【考案の詳細な説明】[Detailed explanation of the idea]
(産業上の利用分野)
本考案は建築内装・外装用の無機質基材、更に
詳しくはタイル下地その他の化粧仕上げの下地と
なるべき建築用無機質基材の改良に関する。
(従来の技術)
従来から、浴室、台所その他の建築構造物の
内・外装用の下地材として石綿−珪酸カルシウム
系の不燃材料が広く用いられて来た。斯かる不燃
材料は上記建築構造物の壁面、天井面或いは床面
に貼設され、この表面にタイル張り或いは塗装が
され仕上げがなされるものであり、不燃性、強靱
性或いは耐水性に優れていることからその用途は
多岐に渡つていたのであるが、最近になつて石綿
の公害問題がクローズアツプされ、所謂ノンアス
ベスト化が叫ばれるようになつた。また、上記の
石綿−珪酸カルシウム系の材料は吸水率が40〜50
%もあり、しかも基材として成型する場合多層に
熱プレスしてなされる為、長い使用の間に吸水と
乾燥が繰り返されると層間の剥離が生じたり、材
料が変形するなどの不都合が生じていた。
(考案が解決しようとする問題点)
上記のようなノンアスベスト化の要求に対し、
セメント(珪酸カルシウム)とガラス繊維、パル
プ或いは有機繊維とを組み合わせた新素材が開発
され市販されるようになつたが、強度、耐水性及
びコスト面で上記石綿系材料を凌ぐまでには至つ
ていなかつた。また、本出願人が特願昭第49−
093583号等で提案した不燃性無機質化粧板(本出
願人が“カベリアン”として販売し好評を博して
いる)は、ノンアスベスト化されしかも耐水性・
強度等の極めて優れた建築用板ではあるが、これ
自体は化粧板である為、上記のような下地材とし
て用いるには不適切であり、仮にこの化粧板の表
面にタイル張りや塗装仕上げをせんとしても、該
化粧板の表面は熱硬化型樹脂を含浸担持したパタ
ーン紙や同樹脂より成る表面層部材により覆われ
ているため、これらとタイル用接着剤や塗料との
密着性が悪く、建築用基材としての適性は保有し
なかつた。更に最近では、高熱多湿の工場等の作
業環境を向上する為に、上記不燃性無機質化粧板
を内装材として用いることも行われるようになつ
たが、該化粧板は上述の如く表面に熱硬化型樹脂
が露出している為、表面が高熱によつて黒化する
欠点があり、しかもこれを防ぐ為に耐熱性に優れ
た無機塗料で塗装してもやがて上記理由により剥
離してしまうことになつてその目的を果たすこと
が出来ず、このような用途に耐えることが出来、
しかもノンアスベスト化された建築用基材の開発
も望まれるところであつた。
本考案は上記本出願人に係る技術蓄積をもとに
研究を重ねた結果得られたものであり、ノンアス
ベスト化されしかも石綿系基材に取つて代わり得
る極めて有用性の高い新規な建築用無機質基材を
提供せんとするものである。
(問題点を解決する為の手段)
上記目的を達成するための本考案の構成を添付
の実施例図に基づき説明する。第1図は本考案建
築用無機質基材の一実施例を示す部分縦断面図、
第2図は他の実施例の同様図である。即ち、本考
案の建築用無機質基材は、無機質骨材及び熱硬化
型樹脂結合剤を含む無機質基材層1と、紙質補強
基材とと熱硬化型樹脂とが含浸一体化された補強
層2と、無機質骨材及び熱硬化型樹脂結合剤を含
む薄層の表面層3とがこの順序で熱圧一体に成型
されてなることを要旨とするものである。本考案
の無機質基材層1は主骨材、補助骨材、補
強材及び熱硬化型樹脂結合剤等を混和して後記
する他層の構成材料と共にサンドイツチ状に積層
され、ホツトプレスにて板状等に成型硬化されて
成るものであるが、これらの各材料を更に詳述す
れば;
主骨材:主たる骨材としては水酸化アルミニ
ウム(A12O3・3H2O)の固形粉末が用いら
れ、全体量に対し5〜97%(重量、以下同様)、
好ましくは50〜70%配合される。この水酸化ア
ルミニウムは成型温度200℃以下では熱変化し
ないが、周囲温度300〜550℃となると結晶水を
放出して燃焼の抑制作用を行い同時に耐熱材と
してのA12O3となるため成型品に不燃性を与え
る。
補助骨材:上記主骨材と共に補助骨材として
無機質充填材が用いられる。斯かる補助骨材
は、成型品の機械的強度の向上、増量によるコ
スト引き下げ、難燃性の付与等の目的の為に用
いられるもので、珪砂、方解石粉、珪酸カルシ
ウム、ゼオライト、カオリン、ベントナイト、
酸性白土等が採用される。
補強剤:成型品の機械的強度を更にアツプさ
せるために無機繊維(ガラス繊維、セラミツク
繊維)、金属繊維(鉄繊維、アルミ繊維、ウイ
スカース等)、天然繊維(木綿、麻綿等)、合成
樹脂繊維(ビニロン、ナイロン、テトロン等)
の繊維チヨンプが添加される。
樹脂結合剤:用いられる結合剤は上記各材料
相互に成型流動性を与え熱圧によつて硬化し得
る難燃性熱硬化型合成樹脂であり、フエノール
ホルマリン縮合物及びその誘導体、ユリア、メ
ラミン−ホルマリン縮合物及びその誘導体、フ
ラン−ホルマリン縮合物及びその誘導体、ポリ
ジフエニルオキシド樹脂及びその誘導体等が採
用され、その使用量は基材層1の構成材料全体
に対し3〜12%である。
又、補強層2は成型品に強靱な機械的強度を付
与するもので、クラフト紙や和紙等の紙質補強基
材に上記同様の熱硬化型樹脂を含浸担持させたも
のである。
更に表面層3は上記無機質基材層1の構成材料
と同様の主骨材及び樹脂結合剤を主成分とし、両
者の配合割合は無機質基材層1の場合と略同様で
ある。
本考案の建築用無機質基材は、熱圧プレスのプ
レス板上に、無機質基材層1用として配合調製さ
れた上記材料を載せ、その上に補強層2用の上記
シートを、更にその上に表面層3用として配合調
製された材料を載せてこれらを一括してホツトプ
レスすることにより得られる。この時表面層3側
のプレス板としてエンボスプレス金型を用い、表
面層3上に適宜タイル模様等のエンボスを付与す
ることも可能である。亦、プレス板上に各材料を
載せる順序は上記と逆であつても良く、更に無機
質基材層1の両面に各々補強層2及び表面層3を
形成させること(第2図参照)も除外するもので
はない。又、板状品だけでなく、内廻りや外廻り
等の役物も金型を変更することにより容易に成型
することが出来る。
(作用)
上記構成の建築用無機質基材においては、無機
質基材層1によつて不燃性が付与され、また該基
材層1と補強層2との相乗効果によつて基材全体
が極めて強靱なものとされる。この補強層2の表
面は無機質骨材及び樹脂結合剤から成る表面層3
により覆われているから、この表面は接着剤や各
種塗料に対する密着性の良好な面とされる。従つ
て本考案の基材を建築構造物の壁面(床面、天井
面も含む)材として用い、この表面に適宜接着剤
を介してタイル張りをしたり、或いは各種有機・
無機塗料で塗装してその仕上げをした場合でも、
経時的なこれらの仕上げ層の剥離現象は見られな
いのである。従つて、タイル張りすれば美麗な不
燃化粧板が出来、安価な有機塗料を塗装すれば汎
用の化粧板が出来、無機塗料で塗装すれば耐熱・
耐火性及び耐水性に優れた不燃化粧が出来る。し
かも上記各構成層には石綿が含まれないので、所
謂石綿公害を生起させる懸念がなくノンアスベス
ト化の時代的趨勢に充分応えることが出来る。加
えて本考案の基材は基材層1と表面層3との間に
紙と熱硬化型樹脂とが含浸一体化された補強層2
が介在されているから吸水率が極めて低く(1〜
2%と実測されている)、変形や層間剥離を生じ
ず、外壁材や浴室及び台所などの内装材としての
適性を保有する。
(実施例)
以下に本考案の実施例について説明する。第1
表及び第2表は夫々無機質基材層1及び表面層3
の基材材料の配合割合を示すものである。
(Field of Industrial Application) The present invention relates to an inorganic base material for the interior and exterior of buildings, and more specifically to the improvement of an inorganic base material for construction that is to be used as a base for tiles and other decorative finishes. (Prior Art) Asbestos-calcium silicate noncombustible materials have been widely used as base materials for the interior and exterior of bathrooms, kitchens, and other architectural structures. Such noncombustible materials are affixed to the walls, ceilings, or floors of the above-mentioned building structures, and the surfaces are tiled or painted to provide a finish that is noncombustible, tough, and water resistant. Because of the presence of asbestos, its uses were wide-ranging, but recently, the issue of asbestos pollution has come to the fore, and there has been a call for so-called non-asbestos. In addition, the asbestos-calcium silicate material mentioned above has a water absorption rate of 40 to 50.
%, and when molded as a base material, it is heat-pressed into multiple layers, so repeated water absorption and drying during long-term use can cause problems such as delamination between layers and deformation of the material. Ta. (Problems that the invention attempts to solve) In response to the above-mentioned demand for non-asbestos,
New materials that combine cement (calcium silicate) with glass fibers, pulp, or organic fibers have been developed and are now commercially available, but they have yet to surpass the asbestos-based materials mentioned above in terms of strength, water resistance, and cost. I wasn't there. In addition, the present applicant has filed a patent application No. 49-
The non-combustible inorganic decorative board proposed in No. 093583 (sold by the applicant as "Caverian" and well received) is non-asbestos, water resistant and
Although this architectural board has extremely high strength, it is itself a decorative board, so it is not suitable for use as a base material as described above. However, since the surface of the decorative board is covered with patterned paper impregnated with a thermosetting resin and a surface layer member made of the same resin, the adhesion between these and tile adhesives and paints is poor. It had no suitability as a building material. Furthermore, recently, in order to improve the working environment of factories and other places with high heat and humidity, the above-mentioned non-combustible inorganic decorative laminates have been used as interior materials. Since the mold resin is exposed, the surface has the disadvantage of turning black due to high heat, and even if it is painted with an inorganic paint with excellent heat resistance to prevent this, it will eventually peel off due to the above reasons. It can withstand such uses without being able to fulfill its purpose due to aging.
Moreover, the development of non-asbestos building materials was also desired. The present invention was obtained as a result of repeated research based on the technology accumulated by the applicant, and is a highly useful novel construction material that is non-asbestos and can replace asbestos-based base materials. The purpose is to provide an inorganic base material. (Means for Solving the Problems) The structure of the present invention for achieving the above object will be explained based on the attached embodiment drawings. FIG. 1 is a partial longitudinal sectional view showing an example of the inorganic base material for construction of the present invention;
FIG. 2 is a similar diagram of another embodiment. That is, the inorganic base material for construction of the present invention includes an inorganic base material layer 1 containing an inorganic aggregate and a thermosetting resin binder, a reinforcing layer in which a paper reinforcing base material and a thermosetting resin are impregnated and integrated. 2 and a thin surface layer 3 containing an inorganic aggregate and a thermosetting resin binder are integrally molded in this order under heat and pressure. The inorganic base material layer 1 of the present invention is mixed with main aggregate, auxiliary aggregate, reinforcing material, thermosetting resin binder, etc., and is laminated in a sandwich-like structure with constituent materials of other layers to be described later, and is hot-pressed into a plate shape. These materials are formed by molding and hardening, but the details of each of these materials are as follows: Main aggregate: Solid powder of aluminum hydroxide (A1 2 O 3 3H 2 O) is used as the main aggregate. 5 to 97% of the total amount (weight, same below),
Preferably, it is blended in an amount of 50 to 70%. This aluminum hydroxide does not change thermally at a molding temperature of 200°C or lower, but when the ambient temperature reaches 300 to 550°C, it releases crystallized water and suppresses combustion, and at the same time becomes A1 2 O 3 as a heat-resistant material, so it cannot be used in molded products. provides non-flammability. Auxiliary aggregate: An inorganic filler is used as an auxiliary aggregate together with the main aggregate. Such auxiliary aggregates are used for purposes such as improving the mechanical strength of molded products, reducing costs by increasing their weight, and imparting flame retardancy, and include silica sand, calcite powder, calcium silicate, zeolite, kaolin, and bentonite. ,
Acidic clay etc. are used. Reinforcing agents: Inorganic fibers (glass fibers, ceramic fibers), metal fibers (iron fibers, aluminum fibers, whiskers, etc.), natural fibers (cotton, linen cotton, etc.), synthetic resins to further increase the mechanical strength of molded products. Fibers (vinylon, nylon, tetron, etc.)
of fiber is added. Resin binder: The binder used is a flame-retardant thermosetting synthetic resin that imparts molding fluidity to each of the above materials and can be cured by heat and pressure. Formalin condensates and derivatives thereof, furan-formalin condensates and derivatives thereof, polydiphenyl oxide resins and derivatives thereof, etc. are used, and the amount used is 3 to 12% of the total constituent materials of the base layer 1. Further, the reinforcing layer 2 imparts tough mechanical strength to the molded product, and is made by impregnating and supporting a thermosetting resin similar to the above into a paper reinforcing base material such as kraft paper or Japanese paper. Furthermore, the surface layer 3 is mainly composed of the same main aggregate and resin binder as the constituent materials of the inorganic base layer 1, and the blending ratio of both is substantially the same as that of the inorganic base layer 1. In the inorganic base material for construction of the present invention, the above material formulated for the inorganic base layer 1 is placed on a press plate of a hot press, and the above sheet for the reinforcing layer 2 is placed on top of it. It is obtained by placing the materials blended and prepared for the surface layer 3 on the surface layer 3 and hot-pressing them all at once. At this time, it is also possible to use an embossing press mold as a press plate on the surface layer 3 side to apply an embossing pattern such as a tile pattern on the surface layer 3 as appropriate. In addition, the order in which the materials are placed on the press plate may be reversed to the above, and it is also excluded that the reinforcing layer 2 and the surface layer 3 are formed on both sides of the inorganic base layer 1 (see Figure 2). It's not something you do. Furthermore, not only plate-shaped products but also accessories such as inner and outer parts can be easily molded by changing the mold. (Function) In the inorganic base material for construction having the above structure, the inorganic base material layer 1 imparts nonflammability, and the synergistic effect of the base material layer 1 and the reinforcing layer 2 makes the entire base material extremely It is considered strong. The surface of this reinforcing layer 2 is a surface layer 3 made of inorganic aggregate and a resin binder.
Since the surface is covered with , this surface has good adhesion to adhesives and various paints. Therefore, the base material of the present invention can be used as a wall (including floor and ceiling) material of a building structure, and this surface can be tiled with an appropriate adhesive, or various organic or
Even if the finish is painted with inorganic paint,
No peeling phenomenon of these finishing layers over time is observed. Therefore, if you tile it, you can create a beautiful non-combustible decorative board, if you paint it with an inexpensive organic paint, you can create a general-purpose decorative board, and if you paint it with an inorganic paint, you can create a heat-resistant and non-combustible decorative board.
Non-combustible makeup with excellent fire resistance and water resistance can be created. Moreover, since each of the above constituent layers does not contain asbestos, there is no concern that so-called asbestos pollution will occur, and it can fully meet the current trend of non-asbestos. In addition, the base material of the present invention has a reinforcing layer 2 in which paper and thermosetting resin are integrally impregnated between the base layer 1 and the surface layer 3.
is interposed, so the water absorption rate is extremely low (1~
2%), does not cause deformation or delamination, and is suitable for use as exterior wall materials and interior materials for bathrooms, kitchens, etc. (Example) Examples of the present invention will be described below. 1st
Table and Table 2 show inorganic base layer 1 and surface layer 3, respectively.
This shows the blending ratio of the base material.
【表】【table】
【表】
亦、補強層2用のシートとしてクラフト紙にメ
ラミン樹脂を含浸乾燥させた紙質補強基材を用
い、これらをプレス内で層積して100Kg/cm2、150
℃で5分間ホツトプレスした。ホツトプレスによ
り各層中の熱硬化型樹脂の相互の結着により強固
に一体化された極めて堅牢な板状の基板が得られ
た。この表面に合成樹脂接着剤を介しタイルを粘
着し、また合成樹脂塗料を塗装しその密着テスト
を行つたが密着性はいずれも良好であつた。また
高温多湿の促進条件下におきその密着テストを行
つたがこの場合でも異常は認められなかつた。
第1図及び第2図は上記より得られた基材の変
更態様を示すものであり、第1図は無機質基材層
1の片面に補強層2及び表面層3を積層一体化し
たものであり、一方第2図は無機質基材層1の両
面に補強層2及び表面層3を同じく形成したもの
を示す。前者は壁面の如く片面に仕上げを施す場
合に、また後者は隔壁の如く両面に仕上げを施す
必要がある場合に夫々適用されるものであり、い
ずれも好ましく採用される。
尚、上記実施例に限定されず、例えば第1図の
場合に、基材層1の裏面に、また第1図及び第2
図の場合に基材層1と補強層2との間に、夫々ガ
ラスネツト等を一体化させ更にその機械的強度を
大とすることも可能である。
(考案の効果)
叙上のごとく、本考案の建築用無機質基材は、
その構成材料中に石綿を一切含まないので、ノン
アスベスト化の要求に充分応えることが出来る。
また基材の主体である無機質基材層は、これ自体
が無機質骨材を熱硬化型樹脂にて相互に結合して
成るものであるから、かなりの機械的強度を有す
る上に補強層により補強されているから全体とし
て極めて強靱なものとされる。更にその表面は無
機質骨材と熱硬化型結合剤とが結合一体化された
表面層により覆われているから、接着剤や各種塗
料に対する密着性が良好であり、タイル張りや塗
料仕上げが自由になされる。更に各層は熱硬化型
樹脂を含むから、相互の馴染みが良く層間の密着
性が強固に維持される。このことより本考案の建
築用無機質基材は従来の石綿−珪酸カルシウム系
建築材料を凌ぐ極めて有用性の高いものであると
云える。[Table] In addition, a paper reinforcing base material made of kraft paper impregnated with melamine resin and dried was used as a sheet for the reinforcing layer 2, and these were layered in a press to yield 100Kg/cm 2 and 150
Hot pressed at ℃ for 5 minutes. By hot pressing, an extremely robust plate-like substrate was obtained, which was strongly integrated by the mutual bonding of the thermosetting resins in each layer. A tile was adhered to this surface via a synthetic resin adhesive, and a synthetic resin paint was applied to the surface to perform an adhesion test, and the adhesion was good in all cases. We also conducted an adhesion test under accelerated conditions of high temperature and humidity, but no abnormalities were observed in this case either. Figures 1 and 2 show modified forms of the base material obtained above, and Figure 1 shows one in which a reinforcing layer 2 and a surface layer 3 are laminated and integrated on one side of an inorganic base material layer 1. On the other hand, FIG. 2 shows a reinforcing layer 2 and a surface layer 3 formed on both sides of the inorganic base layer 1. The former is applied when it is necessary to finish one side, such as a wall, and the latter is applied when it is necessary to finish both sides, such as a partition, and both are preferably employed. Note that the embodiment is not limited to the above embodiment, and for example, in the case of FIG. 1, on the back surface of the base material layer 1,
In the case shown in the figure, it is also possible to integrate a glass net or the like between the base material layer 1 and the reinforcing layer 2, respectively, to further increase the mechanical strength. (Effects of the invention) As mentioned above, the inorganic base material for construction of the invention has the following properties:
Since its constituent materials do not contain any asbestos, it can fully meet the requirements for non-asbestos.
In addition, the inorganic base material layer, which is the main part of the base material, is itself made of inorganic aggregates bonded together with thermosetting resin, so it has considerable mechanical strength and can be reinforced with a reinforcing layer. Because of this, it is said to be extremely strong overall. Furthermore, since its surface is covered with a surface layer that combines inorganic aggregate and thermosetting binder, it has good adhesion to adhesives and various paints, allowing for freedom in tiling and paint finishing. It will be done. Furthermore, since each layer contains a thermosetting resin, they are compatible with each other and maintain strong adhesion between the layers. From this, it can be said that the inorganic base material for construction of the present invention is extremely useful, exceeding the conventional asbestos-calcium silicate construction materials.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図は本考案建築用無機質基材の一実施例を
示す部分縦断面図、第2図は他の実施例の同様図
である。
符号の説明、1……無機質基材層、2……補強
層、3……表面層。
FIG. 1 is a partial vertical sectional view showing one embodiment of the inorganic base material for construction of the present invention, and FIG. 2 is a similar view of another embodiment. Explanation of symbols: 1: inorganic base layer, 2: reinforcing layer, 3: surface layer.