JPH0545482A - Fuel assembly - Google Patents

Fuel assembly

Info

Publication number
JPH0545482A
JPH0545482A JP3204411A JP20441191A JPH0545482A JP H0545482 A JPH0545482 A JP H0545482A JP 3204411 A JP3204411 A JP 3204411A JP 20441191 A JP20441191 A JP 20441191A JP H0545482 A JPH0545482 A JP H0545482A
Authority
JP
Japan
Prior art keywords
fuel
fuel assembly
nuclides
region
nuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3204411A
Other languages
Japanese (ja)
Inventor
Kazutaka Hida
和毅 肥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3204411A priority Critical patent/JPH0545482A/en
Publication of JPH0545482A publication Critical patent/JPH0545482A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To obtain a fuel assembly which can be converted efficiently into another substance which causes nuclear fission easily or of which the half-life is short, by using MA nuclides (Np, Am, Cm) in a high-level waste. CONSTITUTION:In a fuel assembly of which a fuel bundle is constructed by arranging a large number of fuel rods each prepared by inserting a nuclear fuel substance into a covering tube, the fuel rod contains in the nuclear fuel substance at least one kind of element out of Np, Am and Cm taken out of a spent fuel. Besides, the element is contained more in the upper region 1 of the fuel rod than in the lower region 2 thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料集合体に係り、特に
沸騰水型原子炉に用いるのに好適な燃料集合体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel assembly, and more particularly to a fuel assembly suitable for use in a boiling water reactor.

【0002】[0002]

【従来の技術】通常の水を冷却材とする原子炉(以下、
軽水炉)で用いられる燃料要素は、天然ウランを濃縮し
てU−235 濃度を3〜4%とした濃縮のウランの核分裂
性燃料である。このような燃料は3〜4年間原子炉内で
照射された後、原子炉から取り出され、数年間冷却した
後に再処理工場において再処理される。使用済み燃料に
は、ウラン及びプルトニウムに加えて、その他のアクチ
ニド核種や核分裂生成物が含まれている。再処理におい
ては、化学的処理により、使用済み燃料からウラン及び
プルトニウムを抽出し、これら以外のアクチニド核種及
び核分裂生成物を高レベル廃棄物とする。抽出されたウ
ラン及びプルトニウムは精製・加工され、再び燃料とし
て有効に活用される。一方、高レベル廃棄物はその放射
能レベルが十分低くなるまで長期間にわたって保管され
る。
2. Description of the Related Art A nuclear reactor using ordinary water as a coolant (hereinafter,
The fuel element used in the LWR is a enriched uranium fissionable fuel in which natural uranium is enriched to a U-235 concentration of 3 to 4%. Such fuel is irradiated in the reactor for 3 to 4 years, then taken out of the reactor, cooled for several years, and then reprocessed in a reprocessing plant. Spent fuel contains uranium and plutonium, as well as other actinide nuclides and fission products. In the reprocessing, uranium and plutonium are extracted from the spent fuel by chemical treatment, and actinide nuclides and fission products other than these are made into high-level waste. The extracted uranium and plutonium are refined and processed, and are effectively used again as fuel. On the other hand, high-level waste is stored for a long time until its radioactivity level is sufficiently low.

【0003】[0003]

【発明が解決しようとする課題】高レベル廃棄物は、そ
の放射能レベルが十分低くなるまで安全に保管されなけ
ればならない。その保管期間は使用済み燃料に含まれる
核種の種類,含有量,半減期等によって決まる。使用済
み燃料中に含まれるウラン,プルトニウム以外のアクチ
ニド核種の例として、U−235 濃縮度4%の燃料を原子
炉内で照射し、燃焼度45GWd/tで取り出してから3
年後のものを表1に示す。これらは、使用済み燃料中の
ウラン,プルトニウム量に比べてはるかに少ないので、
マイナーアクチニド(以下、MAと略す)と呼ばれる。
これらのMA核種の原子炉内での生成の過程を図5に示
す。
High level waste must be stored safely until its radioactivity level is sufficiently low. The storage period depends on the type, content and half-life of the nuclide contained in the spent fuel. As an example of actinide nuclides other than uranium and plutonium contained in spent fuel, fuel with a U-235 concentration of 4% was irradiated in the reactor and taken out at a burnup of 45 GWd / t.
Table 1 shows the data after one year. These are much smaller than the amounts of uranium and plutonium in the spent fuel, so
It is called a minor actinide (hereinafter abbreviated as MA).
The process of generation of these MA nuclides in a nuclear reactor is shown in FIG.

【0004】このようなMA核種を含む高レベル廃棄物
の放射能レベルを許容値まで減衰させるのに約 600万年
かかるといわれている。これは、特に半減期の長いNp
−237 のためである。但し、Am−241 も、α崩壊する
とNp−237 になるので、実質的な半減期はNp−237
以上である。Cm同位体は半減期はそれほど長くはない
が、中性子や熱の発生量が多いので、これを閉じ込める
には他の元素に比べてより厳重な容器が必要になる。従
って、もしこれらMA核種を高レベル廃棄物から取り除
くことができれば、高レベル廃棄物の保管期間を数百年
〜数千年に短くでき、その保管の負担も軽減することが
できる。
It is said that it takes about 6 million years to reduce the radioactivity level of such high-level waste containing MA nuclides to an allowable value. This is because Np has a particularly long half-life.
This is because -237. However, Am-241 also becomes Np-237 when α-decays, so the effective half-life is Np-237.
That is all. Although the half-life of Cm isotope is not so long, the amount of neutrons and heat generated is large, so that a more strict container is needed to confine it than other elements. Therefore, if these MA nuclides can be removed from the high-level waste, the storage period of the high-level waste can be shortened to hundreds to thousands of years, and the storage burden can be reduced.

【0005】[0005]

【表1】 [Table 1]

【0006】このような目的のために、MA核種を高レ
ベル廃棄物から分離・精製し、燃料に添加して、原子炉
内で照射して半減期の短い物質に変換することが考えら
れる。その一つの方法は核分裂反応により半減期の短い
(数百年)核分裂生成物に変換してやることである。図
6はMA核種の中で主要なNp−237に対する中性子反
応断面積であるが、その核分裂断面積は、低エネルギー
中性子に対しては小さく、MeV以上の高エネルギー中
性子に対して大きい。その他のMA核種も同様な断面積
特性を有する。従って、核分裂反応を利用するには、低
エネルギー中性子が多い軽水炉よりも高エネルギー中性
子が多い高速炉を使用するのが適当である。
For this purpose, it is considered that MA nuclides are separated and purified from high-level waste, added to fuel, and irradiated in a nuclear reactor to be converted into a substance having a short half-life. One of the methods is to convert into fission products with a short half-life (several hundred years) by fission reaction. FIG. 6 shows the neutron reaction cross section for Np-237, which is the major MA nuclide, but the fission cross section is small for low energy neutrons and large for high energy neutrons above MeV. Other MA nuclides have similar cross-sectional area characteristics. Therefore, in order to utilize the fission reaction, it is appropriate to use a fast reactor having a lot of high energy neutrons rather than a light water reactor having a lot of low energy neutrons.

【0007】しかしながら、高速炉の実用化が遅れ数十
年後と見込まれている現在、軽水炉におけるMA核種の
消滅を考えることは有意義である。ところが、軽水炉で
は低エネルギー中性子が多いため、MA核種は核分裂反
応よりも捕獲反応を起こしやすい。例えば、Np−237
は中性子を捕獲するとNp−238 になり、これは半減期
2日でPu−238 となる。Pu−238 は、一部は原子炉
内で照射されてPu−239 になるが、大半は燃焼せずそ
のまま取り出される。このPu−238 は半減期が87.7年
と短いから、軽水炉においてもNp−237 を半減期の短
い物質に変換することができる。同様に、Am−241 は
中性子を捕獲してAm− 242m(励起状態)またはAm
− 242g(基底状態)となる。前者は核分裂しやすく、
後者は直ちにCm−242 になる。Am−243 は中性子を
捕獲してAm−244 となり、直ちにCm−244 になる。
Cm−242 は前述のとおり直ちにPu−238 になる。C
m−244 は中性子を捕獲してCm−245 となるが、これ
は核分裂しやすい。従って、いずれのMA核種も、中性
子捕獲反応によって、核分裂しやすいかまたは半減期の
短い核種に変換することができる。
However, it is meaningful to consider the disappearance of MA nuclides in a light water reactor at present, when it is expected that the commercialization of the fast reactor will be delayed for several decades. However, since there are many low energy neutrons in the light water reactor, the MA nuclide is more likely to cause the capture reaction than the fission reaction. For example, Np-237
Captures neutrons and becomes Np-238, which has a half-life of 2 days and becomes Pu-238. A part of Pu-238 is irradiated in the reactor to become Pu-239, but most of it is taken out as it is without burning. Since Pu-238 has a short half-life of 87.7 years, Np-237 can be converted into a substance having a short half-life even in a light water reactor. Similarly, Am-241 captures neutrons and Am-242m (excited state) or Am
-242 g (ground state). The former is prone to nuclear fission,
The latter immediately becomes Cm-242. Am-243 captures neutrons and becomes Am-244, and immediately becomes Cm-244.
Cm-242 immediately becomes Pu-238 as described above. C
m-244 captures neutrons and becomes Cm-245, which is prone to fission. Therefore, any MA nuclide can be converted into a nuclide that easily undergoes fission or has a short half-life by a neutron capture reaction.

【0008】本発明の目的は、高レベル廃棄物の保管の
負担を軽減するために、現在稼働中の軽水炉、特に沸騰
水型原子炉において、MA核種(ネプツニウム,アメリ
シウム及びキュリウム)を中性子捕獲反応を利用して、
核分裂しやすいかまたは半減期の短い他の物質に効率的
に変換するのに好適な燃料集合体を提供することにあ
る。
The object of the present invention is to reduce the burden of storage of high-level waste by neutron capture reaction of MA nuclides (neptunium, americium and curium) in currently operating light water reactors, especially boiling water reactors. Using
An object of the present invention is to provide a fuel assembly suitable for efficient conversion into another substance that is likely to undergo fission or has a short half-life.

【0009】[0009]

【課題を解決するための手段】本発明は核燃料物質を燃
料被覆管内に挿入した燃料棒を多数本配列して燃料バン
ドルが構成される燃料集合体において、前記燃料棒は核
燃料物質中に使用済み燃料から取り出されるネプツニウ
ム,アメリシウムまたはキュリウムのうち少なくとも一
つの元素を含有し、かつ前記元素は前記燃料棒の下部領
域よりも上部領域において多く含有させてなることを特
徴とする。
SUMMARY OF THE INVENTION The present invention is a fuel assembly in which a fuel bundle is formed by arranging a large number of fuel rods having a nuclear fuel material inserted in a fuel cladding tube, the fuel rods being used in the nuclear fuel material. It is characterized in that it contains at least one element of neptunium, americium, or curium extracted from the fuel, and the element is contained in a larger amount in the upper region than in the lower region of the fuel rod.

【0010】[0010]

【作用】上記したとおり、軽水炉におけるMA核種の消
滅は、核分裂よりも中性子捕獲反応による他の核種への
変換が主である。この中性子捕獲断面積は、低エネルギ
ー中性子のみならず中エネルギー中性子の共鳴吸収によ
っても起こる。各々の中性子に対する中性子捕獲断面積
を表1に示すが、各々の中性子の消滅への寄与について
発明者が詳細に検討した結果、軽水炉においては後者の
寄与の方が前者よりも大きいことが判明した。さらに、
このことを利用して軽水炉においてMA核種の中性子捕
獲反応を効率的に行わせるためには、中速エネルギー中
性子の割合を多くした方がよいことが判明した。
As described above, the disappearance of MA nuclides in a light water reactor is mainly conversion to other nuclides by neutron capture reaction rather than fission. This neutron capture cross section occurs not only by low energy neutrons but also by resonance absorption of medium energy neutrons. The neutron capture cross section for each neutron is shown in Table 1. As a result of the inventor's detailed examination of the contribution to the annihilation of each neutron, it was found that the latter contribution was greater than the former in light water reactors. .. further,
It has been found that it is better to increase the proportion of medium-speed energy neutrons in order to efficiently perform the neutron capture reaction of MA nuclides in a light water reactor by utilizing this fact.

【0011】沸騰水型原子炉では、冷却材が炉心下部か
ら上方に向かって流れるにつれて、燃料の発熱を受けて
冷却材が沸騰する。その結果、炉心上部ほど、冷却材の
ボイド率が高く減速材としての水の量が減るため中性子
の減速があまり行われなくなり、エネルギーの高い中性
子の割合が多くなる。従って、燃料集合体において下部
よりも上部に多くのMA核種を含有させることによっ
て、エネルギーの高い中性子の捕獲反応を利用すること
ができるので、MA核種の他の核種への変換を効率的に
行うことができる。
In the boiling water reactor, as the coolant flows upward from the lower part of the core, the coolant is heated by the heat of the fuel and boils. As a result, in the upper part of the core, the void rate of the coolant is high and the amount of water as the moderator is reduced, so that the moderation of neutrons is not performed so much, and the ratio of neutrons with high energy increases. Therefore, by incorporating more MA nuclides in the upper part than in the lower part in the fuel assembly, the neutron capture reaction with high energy can be utilized, so that the MA nuclide can be efficiently converted to another nuclide. be able to.

【0012】[0012]

【実施例】本発明に係る燃料集合体の第1から第4の実
施例を図1から図4により説明するが、各々の実施例は
沸騰水型原子炉用燃料集合体に適用した例である。各々
の図は各々の実施例における燃料集合体の核燃料物質の
軸方向分布状態を概念的に対応させて示している。な
お、図では説明していないが、燃料集合体は細長い燃料
棒を例えば8行8列に配列し、上部,下部タイプレート
及びスペーサをもって燃料バンドルが組み立てられ、チ
ャンネルで包囲されたものである。燃料棒は核燃料物質
の低濃縮ウラン等をペレット状に焼き固め、燃料被覆管
に挿入し、燃料被覆管の上下両端を端栓で密封してなる
ものである。
EXAMPLES First to fourth examples of a fuel assembly according to the present invention will be described with reference to FIGS. 1 to 4. Each example is an example applied to a fuel assembly for a boiling water reactor. is there. Each drawing conceptually corresponds to the axial distribution state of the nuclear fuel material of the fuel assembly in each embodiment. Although not illustrated in the drawing, the fuel assembly is formed by arranging elongated fuel rods in, for example, 8 rows and 8 columns, and assembling a fuel bundle with upper and lower tie plates and spacers, and enclosing the bundle with channels. The fuel rod is formed by burning low-enriched uranium or the like, which is a nuclear fuel material, into pellets, inserting the pellet into a fuel cladding tube, and sealing the fuel cladding tube at the upper and lower ends with end plugs.

【0013】各々の図では、上記構成の燃料棒を多数本
組み立てて燃料集合体を構成した場合の核燃料物質につ
いての軸方向分布を概念的に示している。ここで、核燃
料物質とはU−235 ,U−238 ,MA核種,核分裂性P
u,天然ウラン等の燃料被覆管内にペレットとして挿入
する元素を対象とし、各々の燃料集合体は軸方向に沿っ
て上部領域1及び下部領域2を、また中部領域3を、あ
るいは上端天然ウラン領域4及び下端天然ウラン領域5
を備えている。
Each of the figures conceptually shows the axial distribution of the nuclear fuel material in the case where a large number of fuel rods having the above construction are assembled to form a fuel assembly. Here, the nuclear fuel material is U-235, U-238, MA nuclide, fissile P
u, natural uranium, and other elements that are inserted as pellets in the fuel cladding tube, and each fuel assembly has an upper region 1 and a lower region 2, an intermediate region 3, or an upper natural uranium region along the axial direction. 4 and lower end natural uranium region 5
Is equipped with.

【0014】(第1の実施例)図1により第1の実施例
を説明する。図1から明らかなように第1の実施例に係
る燃料集合体は中央部から二分して、上部領域1と下部
領域2に区分されているものからなっている。上部領域
1及び下部領域2は共にU−235 濃縮度は 4.0%である
が、上部領域1にはさらにMA核種を 0.5%含有させて
いる。
(First Embodiment) A first embodiment will be described with reference to FIG. As is apparent from FIG. 1, the fuel assembly according to the first embodiment is divided into a central region and an upper region 1 and a lower region 2. The upper region 1 and the lower region 2 both have U-235 enrichment of 4.0%, but the upper region 1 further contains 0.5% of MA nuclide.

【0015】一方、従来例として、U−235 濃縮度は図
1の本実施例と同一であるが、MA核種を上下全長にわ
たって0.25%含有させた燃料集合体(従来例1)及び下
部領域のみに 0.5%含有させた燃料集合体(従来例2)
を考える。
On the other hand, as a conventional example, the U-235 enrichment is the same as that of the present example in FIG. 1, but only the fuel assembly (conventional example 1) containing MA nuclides in the total length of 0.25% and the lower region. Fuel assembly containing 0.5% in the fuel (conventional example 2)
think of.

【0016】これらの燃料集合体におけるMA核種の消
滅率を表2に示す。ここで、消滅率とは、中性子捕獲反
応,核分裂反応、または自らのα崩壊のいずれかにより
消滅したものの装荷時の重量に対する割合である。いず
れのMA核種についても、第1の実施例による燃料集合
体では、従来例1または従来例2に比べてより多く消滅
させることができる。
Table 2 shows the extinction rates of MA nuclides in these fuel assemblies. Here, the annihilation rate is the proportion of the neutron capture reaction, the fission reaction, or the one that has disappeared due to its own α-decay to the weight when loaded. Any of the MA nuclides can be eliminated more in the fuel assembly according to the first embodiment than in the conventional example 1 or the conventional example 2.

【0017】本実施例ではU−235 濃縮度は上下で等し
い。しかしながら、MA核種を含有すると燃料の反応度
が低下し、本実施例のようにネプツニウムまたはアメリ
シウムを 0.5%含有した場合には約3〜4%Δk、キュ
リウムの場合は 0.7%Δkだけ低下する。さらに、本実
施例のように上部領域1にのみMA核種を含有させる
と、上部領域1の反応度のみが低下するので、出力分布
が下方に歪みピーキング値が大きくなってしまう。従っ
て、この反応度低下分をU−235 の濃縮度増加によって
補償するには、上部領域1の濃縮度を約 0.3%高める必
要がある。なお、もともと上下に濃縮度差がある燃料の
場合には、もともとの濃縮度差に加えてさらに 0.3%の
濃縮度差をつける。
In this embodiment, the U-235 enrichment is equal in the upper and lower parts. However, when the MA nuclide is contained, the reactivity of the fuel is lowered, and when 0.5% of neptunium or americium is contained as in this example, it is reduced by about 3 to 4% Δk, and in the case of curium, it is reduced by 0.7% Δk. Further, when the MA nuclide is contained only in the upper region 1 as in this embodiment, only the reactivity of the upper region 1 is lowered, so that the output distribution is distorted downward and the peaking value becomes large. Therefore, in order to compensate this decrease in reactivity by increasing the enrichment of U-235, it is necessary to increase the enrichment of the upper region 1 by about 0.3%. In addition, in the case of fuels that originally have a difference in enrichment, a difference of 0.3% in addition to the original enrichment difference is added.

【0018】[0018]

【表2】 [Table 2]

【0019】(第2の実施例)第2の実施例を図2によ
り説明する。なお、第2の実施例の説明は第1の実施例
に準じている。第2の燃料集合体は、使用済み燃料の再
処理によって得られるプルトニウムを濃縮工程で得られ
るテイルウラン(U−235 濃度 0.2〜 0.3%)に混合し
た、いわゆるMOX燃料に本実施例を適用した例であ
る。第1の実施例と同様、丁度中央から上部領域1と下
部領域2の上下2領域に分かれており、核分裂性プルト
ニウム(Pu−239 +Pu−241 )濃度は上下領域とも
5.7%であり、MA核種を上部領域1のみに 0.5%含有
させている。これに対して、従来例として、プルトニウ
ム濃度は図2の本実施例と同一であるが、MA核種を上
下全長にわたって0.25%含有させた燃料集合体(従来例
3)及び下部領域のみに 0.5%含有させた燃料集合体
(従来例4)を考える。
(Second Embodiment) A second embodiment will be described with reference to FIG. The description of the second embodiment is based on that of the first embodiment. The second fuel assembly was applied to a so-called MOX fuel in which plutonium obtained by reprocessing spent fuel was mixed with tail uranium (U-235 concentration 0.2 to 0.3%) obtained in the concentration step. Here is an example. Similar to the first embodiment, it is divided into an upper region 1 and a lower region 2 from the center just above and below, and the fissile plutonium (Pu-239 + Pu-241) concentration in both the upper and lower regions is high.
5.7%, and 0.5% of MA nuclide is contained only in the upper region 1. On the other hand, as a conventional example, the plutonium concentration is the same as that of the present example in FIG. 2, but the fuel assembly (conventional example 3) containing 0.25% of MA nuclide over the entire vertical length and 0.5% only in the lower region. Consider the contained fuel assembly (conventional example 4).

【0020】これらの燃料集合体におけるMA核種の消
滅率を表3に示す。いずれのMA核種についても、本実
施例による燃料集合体では、従来例3または従来例4に
比べてより多く消滅させることができる。なお、MOX
燃料では、ウラン燃料である第1の実施例に比べてMA
核種の消滅率が小さくなっているが、これはプルトニウ
ムの方がウランよりも中性子吸収断面積が大きいため、
MA核種が中性子を吸収しにくいからである。なお、M
A核種による反応度の低下を補償する方法については第
1の実施例と同様に行うことができる。
Table 3 shows the extinction rates of MA nuclides in these fuel assemblies. Any of the MA nuclides can be eliminated more in the fuel assembly according to the present embodiment than in Conventional Example 3 or Conventional Example 4. MOX
As for the fuel, MA is used as compared with the first embodiment, which is uranium fuel.
Although the extinction rate of nuclides is small, this is because plutonium has a larger neutron absorption cross section than uranium.
This is because the MA nuclide hardly absorbs neutrons. In addition, M
The method of compensating for the decrease in reactivity due to the nuclide A can be performed in the same manner as in the first embodiment.

【0021】[0021]

【表3】 [Table 3]

【0022】(第3の実施例)図3により第3の実施例
を説明する。第3の実施例の燃料集合体はウラン燃料で
あり、図3から明らかなように上端部及び下端部に中性
子の漏れを低減するために低濃縮度(U−235 0.7 %)
の上端及び下端天然ウラン領域4,5を設けている。内
部は上中下の3領域1,3,2に分かれており、下部ピ
ークとなりやすい出力分布を平坦にするために、上部領
域1及び中部領域3は下部領域2よりもU−235 濃縮度
を 0.2%高くしてある。MA核種は最もボイド率の高い
上部領域1にのみ 0.8%含有させている。これに対し
て、MA核種を全長にわたって 0.1%含有させた燃料集
合体(従来例5)を考える。これらの燃料集合体のMA
核種の消滅率を表4に示すが、本実施例により消滅率を
増大させることができた。なお、ボイド率の点からは上
端の天然ウラン部にもMA核種を含有させるのがよい
が、漏れのために端部では中性子が少ないので消滅の効
果は小さい。
(Third Embodiment) A third embodiment will be described with reference to FIG. The fuel assembly of the third embodiment is a uranium fuel, and as is clear from FIG. 3, a low enrichment (U-235 0.7%) is used to reduce neutron leakage at the upper and lower ends.
The upper and lower ends of the natural uranium regions 4 and 5 are provided. The inside is divided into upper, middle and lower three regions 1, 3 and 2. In order to flatten the output distribution which is likely to be the lower peak, the upper region 1 and the middle region 3 have a higher U-235 enrichment than the lower region 2. 0.2% higher. The MA nuclide is contained in 0.8% only in the upper region 1 having the highest void fraction. On the other hand, consider a fuel assembly (conventional example 5) containing 0.1% of MA nuclide over the entire length. MA for these fuel assemblies
The annihilation rate of the nuclide is shown in Table 4. The annihilation rate could be increased by this example. From the viewpoint of the void ratio, it is preferable that the natural uranium part at the upper end also contains the MA nuclide, but the effect of extinction is small because there are few neutrons at the end due to leakage.

【0023】本実施例ではMA核種を含有する上部の反
応度が低下し、これにより、炉停止余裕を増大させるこ
とができる。原子炉は停止中に制御棒が1本引き抜けて
も未臨界でなければならず、最大価値の制御棒が引き抜
けたときの未臨界度が炉停止余裕である。原子炉の停止
中は中性子束のピークは炉心の上部にある。従って、本
実施例によって、中性子束がピークとなる燃料上部の反
応度を低下させることができるので、炉停止余裕を改善
することができる。
In the present embodiment, the reactivity of the upper portion containing the MA nuclide is lowered, whereby the reactor shutdown margin can be increased. The reactor must be subcritical even if one control rod is pulled out during shutdown, and the subcriticality when the maximum value control rod is pulled out is the reactor shutdown margin. The neutron flux peak is at the top of the core during reactor shutdown. Therefore, according to the present embodiment, the reactivity of the upper portion of the fuel where the neutron flux becomes a peak can be reduced, and the reactor shutdown margin can be improved.

【0024】[0024]

【表4】 [Table 4]

【0025】(第4の実施例)図4により第4の実施例
を説明する。第4の実施例は第3の実施例に準じてい
る。第4の実施例の燃料集合体はMOX燃料であり、上
下端の天然ウラン領域4,5を除く中部領域3にプルト
ニウムが含まれており、上部及び中部領域1,3は下部
領域2よりも核分裂性プルトニウム濃度が0.3%高い。
MA核種は上部にのみ 0.8%含有されている。これに対
して、MA核種を全長にわたって 0.1%含有させた燃料
集合体(従来例6)を考える。これらの燃料集合体によ
るMA核種の消滅率を表5に示すが、本実施例により消
滅率を増大させることができた。
(Fourth Embodiment) A fourth embodiment will be described with reference to FIG. The fourth embodiment is similar to the third embodiment. The fuel assembly of the fourth embodiment is a MOX fuel, and plutonium is contained in the middle region 3 excluding the natural uranium regions 4 and 5 at the upper and lower ends, and the upper and middle regions 1 and 3 are lower than the lower region 2. Fissile plutonium concentration is 0.3% higher.
0.8% of MA nuclide is contained only in the upper part. On the other hand, consider a fuel assembly (conventional example 6) containing 0.1% of MA nuclide over the entire length. The annihilation rate of MA nuclides by these fuel assemblies is shown in Table 5. The annihilation rate could be increased by this example.

【0026】[0026]

【表5】 [Table 5]

【0027】[0027]

【発明の効果】本発明によれば、冷却材のボイド率が高
い燃料集合体の上部に多くのMA核種を含有させること
によって、MA核種の中エネルギー中性子捕獲反応によ
る消滅を効率的に行わせることができるので、高レベル
廃棄物の保管期間の短縮に資することができる。
According to the present invention, by containing a large amount of MA nuclides in the upper portion of the fuel assembly having a high void ratio of the coolant, the extinction by the medium energy neutron capture reaction of the MA nuclides can be efficiently performed. Therefore, the storage period of high-level waste can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る燃料集合体の第1の実施例におけ
る核燃料物質の分布状態を示す軸方向分布図。
FIG. 1 is an axial distribution diagram showing a distribution state of nuclear fuel substances in a first embodiment of a fuel assembly according to the present invention.

【図2】本発明に係る燃料集合体の第2の実施例におけ
る核燃料物質の分布状態を示す軸方向分布図。
FIG. 2 is an axial distribution diagram showing a distribution state of nuclear fuel material in a second embodiment of the fuel assembly according to the present invention.

【図3】本発明に係る燃料集合体の第3の実施例におけ
る核燃料物質の分布状態を示す軸方向分布図。
FIG. 3 is an axial distribution diagram showing a distribution state of nuclear fuel material in a third embodiment of the fuel assembly according to the present invention.

【図4】本発明に係る燃料集合体の第4の実施例におけ
る核燃料物質の分布状態を示す軸方向分布図。
FIG. 4 is an axial distribution diagram showing a distribution state of nuclear fuel material in a fourth embodiment of the fuel assembly according to the present invention.

【図5】原子炉内でのMA核種の生成過程を示す壊変
図。
FIG. 5 is a decay diagram showing the production process of MA nuclides in a nuclear reactor.

【図6】Np−237 の中性子反応断面積を示すグラフ。FIG. 6 is a graph showing a neutron reaction cross section of Np-237.

【符号の説明】[Explanation of symbols]

1…上部領域、2…下部領域、3…中部領域、4…上端
天然ウラン領域、5…下端天然ウラン領域。
1 ... Upper region, 2 ... Lower region, 3 ... Middle region, 4 ... Upper natural uranium region, 5 ... Lower natural uranium region.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 核燃料物質を燃料被覆管内に挿入した燃
料棒を多数本配列して燃料バンドルが構成される燃料集
合体において、前記燃料棒は核燃料物質中に使用済み燃
料から取り出されるネプツニウム,アメリシウムまたは
キュリウムのうち少なくとも一つの元素を含有し、かつ
前記元素は前記燃料棒の下部領域よりも上部領域におい
て多く含有させてなることを特徴とする燃料集合体。
1. A fuel assembly in which a fuel bundle is formed by arranging a number of fuel rods in which a nuclear fuel material is inserted in a fuel cladding tube, wherein the fuel rods are neptunium or americium taken out of spent fuel in the nuclear fuel material. Alternatively, at least one element of curium is contained, and the element is contained in a larger amount in the upper region than in the lower region of the fuel rod.
JP3204411A 1991-08-14 1991-08-14 Fuel assembly Pending JPH0545482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3204411A JPH0545482A (en) 1991-08-14 1991-08-14 Fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3204411A JPH0545482A (en) 1991-08-14 1991-08-14 Fuel assembly

Publications (1)

Publication Number Publication Date
JPH0545482A true JPH0545482A (en) 1993-02-23

Family

ID=16490102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3204411A Pending JPH0545482A (en) 1991-08-14 1991-08-14 Fuel assembly

Country Status (1)

Country Link
JP (1) JPH0545482A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1755147A1 (en) * 2004-06-08 2007-02-21 Ngk Insulators, Ltd. Light-emitting vessel and light-emitting vessel for high-pressure discharge lamp
JP2007121613A (en) * 2005-10-27 2007-05-17 Kyocera Corp Optical reflector, wiring substrate for mounting light emission element, and light emission device
WO2017195241A1 (en) 2016-05-09 2017-11-16 株式会社日立製作所 Fuel assembly and nuclear reactor core loaded with same
US20220328204A1 (en) * 2021-03-23 2022-10-13 Kabushiki Kaisha Toshiba Light water reactor uranium fuel assembly and operation method of nuclear fuel cycle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1755147A1 (en) * 2004-06-08 2007-02-21 Ngk Insulators, Ltd. Light-emitting vessel and light-emitting vessel for high-pressure discharge lamp
EP1755147A4 (en) * 2004-06-08 2010-02-24 Ngk Insulators Ltd Light-emitting vessel and light-emitting vessel for high-pressure discharge lamp
JP2007121613A (en) * 2005-10-27 2007-05-17 Kyocera Corp Optical reflector, wiring substrate for mounting light emission element, and light emission device
JP4688633B2 (en) * 2005-10-27 2011-05-25 京セラ株式会社 LIGHT REFLECTOR, LIGHT EMITTING ELEMENT WIRING BOARD, AND LIGHT EMITTING DEVICE
WO2017195241A1 (en) 2016-05-09 2017-11-16 株式会社日立製作所 Fuel assembly and nuclear reactor core loaded with same
JPWO2017195241A1 (en) * 2016-05-09 2019-02-28 株式会社日立製作所 Fuel assemblies and reactor cores loaded with them
US20220328204A1 (en) * 2021-03-23 2022-10-13 Kabushiki Kaisha Toshiba Light water reactor uranium fuel assembly and operation method of nuclear fuel cycle
US12112857B2 (en) * 2021-03-23 2024-10-08 Kabushiki Kaisha Toshiba Light water reactor uranium fuel assembly and operation method of nuclear fuel cycle

Similar Documents

Publication Publication Date Title
EP0554451B1 (en) Manufacture of mox fuel for a thermal nuclear reactor
JPH0450551B2 (en)
Erighin A 48-month extended fuel cycle for the B and W mPower {sup TM} small modular nuclear reactor
Broeders Neutron physics investigations for advanced pressurized water reactors
JPH0545482A (en) Fuel assembly
Kim et al. Once-through thorium fuel cycle options for the advanced PWR core
JPH05232276A (en) Core of nuclear reactor
US12112857B2 (en) Light water reactor uranium fuel assembly and operation method of nuclear fuel cycle
JPH05180971A (en) Annihilation processing reactor core for transuranium element
JP2886555B2 (en) Fuel assembly for boiling water reactor
JP7251890B2 (en) MOX fuel assembly
Hiraiwa et al. TRU generation suppression by HALEU fuel with fixed discharge burnup using burnable poison
JPH07244182A (en) Fuel assembly and reader core
RU2791731C1 (en) Uranium fuel assembly for a light water reactor and method of operation of a nuclear fuel cycle
Dobbin et al. Transmutation of LWR high-level waste in LMRs
Francois et al. Study of the radiotoxicity of actinides recycling in boiling water reactors fuel
JP3037712B2 (en) Method of manufacturing fuel assembly for nuclear reactor
JP2972255B2 (en) Reactor
JPS6361990A (en) Fuel aggregate
JPH04268489A (en) Core of fast breeder reactor, fuel assembly and control rod assembly to be used and annihilating method for waste of transuranium elements
JP3135644B2 (en) Reactor core
JPH0827370B2 (en) Boiling water reactor
Grouiller et al. Minor Actinides Transmutation Scenario Studies in PWR with Innovative Fuels
Kim et al. The neutron spectrum effects on burnup behavior of the thorium-base fuel in the subcritical system for tru transmutation
Eschbach et al. Using Plutonium in Thermal Reactors