JPH053678A - Dc/ac power supply - Google Patents
Dc/ac power supplyInfo
- Publication number
- JPH053678A JPH053678A JP3152938A JP15293891A JPH053678A JP H053678 A JPH053678 A JP H053678A JP 3152938 A JP3152938 A JP 3152938A JP 15293891 A JP15293891 A JP 15293891A JP H053678 A JPH053678 A JP H053678A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- current
- power supply
- control section
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Dc-Dc Converters (AREA)
- Inverter Devices (AREA)
Abstract
Description
[発明の目的] [Object of the Invention]
【0001】[0001]
【産業上の利用分野】本発明は、直流電源から効率良く
交流電源を得るように改良したDC/AC電源装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC / AC power supply device improved to efficiently obtain an AC power supply from a DC power supply.
【0002】[0002]
【従来の技術】バッテリー等の直流電源から交流電源を
得る装置は計算機の無停電電源装置(UPS)として用
いられているが、近年、自動車のバッテリー(一般にD
C12V又は24V)から交流100Vを得て一般の家
電製品を使用する要求が増加している。この種の従来の
DC/AC電源装置の構成を図5に示し、その動作を説
明する。2. Description of the Related Art A device for obtaining an AC power source from a DC power source such as a battery is used as an uninterruptible power supply (UPS) for a computer.
There is an increasing demand to use general household appliances by obtaining AC 100V from C12V or 24V). The configuration of a conventional DC / AC power supply device of this type is shown in FIG. 5, and its operation will be described.
【0003】図5において、直流電源1は変圧器2のセ
ンタータップとMOSFET3,4の一端に加えられ、
MOSFET3,4を交互にスイッチすることにより変
圧器2の一次側に交流の高周波電力が供給される。In FIG. 5, a DC power source 1 is added to the center tap of a transformer 2 and one ends of MOSFETs 3 and 4,
By alternatingly switching the MOSFETs 3 and 4, alternating high frequency power is supplied to the primary side of the transformer 2.
【0004】変圧器2の二次側電圧はダイオードブリッ
ジ5により整流され、リアクトル6、コンデンサ7によ
り平滑化された第2の直流電圧が得られる。この第2の
直流電圧はインバータブリッジ8によりPWM制御さ
れ、正弦波に近い波形で出力され、リアクトル9、コン
デンサ10により高調波を除去した交流出力を得る。な
お、インバータ制御部22はインバータブリッジ8のP
WM制御を行うものであるが本発明に直接関係しないの
で詳細説明は省略する。The secondary side voltage of the transformer 2 is rectified by the diode bridge 5, and a second DC voltage smoothed by the reactor 6 and the capacitor 7 is obtained. This second DC voltage is PWM-controlled by the inverter bridge 8 and output in a waveform close to a sine wave, and an AC output from which harmonics are removed by the reactor 9 and the capacitor 10 is obtained. In addition, the inverter control unit 22 uses the P of the inverter bridge 8.
Although WM control is performed, it is not directly related to the present invention, and therefore detailed description thereof is omitted.
【0005】電圧制御部12は、電圧検出部16で検出
されたコンデンサ7の電圧Vd と一定の基準電圧VR と
を比較しPWM制御部15を介して電圧偏差が減少する
ようにMOSFET3,4を制御する。[0005] Voltage controller 12, voltage detector 16 as a voltage difference over the voltage V d is compared with a constant reference voltage V R PWM controller 15 of the capacitor 7 detected decreases in MOSFET 3, Control 4
【0006】電流制限部20は、変流器18、ダイオー
ド19を介して検出された変圧器2の出力電流Iaxと電
流制限値IL を比較して所定電流以上のときPWM制御
部15の入力信号を制限して出力電流Iaxを制限する。The current limiting section 20 compares the output current I ax of the transformer 2 detected via the current transformer 18 and the diode 19 with the current limiting value I L, and when the current is a predetermined current or more, the PWM controlling section 15 Limit the input signal to limit the output current I ax .
【0007】この従来装置が力率100%の負荷に電力
を供給しているときの各部の波形を図6に示す。この場
合、交流の出力電圧Va と出力電流Ia は同相で単相交
流出力のとき、瞬時電力P(t)は sin2 (wt)の関
数となり図2のPa に示すように(1−cos2wt)/2
の波形となる。図5の制御は一般にDC/DCコンバー
タに採用されている方式でダイオードブリッジ5の左側
は電圧源とみなされるような制御となっている。FIG. 6 shows the waveform of each part when this conventional device is supplying power to a load having a power factor of 100%. In this case, when the AC output voltage V a and the output current I a are in phase and a single-phase AC output is obtained, the instantaneous power P (t) is sin 2 It becomes a function of (wt) and becomes (1-cos2wt) / 2 as shown in P a of FIG.
Becomes the waveform of. The control shown in FIG. 5 is generally adopted in a DC / DC converter, and the left side of the diode bridge 5 is regarded as a voltage source.
【0008】このような制御では負荷の瞬時電力が図6
のPa の波形のように発生すると直流電源1からiDCの
ような類似波形の電流を流し直流電圧Vd はほとんど変
化しないように制御される。一般のDC/DCコンバー
タの負荷は直流であるので瞬時電力の変動は少なく従来
の方式に問題はなかった。In such control, the instantaneous power of the load is shown in FIG.
When it is generated like the waveform of P a , a current having a similar waveform such as i DC is made to flow from the DC power supply 1 and the DC voltage V d is controlled so that it hardly changes. Since the load of a general DC / DC converter is direct current, the fluctuation of the instantaneous power is small and the conventional method has no problem.
【0009】[0009]
【発明が解決しようとする課題】ところがDC/AC電
源装置では交流出力なので負荷の瞬時電力は変化し、力
率100%において変動電力は最大となる。However, in the DC / AC power supply device, since the AC output is an AC output, the instantaneous power of the load changes, and the variable power becomes maximum at a power factor of 100%.
【0010】この変動電力を直流電源1から供給するた
めにiDCが変動して流れるとその平均値に対する実効
値、すなわち波形率が大きくなり電力損失が増大すると
いう問題である。iDCの実効電流をirms とすると損失
(主に銅損)はi2 rms に比例し平滑直流時の損失に対
して波形率の2乗倍となる。When i DC fluctuates and flows in order to supply this fluctuating power from the DC power supply 1, the effective value with respect to the average value, that is, the waveform rate becomes large and the power loss increases. When the effective current of i DC is i rms , the loss (mainly copper loss) is proportional to i 2 rms, and is the square rate of the waveform ratio with respect to the loss at smooth DC.
【0011】例えば全波整流波形では波形率は1.1で
あるので平滑直流に対して損失は20%程度増加する。
また、半波整流波形では波形率は2.2であり、損失は
約5倍となる。図6のiDCの波形は半波整流波形に近い
ので損失は約5倍となる。このため、DC/DCコンバ
ータの制御方式をDC/AC電源装置に用いた図5の従
来装置は効率が4〜5%低下する欠点がある。For example, in the full-wave rectified waveform, the waveform ratio is 1.1, so the loss increases by about 20% with respect to the smooth DC.
In the half-wave rectified waveform, the waveform ratio is 2.2, and the loss is about 5 times. Since the iDC waveform in FIG. 6 is close to a half-wave rectified waveform, the loss is about 5 times. For this reason, the conventional device of FIG. 5, which uses the control system of the DC / DC converter for the DC / AC power supply device, has a drawback that the efficiency is lowered by 4 to 5%.
【0012】本発明は、上述の問題に鑑みてなされたも
ので、その目的とするところは、交流負荷の瞬時電力が
変動する場合でも、直流電源から供給する電流の波高率
が大きくならないように制御して損失を減少させ効率の
高いDC/AC電源装置を提供することにある。 [発明の構成]The present invention has been made in view of the above problems, and its object is to prevent the crest factor of the current supplied from the DC power supply from increasing even when the instantaneous power of the AC load changes. An object of the present invention is to provide a highly efficient DC / AC power supply device that is controlled to reduce loss. [Constitution of Invention]
【0013】[0013]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、直流電源の電圧を高周波電圧に変換し
て変圧器の一次側に供給するチョッパ手段を備え、該変
圧器の二次側の高周波電圧を整流して第2の直流電圧を
得、この第2の直流電圧から単相交流電圧を得るように
した装置において、該第2の直流電圧と基準電圧を比較
して電圧偏差に応じて電流基準を出力すると共に、該電
圧偏差に応じて該電流基準の制限値が変化する電圧制御
手段と、該電流基準に応じて該直流電源から供給される
電流を制御する電流制御手段を設けてDC/AC電源装
置を構成する。In order to achieve the above object, the present invention comprises a chopper means for converting the voltage of a DC power supply into a high frequency voltage and supplying the high frequency voltage to the primary side of the transformer. In a device in which a high frequency voltage on the secondary side is rectified to obtain a second direct current voltage and a single-phase alternating current voltage is obtained from the second direct current voltage, the second direct current voltage is compared with a reference voltage. A voltage control unit that outputs a current reference according to the voltage deviation and changes the limit value of the current reference according to the voltage deviation, and a current that controls the current supplied from the DC power supply according to the current reference. A DC / AC power supply device is configured by providing control means.
【0014】[0014]
【作用】上記構成により、電圧偏差が小さいときは電流
制限値が小さく、電圧偏差が大きいときは電流制限値を
大きくするように動作させ、上記電流基準に応じて直流
電源から電流が供給され、該電流のピーク付近が電流制
限値に制限される。この作用により該電流の波形率が小
さく制御され損失が減少する。With the above configuration, when the voltage deviation is small, the current limit value is small, and when the voltage deviation is large, the current limit value is increased, and the current is supplied from the DC power supply according to the current reference. The vicinity of the peak of the current is limited to the current limit value. Due to this action, the waveform ratio of the current is controlled to be small and the loss is reduced.
【0015】[0015]
【実施例】本発明の一実施例を図1に示す。図5と重複
する部分には同一番号を付して説明を省略する。図1に
おいて、電圧制御部12は電圧検出部16で検出したコ
ンデンサ7の電圧Vd と基準電圧VR を比較し電流基準
Id * を出力する。FIG. 1 shows an embodiment of the present invention. The same parts as those in FIG. 5 are designated by the same reference numerals and the description thereof will be omitted. In FIG. 1, the voltage control unit 12 compares the voltage V d of the capacitor 7 detected by the voltage detection unit 16 with the reference voltage V R and compares the current reference I d *. Is output.
【0016】電流制御部25は電流検出器29で検出し
たダイオードブリッジ5の出力電流id と電流基準Id
* を比較し電流偏差が減少する方向にPWM制御部15
を介してMOSFET3,4をPWM制御する。The current controller 25 detects the output current i d of the diode bridge 5 detected by the current detector 29 and the current reference I d.
* PWM control section 15 in the direction of decreasing the current deviation
The MOSFETs 3 and 4 are PWM-controlled via.
【0017】リミッタ24は電圧制御部12の出力値を
制限するもので、電流基準Id * がリミッタ24に入力
される信号fを越えると電圧制御部12の入力を相殺し
Id * を信号fの値に制限する。関数器23は基準電圧
VR と電圧検出部16による検出電圧Vdxの偏差値に応
じて図2に示すような電流制限信号fを出力しリミッタ
24に入力する。The limiter 24 limits the output value of the voltage controller 12, and the current reference I d *. Exceeds the signal f input to the limiter 24, the input of the voltage control unit 12 is canceled and I d * Is limited to the value of signal f. The function unit 23 outputs the current limiting signal f as shown in FIG. 2 according to the deviation value between the reference voltage V R and the detection voltage V dx by the voltage detection unit 16 and inputs it to the limiter 24.
【0018】上記構成とすることにより、VR −Vdxの
偏差値に応じて電流基準Id * の最大値が制限され、軽
負荷で偏差値が小さいときは電流制限値も小さく、ま
た、重負荷で偏差値が大きいときは電流制限値も大きく
なる。これによりIdcの通電幅は図3に示すように全体
的に広がるように作用する。With the above configuration, the current reference I d * is set according to the deviation value of V R -V dx . Is limited, and the current limit value is small when the deviation value is small under a light load, and the current limit value is large when the deviation value is large under a heavy load. As a result, the energization width of Idc acts so as to broaden as shown in FIG.
【0019】すなわち、交流出力の瞬時電力Pa は図3
に示すように大きく変動しているが電力のピーク付近は
主としてコンデンサ7から電力が供給され、直流電源1
から供給する電流iDCは電力のピーク付近(太線の部
分)が制限される。この作用により、負荷の軽重に無関
係にiDCの波形率を小さく(1.1以下)にすることが
できる。That is, the instantaneous electric power P a of the AC output is shown in FIG.
Although it fluctuates greatly as shown in, power is supplied mainly from the capacitor 7 near the peak of the power, and the DC power supply 1
The current i DC supplied from is limited near the peak of power (thick line portion). By this action, the waveform ratio of i DC can be made small (1.1 or less) regardless of whether the load is light or heavy.
【0020】本実施例によれば、電圧制御の応答を早く
しても電流iDCのピーク値が制限され波形率が小さく制
御され、抵抗損が1/4〜1/5に減少し、高効率化し
たDC/AC電源装置を提供することができる。本発明
は、図4に示す第2実施例の構成に変形することができ
る。According to this embodiment, the peak value of the current i DC is limited and the waveform ratio is controlled to be small even if the response of the voltage control is accelerated, and the resistance loss is reduced to ¼ to ⅕, It is possible to provide an efficient DC / AC power supply device. The present invention can be modified into the configuration of the second embodiment shown in FIG.
【0021】図4において、比例増幅器30は基準電圧
VR とコンデンサ7の検出電圧Vdxの偏差値を比例増幅
して誤差電圧ΔVを出力する。制御増幅器12は比例積
分の増幅機能を有しその出力Id * はリミッタ24によ
り電流制限値fの値に制限される。関数器23は誤差電
圧ΔVを入力偏差値として図2のような関数値fを出力
しこれを電流制限値として動作する。これにより図1の
場合と同様の効果が得られる。なお、以上の説明では、
ダイオードブリッジ5の出力電流を検出する例で示した
が、変圧器2の二次側あるいは一次側の電流を検出する
ようにしてもよい。In FIG. 4, the proportional amplifier 30 proportionally amplifies the deviation value between the reference voltage V R and the detection voltage V dx of the capacitor 7 and outputs the error voltage ΔV. The control amplifier 12 has a proportional-integral amplification function, and its output I d * Is limited to the value of the current limit value f by the limiter 24. The function unit 23 outputs the function value f as shown in FIG. 2 with the error voltage ΔV as the input deviation value and operates with the function value f as the current limit value. As a result, the same effect as in the case of FIG. 1 can be obtained. In the above explanation,
Although the example in which the output current of the diode bridge 5 is detected has been shown, the current on the secondary side or the primary side of the transformer 2 may be detected.
【0022】[0022]
【発明の効果】本発明によれば、負荷に供給する瞬時電
力が変動するDC/AC電源装置において、直流電源側
から供給する電流の波形率を小さく抑えることができ、
損失が少ない効率の向上したDC/AC電源装置を提供
することができる。According to the present invention, in the DC / AC power supply device in which the instantaneous power supplied to the load fluctuates, the waveform rate of the current supplied from the DC power supply side can be suppressed to a small value.
It is possible to provide a DC / AC power supply device with reduced loss and improved efficiency.
【図1】本発明による第1実施例の構成図。FIG. 1 is a configuration diagram of a first embodiment according to the present invention.
【図2】第1実施例の関数器23の特性図。FIG. 2 is a characteristic diagram of a function unit 23 according to the first embodiment.
【図3】第1実施例の動作を説明するための波形図。FIG. 3 is a waveform diagram for explaining the operation of the first embodiment.
【図4】本発明による第2実施例の要部構成図。FIG. 4 is a configuration diagram of a main part of a second embodiment according to the present invention.
【図5】従来装置の構成図。FIG. 5 is a configuration diagram of a conventional device.
【図6】従来装置の問題点を説明するための波形図。FIG. 6 is a waveform diagram for explaining problems of the conventional device.
1…直流電源、2…変圧器、3,4…MOSFET、5
…ダイオードブリッジ、6…リアクトル、7…コンデン
サ、8…インバータブリッジ、12…電圧制御部、15
…PWM制御部、16…電圧検出部、22…インバータ
制御部、23…関数器、24…リミッタ、25…電流制
御部、27…電流検出器、30…比例増幅器。1 ... DC power supply, 2 ... transformer, 3, 4 ... MOSFET, 5
... diode bridge, 6 ... reactor, 7 ... capacitor, 8 ... inverter bridge, 12 ... voltage controller, 15
... PWM control section, 16 ... Voltage detection section, 22 ... Inverter control section, 23 ... Function unit, 24 ... Limiter, 25 ... Current control section, 27 ... Current detector, 30 ... Proportional amplifier.
Claims (1)
変圧器の一次側に供給するチョッパ手段を備え、該変圧
器の二次側の高周波電圧を整流して第2の直流電圧を
得、この第2の直流電圧から単相交流電圧を得るように
した装置において、該第2の直流電圧と基準電圧を比較
して電圧偏差に応じて電流基準を出力すると共に、該電
圧偏差に応じて該電流基準の制限値が変化する電圧制御
手段と、該電流基準に応じて該直流電源から供給される
電流を制御する電流制御手段を設けたことを特徴とする
DC/AC電源装置。Claim: What is claimed is: 1. A chopper means for converting the voltage of a DC power supply into a high frequency voltage and supplying the high frequency voltage to the primary side of the transformer, and rectifying the high frequency voltage on the secondary side of the transformer. In a device that obtains a DC voltage of 2 and obtains a single-phase AC voltage from the second DC voltage, compares the second DC voltage with a reference voltage and outputs a current reference according to a voltage deviation. A DC control means for controlling a current supplied from the DC power supply according to the current reference, and a voltage control means for changing a limit value of the current reference according to the voltage deviation. / AC power supply.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3152938A JP3015512B2 (en) | 1991-06-25 | 1991-06-25 | DC / AC power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3152938A JP3015512B2 (en) | 1991-06-25 | 1991-06-25 | DC / AC power supply |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH053678A true JPH053678A (en) | 1993-01-08 |
JP3015512B2 JP3015512B2 (en) | 2000-03-06 |
Family
ID=15551435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3152938A Expired - Lifetime JP3015512B2 (en) | 1991-06-25 | 1991-06-25 | DC / AC power supply |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3015512B2 (en) |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100595868B1 (en) * | 2002-07-09 | 2006-07-03 | 로무 가부시키가이샤 | Dc/dc converter |
GB2434490A (en) * | 2006-01-13 | 2007-07-25 | Enecsys Ltd | Power conditioning unit |
WO2011114161A2 (en) | 2010-03-19 | 2011-09-22 | Enecsys Limited | Power conditioning units |
WO2011154720A2 (en) | 2010-06-07 | 2011-12-15 | Enecsys Limited | Solar photovoltaic systems |
CN102386780A (en) * | 2011-09-14 | 2012-03-21 | 深圳航天科技创新研究院 | Push-pull circuit of DC/DC (Direct Current/Direct Current) part |
US8369113B2 (en) | 2004-11-08 | 2013-02-05 | Enecsys Limited | Power conditioning unit |
US10007288B2 (en) | 2012-03-05 | 2018-06-26 | Solaredge Technologies Ltd. | Direct current link circuit |
US10032939B2 (en) | 2009-10-19 | 2018-07-24 | Ampt, Llc | DC power conversion circuit |
US10097007B2 (en) | 2006-12-06 | 2018-10-09 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
US10230245B2 (en) | 2006-12-06 | 2019-03-12 | Solaredge Technologies Ltd | Battery power delivery module |
US10381977B2 (en) | 2012-01-30 | 2019-08-13 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
US10447150B2 (en) | 2006-12-06 | 2019-10-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10461687B2 (en) | 2008-12-04 | 2019-10-29 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US10468878B2 (en) | 2008-05-05 | 2019-11-05 | Solaredge Technologies Ltd. | Direct current power combiner |
US10516336B2 (en) | 2007-08-06 | 2019-12-24 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US10608553B2 (en) | 2012-01-30 | 2020-03-31 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US10637393B2 (en) | 2006-12-06 | 2020-04-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10644589B2 (en) | 2007-12-05 | 2020-05-05 | Solaredge Technologies Ltd. | Parallel connected inverters |
US10666125B2 (en) | 2011-01-12 | 2020-05-26 | Solaredge Technologies Ltd. | Serially connected inverters |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10778025B2 (en) | 2013-03-14 | 2020-09-15 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US10931228B2 (en) | 2010-11-09 | 2021-02-23 | Solaredge Technologies Ftd. | Arc detection and prevention in a power generation system |
US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
US10969412B2 (en) | 2009-05-26 | 2021-04-06 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US10992238B2 (en) | 2012-01-30 | 2021-04-27 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US11031861B2 (en) | 2006-12-06 | 2021-06-08 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11579235B2 (en) | 2006-12-06 | 2023-02-14 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US12027849B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
WO2009073867A1 (en) | 2007-12-05 | 2009-06-11 | Solaredge, Ltd. | Parallel connected inverters |
US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
EP4145691A1 (en) | 2008-03-24 | 2023-03-08 | Solaredge Technologies Ltd. | Switch mode converter including auxiliary commutation circuit for achieving zero current switching |
GB2486408A (en) | 2010-12-09 | 2012-06-20 | Solaredge Technologies Ltd | Disconnection of a string carrying direct current |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
EP2779251B1 (en) | 2013-03-15 | 2019-02-27 | Solaredge Technologies Ltd. | Bypass mechanism |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
-
1991
- 1991-06-25 JP JP3152938A patent/JP3015512B2/en not_active Expired - Lifetime
Cited By (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100595868B1 (en) * | 2002-07-09 | 2006-07-03 | 로무 가부시키가이샤 | Dc/dc converter |
US8369113B2 (en) | 2004-11-08 | 2013-02-05 | Enecsys Limited | Power conditioning unit |
US9831794B2 (en) | 2004-11-08 | 2017-11-28 | Solarcity Corporation | Power conditioning unit with voltage converters |
US9473038B2 (en) | 2004-11-08 | 2016-10-18 | Solarcity Corporation | Power conditioning unit with voltage converters |
US8971082B2 (en) | 2004-11-08 | 2015-03-03 | Enecsys Limited | Power conditioning unit with voltage converters |
US10033292B2 (en) | 2004-11-08 | 2018-07-24 | Solarcity Corporation | Power conditioning unit with voltage converters |
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
DE202007019355U1 (en) | 2006-01-13 | 2011-12-09 | Enecsys Ltd. | Inverter unit |
US8405367B2 (en) | 2006-01-13 | 2013-03-26 | Enecsys Limited | Power conditioning units |
US8461809B2 (en) | 2006-01-13 | 2013-06-11 | Enecsys Limited | Power conditioning unit |
US10193467B2 (en) | 2006-01-13 | 2019-01-29 | Tesla, Inc. | Power conditioning units |
US8811047B2 (en) | 2006-01-13 | 2014-08-19 | Enecsys Limited | Solar power conditioning unit |
US9812985B2 (en) | 2006-01-13 | 2017-11-07 | Solarcity Corporation | Solar power conditioning unit |
GB2434490B (en) * | 2006-01-13 | 2009-04-01 | Enecsys Ltd | Power conditioning unit |
GB2434490A (en) * | 2006-01-13 | 2007-07-25 | Enecsys Ltd | Power conditioning unit |
US9812980B2 (en) | 2006-01-13 | 2017-11-07 | Solarcity Corporation | Power conditioning units |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US10673253B2 (en) | 2006-12-06 | 2020-06-02 | Solaredge Technologies Ltd. | Battery power delivery module |
US12027849B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US12032080B2 (en) | 2006-12-06 | 2024-07-09 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11961922B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10097007B2 (en) | 2006-12-06 | 2018-10-09 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US12046940B2 (en) | 2006-12-06 | 2024-07-23 | Solaredge Technologies Ltd. | Battery power control |
US11962243B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US10230245B2 (en) | 2006-12-06 | 2019-03-12 | Solaredge Technologies Ltd | Battery power delivery module |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12068599B2 (en) | 2006-12-06 | 2024-08-20 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US10447150B2 (en) | 2006-12-06 | 2019-10-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11476799B2 (en) | 2006-12-06 | 2022-10-18 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US10637393B2 (en) | 2006-12-06 | 2020-04-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11682918B2 (en) | 2006-12-06 | 2023-06-20 | Solaredge Technologies Ltd. | Battery power delivery module |
US12027970B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11658482B2 (en) | 2006-12-06 | 2023-05-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US11594882B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12107417B2 (en) | 2006-12-06 | 2024-10-01 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11594880B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11594881B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11579235B2 (en) | 2006-12-06 | 2023-02-14 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11575260B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11575261B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11031861B2 (en) | 2006-12-06 | 2021-06-08 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11043820B2 (en) | 2006-12-06 | 2021-06-22 | Solaredge Technologies Ltd. | Battery power delivery module |
US11063440B2 (en) | 2006-12-06 | 2021-07-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11183922B2 (en) | 2006-12-06 | 2021-11-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11594968B2 (en) | 2007-08-06 | 2023-02-28 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US10516336B2 (en) | 2007-08-06 | 2019-12-24 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US11183923B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Parallel connected inverters |
US12055647B2 (en) | 2007-12-05 | 2024-08-06 | Solaredge Technologies Ltd. | Parallel connected inverters |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11894806B2 (en) | 2007-12-05 | 2024-02-06 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11183969B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11693080B2 (en) | 2007-12-05 | 2023-07-04 | Solaredge Technologies Ltd. | Parallel connected inverters |
US10644589B2 (en) | 2007-12-05 | 2020-05-05 | Solaredge Technologies Ltd. | Parallel connected inverters |
US10693415B2 (en) | 2007-12-05 | 2020-06-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11424616B2 (en) | 2008-05-05 | 2022-08-23 | Solaredge Technologies Ltd. | Direct current power combiner |
US10468878B2 (en) | 2008-05-05 | 2019-11-05 | Solaredge Technologies Ltd. | Direct current power combiner |
US10461687B2 (en) | 2008-12-04 | 2019-10-29 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US10969412B2 (en) | 2009-05-26 | 2021-04-06 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US11867729B2 (en) | 2009-05-26 | 2024-01-09 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US10032939B2 (en) | 2009-10-19 | 2018-07-24 | Ampt, Llc | DC power conversion circuit |
WO2011114161A2 (en) | 2010-03-19 | 2011-09-22 | Enecsys Limited | Power conditioning units |
WO2011154720A2 (en) | 2010-06-07 | 2011-12-15 | Enecsys Limited | Solar photovoltaic systems |
US9496803B2 (en) | 2010-06-07 | 2016-11-15 | Solarcity Corporation | Solar photovoltaic system with maximized ripple voltage on storage capacitor |
US8674668B2 (en) | 2010-06-07 | 2014-03-18 | Enecsys Limited | Solar photovoltaic systems |
US11489330B2 (en) | 2010-11-09 | 2022-11-01 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11349432B2 (en) | 2010-11-09 | 2022-05-31 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10931228B2 (en) | 2010-11-09 | 2021-02-23 | Solaredge Technologies Ftd. | Arc detection and prevention in a power generation system |
US12003215B2 (en) | 2010-11-09 | 2024-06-04 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11070051B2 (en) | 2010-11-09 | 2021-07-20 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10666125B2 (en) | 2011-01-12 | 2020-05-26 | Solaredge Technologies Ltd. | Serially connected inverters |
US11205946B2 (en) | 2011-01-12 | 2021-12-21 | Solaredge Technologies Ltd. | Serially connected inverters |
US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
CN102386780A (en) * | 2011-09-14 | 2012-03-21 | 深圳航天科技创新研究院 | Push-pull circuit of DC/DC (Direct Current/Direct Current) part |
US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
US11979037B2 (en) | 2012-01-11 | 2024-05-07 | Solaredge Technologies Ltd. | Photovoltaic module |
US11183968B2 (en) | 2012-01-30 | 2021-11-23 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US11929620B2 (en) | 2012-01-30 | 2024-03-12 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US10608553B2 (en) | 2012-01-30 | 2020-03-31 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US10992238B2 (en) | 2012-01-30 | 2021-04-27 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US10381977B2 (en) | 2012-01-30 | 2019-08-13 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
US12094306B2 (en) | 2012-01-30 | 2024-09-17 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US11620885B2 (en) | 2012-01-30 | 2023-04-04 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US10007288B2 (en) | 2012-03-05 | 2018-06-26 | Solaredge Technologies Ltd. | Direct current link circuit |
US12003107B2 (en) | 2013-03-14 | 2024-06-04 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US10778025B2 (en) | 2013-03-14 | 2020-09-15 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US11201476B2 (en) | 2016-04-05 | 2021-12-14 | Solaredge Technologies Ltd. | Photovoltaic power device and wiring |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
US11870250B2 (en) | 2016-04-05 | 2024-01-09 | Solaredge Technologies Ltd. | Chain of power devices |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
Also Published As
Publication number | Publication date |
---|---|
JP3015512B2 (en) | 2000-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3015512B2 (en) | DC / AC power supply | |
JP2680494B2 (en) | Single-phase AC power converter | |
US6055167A (en) | Pulse width modulated boost converter integrated with power factor correction circuit | |
JPS6137864B2 (en) | ||
JP4411845B2 (en) | Parallel AC-DC converter | |
WO2019003270A1 (en) | Power conversion device, motor drive control device, fan, compressor, and air conditioner | |
JPH11235040A (en) | Power supply with three-phase high power factor converter | |
JP3196554B2 (en) | Current mode switching stabilized power supply | |
JPH10174477A (en) | Motor drive and air-conditioner employing it | |
JP3433412B2 (en) | Regenerative energy processing method and regenerative energy processing device for inverter | |
JP6123371B2 (en) | AC power supply device | |
TW494611B (en) | Power circuit with smoothing choke coil inductance varying circuit | |
JP2990867B2 (en) | Forward converter | |
WO2006098000A1 (en) | Converter | |
JPH09247944A (en) | Pwm control self-excited rectifier | |
JPH0783605B2 (en) | Rectifier circuit controller | |
JP2572433B2 (en) | Power supply for arc welding and cutting | |
JPH0715971A (en) | Power conversion device | |
JPH0789742B2 (en) | Power converter | |
KR102076588B1 (en) | Multi-channel inverter type power conversion device for heater temperature control | |
JPH10127046A (en) | Control circuit for step-up converter | |
JP2628059B2 (en) | DC power supply | |
JP2726355B2 (en) | Switching regulator | |
JPH062477Y2 (en) | Power converter controller | |
JPH09163751A (en) | Pwm controlled self-excited rectifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071217 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091217 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091217 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101217 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101217 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111217 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111217 Year of fee payment: 12 |