている。 FIG. 1 is a sectional view showing one embodiment of the present invention. This example is a semiconductor substrate 1 made of n-type GaAs.
A semiconductor is crystal-grown on top, with a buffer layer (thickness 0.2 μm) made of n-type GaAs 2 and n-type Al 0.7
N-type cladding layer made of Ga 0.3 As (thickness 1 μm)
3. Light guide layer made of Al 0.3 Ga 0.7 As (thickness 0.1μ
m) 4. Stripe-shaped (stripe width 3 μm) light-emitting quantum well region 5a (layer thickness 0.02 μm) made of GaAs.
m) and a confinement region consisting of GaAs (layer thickness 0.005μ
m) Quantum well layer 5 composed of 5b, Al 0.3
Optical guide layer (thickness 0.1 μm) made of Ga 0.3 As 6,
p-type cladding layer 7 made of p-type Al 0.7 Ga 0.3 As;
Cap layer 8 made of p-type GaAs, Sio 2 film 9, p
It is composed of an electrode 10 and an n-electrode 11.
結晶成長は分子線エピタキシー法により行なつ
た。半導体基板1上にバツフアー層2、n形クラ
ツド層3、光ガイド層4、量子井戸層5(厚さ
0.02μm)を結晶成長したのち、エツチングによ
りストライプ幅3μmの発光量子井戸層5aと層
厚0.005μmの閉じ込め層5bを形成し、再び分子
線エピタキシー法により、光ガイド層6、p形ク
ラツド層7、キヤツプ層8を結晶成長した。 Crystal growth was performed by molecular beam epitaxy. A buffer layer 2, an n-type cladding layer 3, a light guide layer 4, a quantum well layer 5 (thickness
After crystal growth of 0.02 μm), a light-emitting quantum well layer 5a with a stripe width of 3 μm and a confinement layer 5b with a layer thickness of 0.005 μm are formed by etching, and an optical guide layer 6 and a p-type cladding layer 7 are formed again by molecular beam epitaxy. , the cap layer 8 was crystal grown.
GaAsの伝導帯端から測つた電子のエネルギー
準位は、発光量子井戸領域5aでは11meV、閉
じ込め領域5bでは92meVであり、発光量子井
戸領域5aでのエネルギー準位のほうが低くなつ
ている。正孔も同様に発光量子井戸領域5aでの
エネルギー準位が低くなつている。このため、キ
ヤリアは発光量子井戸領域5aに閉じ込められ、
閉じ込め領域5bに注入されたキヤリアも発光量
子井戸領域5aに移動していき、この作用は閉じ
込め領域5bの井戸層層厚が薄いほど大きい。こ
のため、キヤリアはレーザ発振に有効に寄与し、
発振閾値電流の小さい高性能な半導体レーザが得
られた。 The energy level of electrons measured from the conduction band edge of GaAs is 11 meV in the light-emitting quantum well region 5a and 92 meV in the confinement region 5b, and the energy level in the light-emitting quantum well region 5a is lower. Similarly, the energy level of holes is also lowered in the light emitting quantum well region 5a. Therefore, the carrier is confined in the luminescent quantum well region 5a,
The carriers injected into the confinement region 5b also move to the light emitting quantum well region 5a, and this effect becomes larger as the well layer thickness of the confinement region 5b becomes thinner. Therefore, the carrier effectively contributes to laser oscillation,
A high-performance semiconductor laser with a small oscillation threshold current was obtained.
本実施例では単一量子井戸構造を用いたがこれ
に限らず多重量子井戸構造を用いても本発明は実
現できる。また上述の実施例ではAlGaAs系混晶
を用いたが、本発明はこれに限らず他の半導体材
料を用いても実施できる。 Although a single quantum well structure is used in this embodiment, the present invention is not limited to this, and the present invention can also be realized using a multiple quantum well structure. Further, although the AlGaAs mixed crystal was used in the above-described embodiment, the present invention is not limited to this and can be implemented using other semiconductor materials.
(発明の効果)
本発明によれば、量子井戸構造に適したキヤリ
ア閉じ込め及び光閉じ込めを実現することによ
り、発振閾値電流が小さい半導体レーザを得るこ
とができる。(Effects of the Invention) According to the present invention, a semiconductor laser with a small oscillation threshold current can be obtained by realizing carrier confinement and optical confinement suitable for a quantum well structure.
第1図は本発明の一実施例を示す断面図、第2
図は量子井戸構造の従来の半導体レーザを示す断
面図である。
1……半導体基板、2……バツフアー層、3…
…n形クラツド層、4……光ガイド層、5a……
発光量子井戸領域、5b……閉じ込め領域、5…
…量子井戸層、6……光ガイド層、7……p形ク
ラツド層、8……キヤツプ層、9……Sio2膜、1
0……p電極、11……n電極、21……多重量
子井戸層、22……無秩序領域。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, and FIG.
The figure is a cross-sectional view showing a conventional semiconductor laser having a quantum well structure. 1... Semiconductor substrate, 2... Buffer layer, 3...
...N-type cladding layer, 4...Light guide layer, 5a...
Luminescent quantum well region, 5b... Confinement region, 5...
...Quantum well layer, 6... Light guide layer, 7... P-type cladding layer, 8... Cap layer, 9... Sio 2 film, 1
0...p electrode, 11...n electrode, 21...multi-quantum well layer, 22...disordered region.
Claims (1)
戸層を少なくとも1つ以上有し、前記量子井戸層
が、共振器長方向にストライプ状である発光量子
井戸領域と、この発光量子井戸領域に隣接する閉
じ込め領域とからなり、前記発光量子井戸領域の
層が前記閉じ込め領域の層より厚いことを特徴と
する半導体レーザ。1. A light-emitting quantum well region having at least one quantum well layer having a layer thickness approximately equal to the de Broglie wavelength of an electron, the quantum well layer having a stripe shape in the cavity length direction, and a light-emitting quantum well region adjacent to the light-emitting quantum well region. 1. A semiconductor laser comprising a confinement region, wherein the layer of the light-emitting quantum well region is thicker than the layer of the confinement region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26714086A JPS63120490A (en) | 1986-11-10 | 1986-11-10 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26714086A JPS63120490A (en) | 1986-11-10 | 1986-11-10 | Semiconductor laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63120490A JPS63120490A (en) | 1988-05-24 |
JPH054833B2 true JPH054833B2 (en) | 1993-01-20 |
Family
ID=17440634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26714086A Granted JPS63120490A (en) | 1986-11-10 | 1986-11-10 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63120490A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0619418U (en) * | 1992-06-10 | 1994-03-15 | 三千男 谷本 | Wound cutter linear winding blade structure |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4922500A (en) * | 1989-04-21 | 1990-05-01 | Bell Communications Research, Inc. | Cross-coupled quantum-well stripe laser array |
-
1986
- 1986-11-10 JP JP26714086A patent/JPS63120490A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0619418U (en) * | 1992-06-10 | 1994-03-15 | 三千男 谷本 | Wound cutter linear winding blade structure |
Also Published As
Publication number | Publication date |
---|---|
JPS63120490A (en) | 1988-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0227865A1 (en) | Light emitting semiconductor device | |
EP1187277B1 (en) | Stepped substrate semiconductor laser for emitting light at slant portion | |
JP2686306B2 (en) | Semiconductor laser device and manufacturing method thereof | |
EP0915542B1 (en) | Semiconductor laser having improved current blocking layers and method of forming the same | |
US4759025A (en) | Window structure semiconductor laser | |
JP2778454B2 (en) | Semiconductor laser | |
JPH04350988A (en) | Light-emitting element of quantum well structure | |
JPH054833B2 (en) | ||
JP3801410B2 (en) | Semiconductor laser device and manufacturing method thereof | |
JP2679974B2 (en) | Semiconductor laser device | |
JPH09129969A (en) | Semiconductor laser | |
JP2748570B2 (en) | Semiconductor laser device | |
JP2555984B2 (en) | Semiconductor laser and manufacturing method thereof | |
JPS6244713B2 (en) | ||
JP3223969B2 (en) | Semiconductor laser | |
JPH0632343B2 (en) | Semiconductor laser | |
JPH0728093B2 (en) | Semiconductor laser device | |
JPH07202346A (en) | Semiconductor device and manufacture thereof | |
JP3191359B2 (en) | Semiconductor laser | |
JPH054834B2 (en) | ||
JPH08236858A (en) | P-type substrate buried type semiconductor laser and its manufacture | |
JPH05343813A (en) | Quantum-well-structure semiconductor laser and manufacture thereof | |
JPH05160509A (en) | Quantum well structure buried semiconductor laser | |
JPH0722212B2 (en) | Quantum well laser | |
JPH11168256A (en) | Light-emitting element and its manufacturing method |