JPH0536502B2 - - Google Patents
Info
- Publication number
- JPH0536502B2 JPH0536502B2 JP1218215A JP21821589A JPH0536502B2 JP H0536502 B2 JPH0536502 B2 JP H0536502B2 JP 1218215 A JP1218215 A JP 1218215A JP 21821589 A JP21821589 A JP 21821589A JP H0536502 B2 JPH0536502 B2 JP H0536502B2
- Authority
- JP
- Japan
- Prior art keywords
- cemented carbide
- coating
- alloy
- pressure
- hip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000576 coating method Methods 0.000 claims description 23
- 239000011248 coating agent Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 15
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 13
- 238000000280 densification Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 229910018104 Ni-P Inorganic materials 0.000 claims description 9
- 229910018536 Ni—P Inorganic materials 0.000 claims description 9
- 238000007747 plating Methods 0.000 claims description 8
- 238000007772 electroless plating Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 229910001096 P alloy Inorganic materials 0.000 claims description 2
- 230000005496 eutectics Effects 0.000 claims 1
- 239000000758 substrate Substances 0.000 claims 1
- 238000001513 hot isostatic pressing Methods 0.000 description 17
- 238000005299 abrasion Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000007751 thermal spraying Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910009043 WC-Co Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000009931 pascalization Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Chemically Coating (AREA)
- Coating By Spraying Or Casting (AREA)
Description
〔産業上の利用分野〕
本発明は、例えば耐摩耗用部材として基材に形
成した超硬合金容射皮膜に超硬合金自体が有する
硬さ、耐摩耗性、耐食性等の特性を発揮させるた
めの緻密化処理方法に関する。
〔従来の技術〕
従来から、粉末冶金プロセスによるWC−C0の
ような超硬合金は優れた耐摩耗性を有するために
工業的に広く用いられている。
ところが、超硬合金の溶射皮膜は、皮膜内の気
孔の存在と粒子間の不十分な結合力のために、超
硬合金自体が有する硬さ、耐摩耗性、耐食性を充
分に発揮させるには至つていない。
そのため、超硬合金の溶射皮膜の緻密化をする
ための手段が種々提案されている。
まず、特公昭50−10819号公報には、溶射前の
基材面あるいは溶射後の皮膜面に溶浸材として
Ni−P合金を被履し、この被履合金が液相を生
じる温度で加熱するタングステン系、モリブデン
系、鉄系金属合金の溶射皮膜の緻密化方法が開示
されている。
また、日本溶射協会誌vol.21No.3「超硬合金溶
射被膜への銅合金溶浸」には、Ni−P合金に代
わつてCu系の低融点合金、銀ろう、銅ろうの使
用、特にCu−Ni−P合金、BCuP−3のろう材
について研究が報告されている。
さらに、特開昭61−159566号公報には溶射被履
層に熱間等方圧加圧(HIP)を適用して緻密化す
る方法が開示されている。
またさらに、Surface Engineering 1988
Vol.4No.1には、NiCoCrAlYの皮膜形成とHIPの
併用について開示がなされており、とくにこの溶
浸材の被履とHIPの併用は溶射皮膜の緻密化をす
る上できわめて効果的であるものと期待できる。
〔発明が解決しようとする課題〕
しかしながら、それぞれの溶浸材の溶浸のため
の処理温度は800〜1200℃の比較的高温であるた
めに基材に与える熱影響も大きく、基材がこの温
度で劣化しないことが必要であるため、被溶射体
である基材が限定される。また、粉末冶金プロセ
ス、またはNiCoCrAlYのような金属材に適応さ
れる例では、付与される圧力も1000Kg/cm2以上と
高圧であるため装置も大型であり、製品はコスト
高にならざるを得ない等の欠点があつた。
本発明において解決すべき課題は、従来の溶浸
材の被履とHIPの併用に際しての上記欠点の解消
にあつて、溶浸材の処理温度と付与されるHIP圧
力も共に低くて済む超硬合金溶射皮膜の緻密化方
法を開示するものである。
〔課題を解決するための手段〕
本発明は、超硬合金の溶射膜全面にNi−P合
金のメツキ皮膜の形成が、700〜1000℃の比較的
低温域において、8〜100Kg/cm2の低圧力の下で
のHIP処理によつて充分な緻密化が行われるとい
う知見の下で上記課題を解決した。
すなわち、本発明は、基材表面に超硬合金の溶
射皮膜を施し、さらに、この溶射皮膜全面に無電
解メツキによりNi−P合金のメツキ皮膜を形成
したのち、この基材に700〜1000℃の温度で、8
〜100Kg/cm2の圧力の下で熱間等方圧加圧処理を
施す超硬合金溶射皮膜の緻密化方法である。
〔作用〕
無電解メツキによるNi−P合金皮膜は複雑形
状を有する部材に、均一で緻密な皮膜を形成する
ことが可能であり、HIP時のカプセルとして作用
し、圧力媒体ガスが超硬合金溶射皮膜内に入らな
いようにシールすることができる。これによつて
比較的低い700〜1000℃の温度下で、しかも、8
〜100Kg/cm2の低気圧の下でHIPを施すことによ
つて、溶射膜の気孔が消失し、緻密で耐摩耗性、
耐食性、耐衝撃強度に優れた皮膜が形成できる。
とくに、超硬合金として(以下重量%表示)、
WC−6.5%Co、WC−12%Co、WC−17%Co等、
任意のCo含有量の超硬合金が適用できるが、と
くに、12〜17%Co含有量の場合には効果的であ
る。
〔実施例〕
基材として、SS41軟鋼を用い、ブラスト処理
後、WC−6.5%Co、WC−12%Co、WC−17%
Co粉末を表1に示す条件でプラズマ溶射を行つ
た。得られたWC−Co溶射皮膜の上に、無電解メ
ツキ法により日本カニゼン社のブルーシユーマ
(商標名)メツキ液を用い、約50μm厚のNi−P
合金のメツキを施した。これに、500〜1000℃で
HIPを行つた。
HIPの圧力は5、8、9、50、100Kg/cm2、加
圧時間は30minであつた。
なお、比較のために、上記WC−Coの溶射皮膜
を形成しているがNi−P合金メツキ被履を施さ
ない試料A(溶射のまま)も同様の条件でのHIP
を行つた。
本発明のWC−12%Coの場合、50Kg/cm2の圧力
においては、700℃から1000℃に至るまで、温度
上昇と共に緻密化は上昇し、1000℃においては緻
密化は理論値の98%に及ぶ。しかし、700℃未満
では緻密化は急激に低下する。緻密化が不充分で
あると、気孔の存在により硬さが下がる。緻密化
と硬さはよく対応しており、これはHIP処理した
WC−12%Coの溶射皮膜の処理温度、加圧力を変
化させたときの表面の硬さを測定した結果である
表2によつても言える。
また、800℃の一定温度の下で、加圧を変化し
て緻密化の変化を調べた。緻密化は8Kg/cm2の低
圧でも充分に達成されている。緻密化を硬さの特
性値で言い表せば、表2よりわかる如く、十分な
特性値は圧力は8Kg/cm2以上、温度は700℃以上
を要することがわかる。この条件下ではラミナー
組織は見られなかつた。他の組成の超硬合金溶射
皮膜についても本例と同様であつた。皮膜特性と
してはミクロ組織硬さ(Hv)の他に、スガ平面
摩耗試験機を用い、荷重3Kg、相手材としてカー
ボランダムペーパー(#320)、摩擦回数2400回の
摩耗試験を行つて摩耗量を求め、これにより最終
的な評価を行つた。
その試験結果を第1図および第2図に示す。
第1図および第2図はそれぞれ供試材WC−12
%CoとWC−17%CoのHIP温度と得られた供試
材の摩耗試験の結果を示す。
表2およびこれらの図から以下のことがわか
る。
Ni−Pメツキ無しのものは、メツキを施した
ものに比べて摩耗試験の消耗量が多すぎる。メツ
キを施したものは、処理温度が高くなるにつれ、
硬さも、耐摩耗性が向上しているが、700℃とい
う低温の処理でも、1000℃と同程度の硬さ及び耐
摩耗性を有しており、本発明の場合低温処理でも
優れた溶射皮膜が得られ、充分に実用に供するこ
とができる。しかしながら、温度が700℃未満で
は硬さ及び耐摩耗性は不充分である。また、HIP
圧力については8Kg/cm2未満では硬さ、耐摩耗性
は不充分であるが、通像のHIP圧力よりも低い圧
力、即ち8〜100Kg/cm2で耐摩耗性に優れた溶射
皮膜が得られる。これらの組成以外の超硬合金溶
射皮膜についても同様な結果が得られた。
[Industrial Field of Application] The present invention is aimed at exhibiting the hardness, wear resistance, corrosion resistance, and other properties of the cemented carbide itself in a cemented carbide spray coating formed on a base material as a wear-resistant member, for example. This invention relates to a densification processing method. [Prior Art] Conventionally, cemented carbide such as WC-C 0 produced by powder metallurgy process has been widely used industrially because of its excellent wear resistance. However, thermal sprayed coatings on cemented carbide cannot fully demonstrate the hardness, wear resistance, and corrosion resistance of the cemented carbide itself due to the presence of pores within the coating and insufficient bonding strength between particles. I haven't reached it yet. Therefore, various means have been proposed for densifying the thermal spray coating of cemented carbide. First of all, in Japanese Patent Publication No. 50-10819, it is stated that as an infiltrant, it can be applied to the base material surface before thermal spraying or to the coating surface after thermal spraying.
A method for densifying a thermally sprayed coating of a tungsten-based, molybdenum-based, or iron-based metal alloy is disclosed, in which a Ni--P alloy is coated and the coated alloy is heated at a temperature that causes the alloy to form a liquid phase. In addition, the Japan Thermal Spraying Association Journal Vol. 21 No. 3 ``Copper alloy infiltration into cemented carbide thermal spray coatings'' describes the use of Cu-based low melting point alloys, silver solder, and copper solder instead of Ni-P alloys, especially Research has been reported on the brazing filler metal of Cu-Ni-P alloy, BCuP-3. Further, JP-A-61-159566 discloses a method of applying hot isostatic pressing (HIP) to a thermally sprayed wear layer to densify it. Furthermore, Surface Engineering 1988
Vol. 4 No. 1 discloses the combination of NiCoCrAlY film formation and HIP, and in particular, the combination of this infiltrant coating and HIP is extremely effective in densifying the sprayed film. You can expect it. [Problem to be solved by the invention] However, since the treatment temperature for infiltration of each infiltrant material is relatively high temperature of 800 to 1200℃, the thermal effect on the base material is large, and the base material Since it is necessary that the material does not deteriorate due to temperature, the base material to be thermally sprayed is limited. In addition, in powder metallurgy processes or applications for metal materials such as NiCoCrAlY, the applied pressure is as high as 1000 kg/cm 2 or more, so the equipment is large and the cost of the product is unavoidably high. There were some shortcomings, such as: The problem to be solved by the present invention is to solve the above-mentioned drawbacks when using conventional infiltrant materials in conjunction with HIP, and to solve the problem by using carbide, which requires low processing temperatures for infiltrant materials and low HIP pressures. A method for densifying a sprayed alloy coating is disclosed. [Means for Solving the Problems] The present invention is capable of forming a Ni-P alloy plating film on the entire surface of a thermally sprayed cemented carbide film at a rate of 8 to 100 kg/cm 2 in a relatively low temperature range of 700 to 1000°C. The above problem was solved based on the knowledge that sufficient densification can be achieved by HIP treatment under low pressure. That is, in the present invention, a thermal sprayed coating of cemented carbide is applied to the surface of a base material, and a plating coating of Ni-P alloy is formed on the entire surface of this thermal sprayed coating by electroless plating, and then the base material is heated at 700 to 1000°C. At a temperature of 8
This is a method for densifying a thermally sprayed cemented carbide coating by subjecting it to hot isostatic pressing under a pressure of ~100Kg/ cm2 . [Function] The Ni-P alloy film produced by electroless plating can form a uniform and dense film on parts with complex shapes, and acts as a capsule during HIP, allowing the pressure medium gas to spray onto the cemented carbide. It can be sealed to prevent it from entering the membrane. As a result, even at relatively low temperatures of 700 to 1000℃,
By applying HIP under low pressure of ~100Kg/ cm2 , the pores in the sprayed film disappear, making it dense and wear-resistant.
A film with excellent corrosion resistance and impact resistance can be formed. In particular, as a cemented carbide (hereinafter expressed as weight %),
WC-6.5%Co, WC-12%Co, WC-17%Co, etc.
Cemented carbide with any Co content can be applied, but a Co content of 12 to 17% is particularly effective. [Example] SS41 mild steel was used as the base material, and after blasting, WC-6.5%Co, WC-12%Co, WC-17%
Co powder was subjected to plasma spraying under the conditions shown in Table 1. On top of the obtained WC-Co thermal spray coating, a Ni-P film with a thickness of approximately 50 μm is coated using an electroless plating method using Nippon Kanigen Co., Ltd.'s Blue Xiuma (trade name) plating solution.
Alloy plating was applied. To this, at 500-1000℃
I did HIP. The HIP pressures were 5, 8, 9, 50, and 100 Kg/cm 2 and the pressurization time was 30 min. For comparison, sample A (as sprayed), which has the above-mentioned WC-Co thermal sprayed coating but is not coated with Ni-P alloy plating, was also subjected to HIP under the same conditions.
I went to In the case of WC-12%Co of the present invention, at a pressure of 50Kg/ cm2 , the densification increases with increasing temperature from 700℃ to 1000℃, and at 1000℃, the densification is 98% of the theoretical value. It extends to. However, densification decreases rapidly below 700°C. If densification is insufficient, the hardness decreases due to the presence of pores. Densification and hardness correspond well, and this is due to HIP treatment.
This can also be seen in Table 2, which shows the results of measuring the surface hardness of the WC-12% Co thermal sprayed coating when the treatment temperature and pressure were varied. We also examined changes in densification by varying the applied pressure at a constant temperature of 800°C. Densification was sufficiently achieved even at a low pressure of 8 kg/cm 2 . If densification is expressed in terms of hardness characteristic values, as can be seen from Table 2, sufficient characteristic values require a pressure of 8 Kg/cm 2 or more and a temperature of 700° C. or more. No laminar structure was observed under this condition. The thermal sprayed coatings of cemented carbide having other compositions were also similar to this example. In addition to the microstructure hardness (Hv), the film properties were measured using a Suga flat abrasion tester, with a load of 3 kg, carborundum paper (#320) as the mating material, and 2400 friction cycles to measure the amount of wear. The final evaluation was made based on this information. The test results are shown in FIGS. 1 and 2. Figures 1 and 2 show the sample material WC-12, respectively.
The HIP temperature of %Co and WC-17%Co and the results of the wear test of the obtained test materials are shown. The following can be seen from Table 2 and these figures. The one without Ni-P plating has too much wear in the wear test compared to the one with plating. For plated items, as the processing temperature increases,
The hardness and abrasion resistance have also improved, but even when processed at a low temperature of 700°C, it has the same hardness and wear resistance as at 1000°C, and in the case of the present invention, it is possible to obtain a thermal sprayed coating that is excellent even at low temperatures. can be obtained and can be put to practical use. However, at temperatures below 700°C, hardness and wear resistance are insufficient. Also, HIP
Regarding the pressure, if the pressure is less than 8 Kg/cm 2 , the hardness and abrasion resistance will be insufficient, but if the pressure is lower than the HIP pressure for imaging, that is, 8 to 100 Kg/cm 2 , a sprayed coating with excellent abrasion resistance can be obtained. It will be done. Similar results were obtained for sprayed cemented carbide coatings having compositions other than these.
【表】【table】
【表】【table】
本発明の超硬合金溶射皮膜の緻密方法によつて
以下の効果を奏することができる。
(1) 低い処理温度と低い加圧力の下で、従来の高
温、高圧の処理と同様の超硬合金溶射皮膜の緻
密化を得ることができる。
(2) 溶射皮膜独特のラミナー組織が消滅しており
耐摩耗性に優れた皮膜を得ることができる。
(3) 低圧、低温度のHIP処理を適用できるので、
緻密処理後、歪みや残留応力が発生することが
ない。
The following effects can be achieved by the method of densifying a thermally sprayed cemented carbide coating of the present invention. (1) Under low processing temperature and low pressure, it is possible to obtain the same densification of the sprayed cemented carbide coating as with conventional high-temperature, high-pressure processing. (2) The laminar structure unique to thermal sprayed coatings has disappeared, making it possible to obtain coatings with excellent wear resistance. (3) Low-pressure, low-temperature HIP treatment can be applied, so
After dense processing, no distortion or residual stress occurs.
添付の第1図および第2図は本発明の処理法に
よる緻密化の効果を示す図である。第1図はWC
−12%Coの場合をまた、第2図はWC−17%Co
の場合を示す。
The attached FIGS. 1 and 2 are diagrams showing the densification effect of the treatment method of the present invention. Figure 1 shows WC
Figure 2 shows the case of −12%Co and WC−17%Co.
The case is shown below.
Claims (1)
に、この溶射皮膜全面に無電解メツキによりNi
−P合金のメツキ皮膜を形成したのち、この基材
に700〜1000℃の温度で、8〜100Kg/cm2の圧力の
下で熱間等方圧加圧処理を施す超硬合金溶射皮膜
の緻密化方法。 2 請求項1の記載において、Ni−P合金が共
晶組成を有する超硬合金溶射皮膜の緻密化方法。[Claims] 1. A thermally sprayed coating of cemented carbide is applied to the surface of the base material, and Ni is further applied to the entire surface of this thermally sprayed coating by electroless plating.
- After forming a plating film of P alloy, this substrate is subjected to hot isostatic pressure treatment at a temperature of 700 to 1000°C and a pressure of 8 to 100 kg/ cm2 . Densification method. 2. A method for densifying a sprayed cemented carbide coating according to claim 1, wherein the Ni-P alloy has a eutectic composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21821589A JPH0379751A (en) | 1989-08-23 | 1989-08-23 | Pensification method for sprayed deposit of sintered hard alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21821589A JPH0379751A (en) | 1989-08-23 | 1989-08-23 | Pensification method for sprayed deposit of sintered hard alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0379751A JPH0379751A (en) | 1991-04-04 |
JPH0536502B2 true JPH0536502B2 (en) | 1993-05-31 |
Family
ID=16716421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21821589A Granted JPH0379751A (en) | 1989-08-23 | 1989-08-23 | Pensification method for sprayed deposit of sintered hard alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0379751A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6673467B2 (en) * | 2001-10-01 | 2004-01-06 | Alstom (Switzerland) Ltd | Metallic component with protective coating |
JP2002349571A (en) * | 2002-04-12 | 2002-12-04 | Hitachi Constr Mach Co Ltd | Bearing device |
CN110343992A (en) * | 2019-08-05 | 2019-10-18 | 王鸿翔 | A kind of spraying method of plasma wearing layer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS567795A (en) * | 1979-06-28 | 1981-01-27 | Dainippon Pharmaceut Co Ltd | N-acylcephalosporin derivative and its salt |
JPS5839228A (en) * | 1981-09-02 | 1983-03-07 | 三菱電機株式会社 | Charge control system for nickel-cadmium battery in artificial sattelite |
JPS61159566A (en) * | 1985-01-08 | 1986-07-19 | Daido Steel Co Ltd | Coating method of metallic or ceramic base material |
-
1989
- 1989-08-23 JP JP21821589A patent/JPH0379751A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS567795A (en) * | 1979-06-28 | 1981-01-27 | Dainippon Pharmaceut Co Ltd | N-acylcephalosporin derivative and its salt |
JPS5839228A (en) * | 1981-09-02 | 1983-03-07 | 三菱電機株式会社 | Charge control system for nickel-cadmium battery in artificial sattelite |
JPS61159566A (en) * | 1985-01-08 | 1986-07-19 | Daido Steel Co Ltd | Coating method of metallic or ceramic base material |
Also Published As
Publication number | Publication date |
---|---|
JPH0379751A (en) | 1991-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2297018C (en) | Thermal spray coating for gates and seats | |
US4911987A (en) | Metal/ceramic or ceramic/ceramic bonded structure | |
US3846084A (en) | Chromium-chromium carbide powder and article made therefrom | |
US20110014495A1 (en) | Metal material for parts of casting machine, molten aluminum alloy-contact member and method for producing them | |
CN104060147B (en) | Corrosion-resistant finishes and its preparation method | |
JP3091690B2 (en) | Method for producing TiB2-based coating | |
JPH0536502B2 (en) | ||
JPS6033187B2 (en) | Surface hardening treatment method | |
JPS61159566A (en) | Coating method of metallic or ceramic base material | |
CN112662977B (en) | Preparation method of thermal spraying Ni-based alloy self-lubricating coating | |
Fleury et al. | Sliding friction and wear behavior of Al–Ni–Co–Si quasicrystalline coatings deposited by the high-velocity oxy-fuel spraying technique | |
CN104120376B (en) | Corrosion-resistant roller and manufacture method thereof | |
JPS61143547A (en) | Cylinder for plastic molding apparatus | |
JP3460160B2 (en) | Manufacturing method of mold for continuous casting | |
Lee et al. | Potential industrial applications of Al-based quasicrystals: plasma sprayed vs. HVOF sprayed coatings | |
Sadki et al. | Effect of NiAl Bond Layer on the Wear Resistance of an Austenitic Stainless Steel Coating Obtained by Arc Spray Process | |
JPS63227757A (en) | Method for thermally spraying wear-resistant ceramics | |
JP4334812B2 (en) | Corrosion-resistant wear-resistant member and manufacturing method thereof | |
Haridasan et al. | Investigation on the influence of substrate materials on the tribological behaviour of detonation gun sprayed alumina coating | |
Ito et al. | Characterization of Ni--Al Composite Powders Formed by the Mechanofusion Process and Their Sprayed Coatings | |
Lugscheider et al. | Reactive plasma spraying of wear resistant coatings of Ti composites | |
Sakagami et al. | Effects of HIP Treatment and Surface Conditions on Bending Fatigue Characteristics of WC-12mass% Co Alloys | |
SU1473902A1 (en) | Method of producing friction articles | |
Çolak et al. | THE USE OF ELECTROLESS COATING IN THE PRODUCTION OF HIGH CERAMIC-TO-METAL RATIO COMPOSITES USING WC POWDER | |
Ilyushenko et al. | SHS powders for thermal spray coatings |