JPH053080A - Organic electroluminescence element - Google Patents

Organic electroluminescence element

Info

Publication number
JPH053080A
JPH053080A JP3151486A JP15148691A JPH053080A JP H053080 A JPH053080 A JP H053080A JP 3151486 A JP3151486 A JP 3151486A JP 15148691 A JP15148691 A JP 15148691A JP H053080 A JPH053080 A JP H053080A
Authority
JP
Japan
Prior art keywords
organic
layer
cathode
property
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3151486A
Other languages
Japanese (ja)
Other versions
JP2793383B2 (en
Inventor
Hiroaki Nakamura
浩昭 中村
Tadashi Kusumoto
正 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15519557&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH053080(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP15148691A priority Critical patent/JP2793383B2/en
Publication of JPH053080A publication Critical patent/JPH053080A/en
Application granted granted Critical
Publication of JP2793383B2 publication Critical patent/JP2793383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To improve the breakdown voltage property and to realize an even luminous property by inserting a metal oxide with an insulating property of 4.0eV or higher of energy gap between a luminous layer and a cathode. CONSTITUTION:By inserting a metallic oxide with the insulating property having the energy gap Eg 4.0eV or higher between a luminous layer and a cathode, the breakdown voltage property can be improved. In this case, the ionizing energy is also increased because of the wide energy gap, it functions as a hole barrier layer, and the luminous efficiency can be improved effectively. And the metallic oxide has a high breakdown voltage property as well as a good insulation, and the surface temperature when the membrane is produced can be suppressed at a low value. The voltage breakdown property is improved regardless of the position where the metal oxide is inserted, but the effect is larger when it is inserted between the luminous layer and the cathode, and furthermore, the attaching efficiency of the cathode and the luminous layer can be also improved. Consequently, an even luminous property is realized, the recombining property of the electrons and holes is improved, and a high efficiency of organic EL element can be obtained without dropping the luminous efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機エレクトロルミネ
ッセンス素子に関し、詳しくは耐電圧性にすぐれると共
に、電極の付着性がよく、発光効率の高い有機エレクト
ロルミネッセンス素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescence device, and more particularly to an organic electroluminescence device having excellent withstand voltage, good electrode adhesion, and high luminous efficiency.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】有機エ
レクトロルミネッセンス素子(以下、有機EL素子と記
す。)は、有機発光体を対向電極で挟んで構成されてお
り、一方の電極からは電子が注入され、もう一方の電極
からは正孔が注入される。この注入された電子と正孔
が、発光層内で再結合するときに発光が生じる。このよ
うな素子には、発光体として、例えば単結晶物質が用い
られていたが、単結晶物質では製造費が高く、機械的強
度の点からも問題が多かった。さらに、発光体の厚さを
薄くすることが容易でなく、1mm程度の厚さの発光体
では発光が微弱であり、また、100V以上の駆動電圧
が必要な場合があり、実用の域には達していなかった。
2. Description of the Related Art An organic electroluminescence device (hereinafter, referred to as an organic EL device) is composed of an organic luminescent material sandwiched between counter electrodes, and electrons are emitted from one of the electrodes. Then, holes are injected from the other electrode. Light emission occurs when the injected electrons and holes recombine in the light emitting layer. For example, a single crystal substance is used as a light emitting body in such an element, but the single crystal substance is expensive to manufacture and has many problems in terms of mechanical strength. Furthermore, it is not easy to reduce the thickness of the light emitter, and light emission is weak with a light emitter having a thickness of about 1 mm, and a drive voltage of 100 V or more may be required. Had not reached.

【0003】そこで、例えばアントラセンの1μm以下
の膜を得ようとする試みが、蒸着法(Thin Solid Film
s,94,171,1982)やラングミュア−ブロジェット法(L
B法:Thin Solid Films,99,283,1983)により行われて
いる。しかし、充分な性能を得るには、厳しく管理され
た成膜条件下で、数千オングストロームの薄膜を形成す
る必要があった。また、発光層は、高精度の薄膜として
形成されるものの、電子や正孔の移動や再結合などによ
る機能分子の励起確率が低いため、効率のよい発光が得
られず、特に消費電力や輝度の点で満足できるものでは
ない。また、陽極と発光層との間に正孔注入層を設け、
正孔の密度を挙げることにより高い発光効率を得られる
ことが知られている(特開昭57−51781号公報,
同59−194393号公報参照)。しかし、高輝度を
得ようとして高電界を印加すると素子が壊れてしまう問
題があった。
Then, for example, an attempt to obtain a film of anthracene having a thickness of 1 μm or less is carried out by a vapor deposition method (Thin Solid Film).
s, 94,171,1982) and the Langmuir-Blodgett method (L
Method B: Thin Solid Films, 99, 283, 1983). However, in order to obtain sufficient performance, it was necessary to form a thin film having a thickness of several thousand angstroms under strictly controlled film forming conditions. In addition, although the light-emitting layer is formed as a highly accurate thin film, since the probability of excitation of functional molecules due to movement or recombination of electrons or holes is low, efficient light emission cannot be obtained, and power consumption and brightness are particularly high. Is not satisfactory in terms of. Further, a hole injection layer is provided between the anode and the light emitting layer,
It is known that high luminous efficiency can be obtained by increasing the hole density (Japanese Patent Application Laid-Open No. 57-51781).
(See JP 59-194393 A). However, there is a problem that the device is broken when a high electric field is applied to obtain high brightness.

【0004】さらに、絶縁層としては、有機物層(特に
LB膜を用いて作成したもの)、あるいはSiO2 を用
いて有機層と電極の間に挿入した有機EL素子が開示さ
れている(特開昭61−37873号公報,同61−3
7882号公報,同61−37883号公報,同61−
37884号公報参照)。しかし、有機物を絶縁層とし
て用いた場合、Mg電極との接着性が乏しく、長時間有
機EL素子を駆動させると、有機物とMg電極の界面が
破壊される問題があった。また、均一発光を得ることが
できなかった。SiO2 を有機層と電極の間に挿入した
場合には、成膜方法としてスパッタリングやCVD(化
学気相蒸着法)など比較的エネルギーの高い方法(高
温,加速粒子)を用いる必要があった。この方法を用い
ると、有機EL素子を構成している発光層や正孔注入層
に用いられている有機物を溶融あるいは結晶化させ、有
機物の性能が低下するという問題があった。また、スパ
ッタ粒子が有機物を攻撃し、界面を変質させ電子や正孔
の注入特性を喪失させるという悪影響を及ぼす問題があ
った。実際、SiO2 を絶縁層として用いた発明におい
て、SiO2 はITO上でしか成膜していない。ところ
で、コダック社のTangらは、Applied Physics Lett
er,51 巻,12 号,P913. 「Organic electroluminescent
diodes 」において、発光層として電子伝達性の化合物
である8−ヒドロキシキノリン誘導体、正孔注入層とし
てジアミン誘導体を用いることにより、電子及び正孔の
障壁性が高効率の有機EL素子を実現する上で重要であ
ることを指摘している。しかし、これを実現するための
満足ができる材料は見出されていない。また、ピンホー
ル防止の目的で発光と電子注入化物による機能を分離
し、微結晶性の発光層を用い、発光層と陰極の間に電子
注入層を設けたものも試みられている(Japanease Jour
nal of Applied Physics,27,2,L269,1988 及び27,4,L71
3,1988)が、発光効率の向上がみられない。発光効率の
向上を目的として、電子注入層の代わりに発光層よりイ
オン化エネルギーの大きな正孔障壁層を設けたものも検
討されている(特開平2−195683号公報)。しか
し、正孔障壁層として有機物しか用いていないため正孔
障壁性が不充分であった。さらに、発光均一性の目的で
陰極と発光層の接着性を高めるため、電子注入層や正孔
障壁層を陰極と発光層の間に設ける技術も挙げられてい
る(特開平2−195683号公報,特開平2−255
788号公報)。しかし、素子の寿命,微細加工等の実
用化に問題があった。そこで、本発明者らは上記の問題
点を解決すべく鋭意研究を重ねた。
Further, as the insulating layer, an organic material layer (especially one formed by using an LB film) or an organic EL element in which SiO 2 is used and inserted between the organic layer and the electrode is disclosed (Japanese Patent Laid-Open Publication No. 2000-242242). 61-37873, 61-3
No. 7882, No. 61-37883, No. 61-
(See Japanese Patent No. 37884). However, when the organic material is used as the insulating layer, the adhesiveness to the Mg electrode is poor, and there is a problem that the interface between the organic material and the Mg electrode is destroyed when the organic EL element is driven for a long time. Moreover, uniform light emission could not be obtained. When SiO 2 is inserted between the organic layer and the electrode, it is necessary to use a relatively high energy method (high temperature, accelerated particles) such as sputtering or CVD (chemical vapor deposition method) as a film forming method. When this method is used, there is a problem that the performance of the organic substance is deteriorated by melting or crystallizing the organic substance used in the light emitting layer or the hole injecting layer which constitutes the organic EL element. In addition, there is a problem that sputtered particles attack an organic substance and change the interface to lose the injection characteristics of electrons and holes. Indeed, in the invention using SiO 2 as the insulating layer, SiO 2 is not deposited only on ITO. By the way, Kodak's Tang et al.
er, Volume 51, No. 12, P913. “Organic electroluminescent
In "diodes", by using an 8-hydroxyquinoline derivative, which is an electron-transporting compound, as the light-emitting layer and a diamine derivative as the hole-injecting layer, an organic EL device with a high electron and hole barrier property can be realized. Point out that it is important in. However, no satisfactory material has been found to achieve this. Further, for the purpose of preventing pinholes, it has been attempted to separate the functions of light emission and electron injecting substance, use a microcrystalline light emitting layer, and provide an electron injecting layer between the light emitting layer and the cathode (Japanease Jour.
nal of Applied Physics, 27,2, L269,1988 and 27,4, L71
3,1988), but the luminous efficiency is not improved. For the purpose of improving the light emission efficiency, a device in which a hole blocking layer having a larger ionization energy than that of the light emitting layer is provided instead of the electron injecting layer has also been studied (JP-A-2-195683). However, the hole barrier property is insufficient because only organic substances are used as the hole barrier layer. Further, there is also mentioned a technique of providing an electron injection layer or a hole blocking layer between the cathode and the light emitting layer in order to enhance the adhesion between the cathode and the light emitting layer for the purpose of uniform light emission (JP-A-2-195683). JP-A-2-255
788). However, there are problems in practical use such as the life of the device and fine processing. Therefore, the present inventors have conducted extensive studies to solve the above problems.

【0005】[0005]

【課題を解決するための手段】その結果、本発明者ら
は、発光層と陰極の間に絶縁性(4.0eV以上)の金属
酸化物層を挿入した有機EL素子が、耐電圧性を向上さ
せ、陰極に用いる金属の付着性を改善させ均一発光を可
能にし、さらに広いエネルギーギャップ(4.0eV以
上)の効果により正孔障壁性を有し電子と正孔の再結合
性を高め、発光効率を落とさず高効率であることを見出
した。本発明は、かかる知見に基づいて完成したもので
ある。
As a result, the present inventors have found that an organic EL element having an insulating (4.0 eV or more) metal oxide layer inserted between a light emitting layer and a cathode has a high withstand voltage. To improve the adhesion of the metal used for the cathode to enable uniform light emission, and to further enhance the recombination of electrons and holes with the hole barrier property due to the effect of the wide energy gap (4.0 eV or more). It was found that the luminous efficiency is high without lowering the luminous efficiency. The present invention has been completed based on such findings.

【0006】すなわち、本発明は、発光層と陰極との間
に、エネルギーギャップ(以下、Egと記す。)が4.0
eV以上の絶縁性の金属酸化物を挿入してなる有機EL
素子を提供するものである。
That is, in the present invention, the energy gap (hereinafter referred to as Eg) between the light emitting layer and the cathode is 4.0.
Organic EL with insulating metal oxide of eV or more inserted
It provides an element.

【0007】上記の如く、本発明の有機EL素子は、発
光層と陰極との間にEgが4.0eV以上の絶縁性の金属
酸化物を挿入してなるものである。耐電圧性を向上させ
る場合は、通常の素子構成のどの位置にこの金属酸化物
を挿入してもよく、特に発光層と陰極との間にこの金属
酸化物を挿入すると、広いEgのためイオン化エネルギ
ーも大きくなり、正孔障壁層として作用し有効に発光効
率を向上させることができる。また、陰極と発光層との
付着性も改善することができる。ところで、絶縁性を有
するものとしては、金属酸化物以外にも例えば有機物,
SiO2 などが挙げられる。しかし、有機物は金属酸化
物に比べ耐電圧性に劣り、SiO2 は薄膜作成時に表面
温度が上昇し有機EL素子の構成要素としては不適格で
ある。それらに対し、金属酸化物は耐電圧性が高く、薄
膜作成時の表面温度を低く抑えることができ、本発明に
おいて有効に利用することができる。ここで、本発明に
おいて用いられる金属酸化物とは、Egが4.0eV以
上、好ましくは4.5eV以上のものである。Egが4.0
eV未満の場合は半導体となり、絶縁性の上で好ましく
なく、耐電圧性も不充分である。
As described above, the organic EL device of the present invention has an insulating metal oxide having an Eg of 4.0 eV or more inserted between the light emitting layer and the cathode. In order to improve the withstand voltage, this metal oxide may be inserted at any position in the usual device structure, and particularly when this metal oxide is inserted between the light emitting layer and the cathode, a wide Eg causes ionization. The energy also becomes large, and it acts as a hole blocking layer, so that the luminous efficiency can be effectively improved. Also, the adhesion between the cathode and the light emitting layer can be improved. By the way, as the insulating material, other than metal oxides, for example, organic materials,
Examples thereof include SiO 2 . However, organic substances are inferior in withstand voltage as compared with metal oxides, and SiO 2 is unsuitable as a constituent element of an organic EL device because the surface temperature rises when a thin film is formed. On the other hand, metal oxides have high withstand voltage and can suppress the surface temperature at the time of forming a thin film to a low level, and can be effectively used in the present invention. Here, the metal oxide used in the present invention has an Eg of 4.0 eV or more, preferably 4.5 eV or more. Eg is 4.0
When it is less than eV, it becomes a semiconductor, which is not preferable in terms of insulation properties, and has insufficient voltage resistance.

【0008】本発明で用いられるEgが4.0eV以上の
金属酸化物としては、例えばMgO,BaO,CaO,
NiO等が挙げられる。これら金属酸化物は、半導体に
比べ応用範囲が限られており、Egが詳しく測定された
例は少ない。本発明者らが調査した上記金属酸化物のE
gを、以下に示す。 MgO:4.5eV以上(光吸収スペクトルを測定し、得
られた結果を外挿した。) BaO:4.2eV以上(R.H.Bube,"Photoconductivity
of Solids"..P233,John Wiley& Sons,Inc.(1960)). CaO:7.03eV以上(Phys. Rev. P1380, 1969年) NiO:4.0eV(American Institute of Physics Ha
ndbook(McGraw-Hill,1972)3rd.9-19)
The metal oxide having an Eg of 4.0 eV or more used in the present invention includes, for example, MgO, BaO, CaO,
NiO etc. are mentioned. The application range of these metal oxides is limited as compared with semiconductors, and there are few examples in which Eg was measured in detail. E of the above metal oxide investigated by the present inventors
g is shown below. MgO: 4.5 eV or more (optical absorption spectrum was measured and the obtained results were extrapolated.) BaO: 4.2 eV or more (RHBube, "Photoconductivity
of Solids ".. P233, John Wiley & Sons, Inc. (1960)). CaO: 7.03 eV or more (Phys. Rev. P1380, 1969) NiO: 4.0 eV (American Institute of Physics Ha
ndbook (McGraw-Hill, 1972) 3rd.9-19)

【0009】本発明の有機EL素子における金属酸化物
は、上記化合物を、例えば真空蒸着法(抵抗加熱法,電
子ビーム蒸着法,高周波誘導加熱法,反応性蒸着法,分
子線エキタピシー法,ホットウォール蒸着法,イオンプ
レーティング法,クラスターイオンビーム法,イオンア
シスト蒸着法等),スパッタ法(2極スパッタ法,2極
マグネトロンスパッタ法,3極及び4極プラズマスパッ
タ法,反応スパッタ法,イオンビームスパッタ法等),
CVD(熱CVD,プラズマCVD,レーザーCVD,
有機金属CVD(MOCVD)等)等の公知の薄膜化法
により成膜して形成することができる。この中で好まし
いものとしては、下地の有機物に悪影響を及ぼすことの
少ない電子ビーム蒸着法や反応性蒸着法が挙げられる。
金属酸化物の層としての膜厚は、特に制限はないが、通
常は1nm〜500nm、好ましくは2nm〜25nm
である。膜厚を1nm未満にした場合は均一な薄膜が得
られず、500nmを超えると電力の消費が大きくな
る。
The metal oxide in the organic EL device of the present invention can be prepared by using the above compound, for example, vacuum deposition method (resistance heating method, electron beam deposition method, high frequency induction heating method, reactive deposition method, molecular beam etapicy method, hot wall method). Vapor deposition method, ion plating method, cluster ion beam method, ion assisted vapor deposition method, etc., sputtering method (two pole sputtering method, two pole magnetron sputtering method, three pole and four pole plasma sputtering method, reactive sputtering method, ion beam sputtering) Law etc.),
CVD (thermal CVD, plasma CVD, laser CVD,
It can be formed by a known thinning method such as metal organic CVD (MOCVD). Among these, the electron beam vapor deposition method and the reactive vapor deposition method, which are less likely to adversely affect the organic substance of the base, are preferable.
The thickness of the metal oxide layer is not particularly limited, but is usually 1 nm to 500 nm, preferably 2 nm to 25 nm.
Is. If the film thickness is less than 1 nm, a uniform thin film cannot be obtained, and if it exceeds 500 nm, power consumption increases.

【0010】金属酸化物の成膜条件は、成膜に用いる蒸
着法及び金属酸化物によって異なる。例えば、金属酸化
物としてMgO,蒸着法として電子ビーム蒸着法を用い
た場合は、真空チャンバーの蒸着前の真空度を1×10
-2Pa以下、好ましくは6×10-3Pa以下とし、蒸着
速度を50nm/秒以下、好ましく1nm/秒以下とし
て、蒸着原料であるMgOに電子線(約4kVで加速)
を当て2600℃以上に加熱し蒸気を飛ばして成膜す
る。このときの基板温度は、200℃以下、好ましくは
100℃以下である。また、金属酸化物としてMgO,
蒸着法として反応性蒸着法を用いた場合は、真空チャン
バーの蒸着前の真空度を1×10-2Pa以下、好ましく
は6×10-3Pa以下とし、真空チャンバー内に酸素及
び/又は水蒸気を導入する。そのとき、真空チャンバー
内の圧力を7×10-3Pa以上、好ましくは1×10-2
Pa以上にした後、蒸着原料である金属Mgを1000
℃以下、好ましくは800℃以下に加熱し、蒸着速度を
50nm/秒以下、好ましく1nm/秒以下とする。こ
のときの基板温度は、200℃以下、好ましくは100
℃以下である。
The film formation conditions for the metal oxide differ depending on the vapor deposition method and metal oxide used for film formation. For example, when MgO is used as the metal oxide and electron beam vapor deposition is used as the vapor deposition method, the degree of vacuum before vapor deposition in the vacuum chamber is 1 × 10 5.
-2 Pa or less, preferably 6 × 10 -3 Pa or less, and a vapor deposition rate of 50 nm / sec or less, preferably 1 nm / sec or less, and electron beam (accelerated at about 4 kV) to MgO as a vapor deposition material.
And heat to 2600 ° C. or higher to blow off steam to form a film. The substrate temperature at this time is 200 ° C. or lower, preferably 100 ° C. or lower. Further, as the metal oxide, MgO,
When the reactive vapor deposition method is used as the vapor deposition method, the degree of vacuum in the vacuum chamber before vapor deposition is set to 1 × 10 −2 Pa or less, preferably 6 × 10 −3 Pa or less, and oxygen and / or water vapor is contained in the vacuum chamber. To introduce. At that time, the pressure in the vacuum chamber is 7 × 10 −3 Pa or more, preferably 1 × 10 −2
After adjusting the pressure to Pa or higher, the metal Mg as the vapor deposition raw material is changed to 1000
C. or lower, preferably 800.degree. C. or lower, and the vapor deposition rate is 50 nm / sec or lower, preferably 1 nm / sec or lower. The substrate temperature at this time is 200 ° C. or lower, preferably 100 ° C.
It is below ℃.

【0011】本発明の有機EL素子は、上記のEgが4.
0eV以上の絶縁性の金属酸化物を発光層と陰極との間
に、挿入することを特徴とし、その他の素子の構成,形
状,大きさ等は、有機EL素子として機能する限り限定
されない。
The organic EL device of the present invention has the above Eg of 4.
It is characterized by inserting an insulating metal oxide of 0 eV or more between the light emitting layer and the cathode, and the configuration, shape, size, etc. of other elements are not limited as long as they function as an organic EL element.

【0012】また、本発明で用いる有機EL素子の有機
材料としては、種々のものがある。例えば、発光材料と
して使用可能な有機化合物としては、特に限定はない
が、ベンゾチアゾール系,ベンゾイミダゾール系,ベン
ゾオキサゾール系等の螢光増白剤、金属キレート化オキ
シノイド化合物、スチリルベンゼン系化合物等を挙げる
ことができる。具体的に化合物名を示せば、例えば、特
開昭59−194393号公報に記載のものがあげられ
る。その代表例としては、2,5−ビス(5,7−ジ−
t−ペンチル−2−ベンゾオキサゾリル)−1,3,4
−チアジアゾール;4,4′−ビス(5,7−t−ペン
チル−2−ベンゾオキサゾリル)スチルベン;4,4′
−ビス〔5,7−ジ−(2−メチル−2−ブチル)−2
−ベンゾオキサゾリル〕スチルベン;2,5−ビス
(5,7−ジ−t−ペンチル−2−ベンゾオキサゾリ
ル)チオフェン;2,5−ビス〔5−α,α−ジメチル
ベンジル〕−2−ベンゾオキサゾリル)チオフェン;
2,5−ビス〔5,7−ジ−(2−メチル−2−ブチ
ル)−2−ベンゾオキサゾリル〕−3,4−ジフェニル
チオフェン;2,5−ビス(5−メチル−2−ベンゾオ
キサゾリル)チオフェン;4,4′−ビス(2−ベンゾ
オキサイゾリル)ビフェニル;5−メチル−2−〔2−
〔4−(5−メチル−2−ベンゾオキサイゾリル)フェ
ニル〕ビニル〕ベンゾオキサイゾリル;2−〔2−(4
−クロロフェニル)ビニル〕ナフト〔1,2−d〕オキ
サゾールなどのベンゾオキサゾール系、2,2′−(p
−フェニレンジビニレン)−ビスベンゾチアゾールなど
のベンゾチアゾール系、2−〔2−[4−(2−ベンゾ
イミダゾリル)フェニル]ビニル〕ベンゾイミダゾー
ル;2−〔2−(4−カルボキシフェニル)ビニル〕ベ
ンゾイミダゾールなどのベンゾイミダゾール系などの螢
光増白剤が挙げられる。さらに他の有用な化合物は、ケ
ミストリー・オブ・シンセティック・ダイズ1971,
628〜637頁及び640頁に列挙されている。前記
金属キレート化オキシノイド化合物としては、例えば特
開昭63−295695号公報記載のものを用いること
ができる。その代表例としては、トリス(8−キノリノ
ール)アルミニウム;ビス(8−キノリノール)Mg;
ビス(ベンゾ〔f〕−8−キノリノール)亜鉛;ビス
(2−メチル−8−キノリノラート)アルミニウムオキ
シド;トリス(8−キノリノール)In;トリス(5−
メチル−8−キノリノール)アルミニウム;8−キノリ
ノールリチウム;トリス(5−クロロ−8−キノリノー
ル)ガリウム;ビス(5−クロロ−8−キノリノール)
カルシウム;ポリ〔亜鉛(II) −ビス (8−ヒドロキ
シ−5−キノリノニル)メタン〕などの8−ヒドロキシ
キノリン系金属錯体やジリチウムエピンドリジオンなど
が挙げられる。
There are various organic materials for the organic EL element used in the present invention. For example, the organic compound that can be used as the light emitting material is not particularly limited, but a brightening agent such as benzothiazole-based, benzimidazole-based, benzoxazole-based, a metal chelated oxinoid compound, a styrylbenzene-based compound, or the like can be used. Can be mentioned. Specific examples of the compound name include those described in JP-A-59-194393. A typical example thereof is 2,5-bis (5,7-di-
t-pentyl-2-benzoxazolyl) -1,3,4
-Thiadiazole; 4,4'-bis (5,7-t-pentyl-2-benzoxazolyl) stilbene; 4,4 '
-Bis [5,7-di- (2-methyl-2-butyl) -2
-Benzoxazolyl] stilbene; 2,5-bis (5,7-di-t-pentyl-2-benzoxazolyl) thiophene; 2,5-bis [5-α, α-dimethylbenzyl] -2 -Benzoxazolyl) thiophene;
2,5-bis [5,7-di- (2-methyl-2-butyl) -2-benzoxazolyl] -3,4-diphenylthiophene; 2,5-bis (5-methyl-2-benzo) Oxazolyl) thiophene; 4,4'-bis (2-benzoxazolyl) biphenyl; 5-methyl-2- [2-
[4- (5-Methyl-2-benzoxazolyl) phenyl] vinyl] benzoxazolyl; 2- [2- (4
-Chlorophenyl) vinyl] naphtho [1,2-d] oxazole and other benzoxazoles, 2,2 '-(p
-Phenylenedivinylene) -benzothiazoles such as bisbenzothiazole, 2- [2- [4- (2-benzimidazolyl) phenyl] vinyl] benzimidazole; 2- [2- (4-carboxyphenyl) vinyl] benzimidazole Fluorescent brighteners such as benzimidazole-based. Still another useful compound is Chemistry of Synthetic Soybean 1971,
Listed on pages 628-637 and 640. As the metal chelated oxinoid compound, for example, those described in JP-A-63-295695 can be used. Typical examples are tris (8-quinolinol) aluminum; bis (8-quinolinol) Mg;
Bis (benzo [f] -8-quinolinol) zinc; Bis (2-methyl-8-quinolinolate) aluminum oxide; Tris (8-quinolinol) In; Tris (5-
Methyl-8-quinolinol) aluminum; 8-quinolinol lithium; tris (5-chloro-8-quinolinol) gallium; bis (5-chloro-8-quinolinol)
Calcium; 8-hydroxyquinoline-based metal complexes such as poly [zinc (II) -bis (8-hydroxy-5-quinolinonyl) methane] and dilithium epindridione.

【0013】また、スチリルベンゼン系化合物として
は、例えば欧州特許第0319881号明細書や欧州特
許第0373582号明細書に記載のものを用いること
ができる。その代表例としては、1,4−ビス(2−メ
チルスチリル)ベンゼン;1,4−(3−メチルスチリ
ル)ベンゼン;1,4−ビス−(4−メチルスチリル)
ベンゼン;ジスチリルベンゼン;1,4−ビス(2−エ
チルスチリル)ベンゼン;1,4−ビス(3−エチルス
チリル)ベンゼン;1,4−ビス(2−メチルスチリ
ル)2−メチルベンゼン;1,4−ビス(2−メチルス
チリル)−2−エチルベンゼン等が挙げられる。
As the styrylbenzene compound, those described in, for example, European Patent No. 0319881 and European Patent No. 0373582 can be used. Typical examples thereof are 1,4-bis (2-methylstyryl) benzene; 1,4- (3-methylstyryl) benzene; 1,4-bis- (4-methylstyryl).
Benzene; distyrylbenzene; 1,4-bis (2-ethylstyryl) benzene; 1,4-bis (3-ethylstyryl) benzene; 1,4-bis (2-methylstyryl) 2-methylbenzene; 1, 4-bis (2-methylstyryl) -2-ethylbenzene and the like can be mentioned.

【0014】また、特開平2−252793号公報に記
載のジスチリルピラジン誘導体を発光材料として用いる
ことができる。その代表例としては、2,5−ビス(4
−メチルスチリル)ピラジン;2,5−ビス(4−エチ
ルスチリル)ピラジン;2,5−ビス〔2−(1−ナフ
チル)ビニル〕ピラジン;2,5−ビス(4−メトキシ
スチリル)ピラジン;2,5−ビス〔2−(4−ビフェ
ニル)ビニル〕ピラジン;2,5−ビス〔2−(1−ピ
レニル)ビニル〕ピラジンなどが挙げられる。その他の
ものとして、例えば欧州特許第0387715号明細書
に記載のポリフェニル系化合物も発光材料として用いる
こともできる。
Further, the distyrylpyrazine derivative described in JP-A-2-252793 can be used as a light emitting material. A typical example is 2,5-bis (4
-Methylstyryl) pyrazine; 2,5-bis (4-ethylstyryl) pyrazine; 2,5-bis [2- (1-naphthyl) vinyl] pyrazine; 2,5-bis (4-methoxystyryl) pyrazine; 2 , 5-bis [2- (4-biphenyl) vinyl] pyrazine; 2,5-bis [2- (1-pyrenyl) vinyl] pyrazine and the like. As other substances, for example, the polyphenyl compounds described in European Patent No. 0387715 can also be used as the light emitting material.

【0015】さらに、前記化合物以外に、例えば12−
フタロペリノン(J.Appl.Phys., 第27巻,L713
(1988年)) ;1,4−ジフェニル−1,3−ブタジエ
ン;1,1,4,4−テトラフェニル−1,3−ブタジ
エン(Appl.Phys.Lett.,第56巻,L799(1990
年));ナフタルイミド誘導体(特開平2−30588
6号公報);ペリレン誘導体(特開平2−189890
号公報);オキサジアゾール誘導体(特開平2−216
791号公報、また第38回応用物理学関係連合演会で
浜田らによって開示されたオキサジアゾール誘導体);
アルダジン誘導体(特開平2−220393号公報);
ピラジリン誘導体(特開平2−220394号公報);
シクロペンタジエン誘導体(特開平2−289675号
公報);ピロロピロール誘導体(特開平2−29689
1号公報);スチリルアミン誘導体(Appl.Phys.Lett.,
第56巻,L799(1990年))あるいはクマリン
系化合物(特開平2−191694号公報)を用いるこ
とができる。さらに、発光材料としては特願平2−24
8749号明細書及び特願平2−279304号明細書
で示された二量体化合物も挙げられる。発光材料として
は、さらに、国際特許WO90/13148や、Appl.P
hys.Lett.,vol 58,18,P1982(1991) に記載されているよ
うな高分子化合物も好ましい。本発明では、特に発光材
料として、芳香族ジメチリディン系化合物(欧州特許0
388768号明細書に記載のもの)を用いることが好
ましい。具体例としては、1,4−フェニレンジメチリ
ディン;4,4’−フェニレンジメチリディン;2,5
−キシリレンジメチリディン;2,6−ナフチレンジメ
チリディン;1,4−ビフェニレンジメチリディン;
1,4−p−テレフェニレンジメチリディン;9,10
−アセトラセンジイルジメチリディン等及びそれら誘導
体が挙げられる。
In addition to the above compounds, for example, 12-
Phthaloperinone (J.Appl.Phys., Volume 27, L713
(1988)); 1,4-diphenyl-1,3-butadiene; 1,1,4,4-tetraphenyl-1,3-butadiene (Appl. Phys. Lett., Volume 56, L799 (1990).
Year)); naphthalimide derivative (Japanese Patent Laid-Open No. 30588/1993)
6); perylene derivative (JP-A-2-189890)
); Oxadiazole derivative (JP-A-2-216)
No. 791, and the oxadiazole derivative disclosed by Hamada et al. At the 38th Joint Federation of Applied Physics);
Aldazine derivative (JP-A-2-220393);
Pyrazillin derivative (JP-A-2-220394);
Cyclopentadiene derivative (JP-A-2-289675); Pyrrolopyrrole derivative (JP-A-2-29689)
No. 1); styrylamine derivatives (Appl.Phys.Lett.,
Volume 56, L799 (1990)) or coumarin-based compounds (Japanese Patent Laid-Open No. 2-191694) can be used. Further, as a light emitting material, Japanese Patent Application No. 2-24
The dimer compound shown by 8749 specification and Japanese Patent Application No. 2-279304 specification is also mentioned. Further, as the light emitting material, there are international patent WO90 / 13148 and Appl.P.
Polymer compounds such as those described in hys. Lett., vol 58, 18, P1982 (1991) are also preferable. In the present invention, an aromatic dimethylidyne compound (European Patent Application No.
Those described in the specification of No. 388768) are preferably used. As a specific example, 1,4-phenylene dimethylidene; 4,4'-phenylene dimethylidene; 2,5
-Xylylene dimethylidene; 2,6-naphthylene dimethylidene; 1,4-biphenylene dimethylidene;
1,4-p-Telephenylenedimethyridin; 9,10
-Acetracenediyl dimethylidin and the like and their derivatives.

【0016】上記発光材料を用いた発光層の形成方法と
しては、例えば蒸着法,スピンコート法,キャスト法,
LB法などの公知の方法により薄膜化することにより形
成することができるが、特に分子堆積膜であることがよ
り好ましい。ここで分子堆積膜とは、該化合物の気相状
態から沈着され形成された薄膜や、該化合物の溶液状態
又は液相状態から固体化され形成された膜のことであ
り、通常この分子堆積膜はLB法により形成された薄膜
(分子累積膜)とは、凝集構造,高次構造の相異や、そ
れに起因する機能的な相異により区分することができ
る。また、該発光層は、特開昭57−51781号公報
などに開示されているように、樹脂などの結着剤と該化
合物とを溶剤に溶かして溶液としたのち、これをスピン
コート法などにより薄膜化し、形成することができる。
このようにして形成された発光層の膜厚については特に
制限はなく、適宜状況に応じて選ぶことができるが、通
常5nm〜5μmの範囲が好ましい。
As a method of forming a light emitting layer using the above light emitting material, for example, a vapor deposition method, a spin coating method, a casting method,
It can be formed by thinning it by a known method such as the LB method, but a molecular deposition film is particularly preferable. Here, the molecular deposition film is a thin film formed by depositing the compound from the gas phase state, or a film formed by solidifying from the solution state or liquid phase state of the compound, and usually this molecular deposition film. Can be distinguished from the thin film (molecular cumulative film) formed by the LB method by the difference in the aggregation structure, the higher order structure, and the functional difference caused by the difference. Further, the light emitting layer is prepared by dissolving a binder such as a resin and the compound in a solvent to form a solution, as disclosed in JP-A-57-51781, and then spin coating the solution. Can be formed into a thin film.
The thickness of the light emitting layer thus formed is not particularly limited and may be appropriately selected depending on the circumstances, but is usually preferably in the range of 5 nm to 5 μm.

【0017】本発明の有機EL素子における発光層は、
電界印加時に、陽極又は正孔注入層より正孔を注入する
ことができ、かつ陰極又は電子注入層より電子を注入す
ることができる注入機能、注入した電荷(電子と正孔)
を電界の力で移動させる輸送機能、電子と正孔の再結合
の場を提供し、これを発光につなげる発光機能などを有
している。なお、正孔の注入されやすさと、電子の注入
されやすさには違いがあっても構わない。また、正孔と
電子の移動度で表される輸送機能に大小があってもよい
が、どちらか一方を移動することが好ましい。
The light emitting layer in the organic EL device of the present invention is
When an electric field is applied, holes can be injected from the anode or the hole injection layer, and electrons can be injected from the cathode or the electron injection layer, injected charges (electrons and holes)
It has a transport function of moving the electrons by the force of the electric field, a field of recombination of electrons and holes, and a light emitting function of connecting this to light emission. Note that there may be a difference between the ease of injecting holes and the ease of injecting electrons. The transport function represented by the mobilities of holes and electrons may have different sizes, but it is preferable to move one of them.

【0018】この有機EL素子における陽極としては、
仕事関数の大きい(4eV以上)金属,合金,電気伝導
性化合物及びこれらの混合物を電極物質とするものが好
ましく用いられる。このような電極物質の具体例として
はAuなどの金属,CuI,ITO,SnO2,ZnOな
どの誘電性透明材料が挙げられる。該陽極は、これらの
電極物質を蒸着やスパッタリングなどの方法により、薄
膜を形成させることにより作製することができる。この
電極より発光を取り出す場合には、透過率を10%より
大きくすることが望ましく、また、電極としてのシート
抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料に
もよるが、通常10nm〜1μm,好ましくは10〜2
00nmの範囲で選ばれる。
As the anode in this organic EL device,
A material having a high work function (4 eV or more), an alloy, an electrically conductive compound, or a mixture thereof as an electrode material is preferably used. Specific examples of such electrode materials include metals such as Au and dielectric transparent materials such as CuI, ITO, SnO 2 and ZnO. The anode can be prepared by forming a thin film of these electrode substances by a method such as vapor deposition or sputtering. When the emitted light is taken out from this electrode, it is desirable that the transmittance is higher than 10%, and the sheet resistance as an electrode is preferably several hundred Ω / □ or less. Further, the film thickness depends on the material, but is usually 10 nm to 1 μm, preferably 10 to 2
It is selected in the range of 00 nm.

【0019】一方、陰極としては、仕事関数の小さい
(4eV以下)金属,合金,電気伝導性化合物及びこれ
らの混合物を電極物質とするものが用いられる。このよ
うな電極物質の具体例としては、Na,Na−K合金,
Mg,Li,Mg/Cu混合物,Al/Al2 3 混合
物,Inなどが挙げられる。該陰極は、これらの電極物
質を蒸着やスパッタリングなどの方法により、薄膜を形
成させることにより、作製することができる。また、電
極としてのシート抵抗は数百Ω/□以下が好ましく、膜
厚は通常10〜500nm,好ましくは50〜200n
mの範囲で選ばれる。なお、この有機EL素子において
は、該陽極又は陰極のいずれか一方が透明又は半透明で
あることが、発光を透過するため、発光の取出し効率が
よく好都合である。
On the other hand, as the cathode, a material having a low work function (4 eV or less), an alloy, an electrically conductive compound or a mixture thereof as an electrode material is used. Specific examples of such an electrode material include Na, Na-K alloy,
Examples include Mg, Li, a mixture of Mg / Cu, a mixture of Al / Al 2 O 3 and In. The cathode can be produced by forming a thin film of these electrode substances by a method such as vapor deposition or sputtering. The sheet resistance as an electrode is preferably several hundred Ω / □ or less, and the film thickness is usually 10 to 500 nm, preferably 50 to 200 n.
It is selected in the range of m. In this organic EL element, it is convenient that either the anode or the cathode is transparent or semi-transparent to allow the emitted light to pass therethrough, so that the emission efficiency of the emitted light is good.

【0020】本発明において、正孔注入層,電子注入層
は特に必要な有機EL素子の構成要素ではなく、用いて
も用いなくてもよい。ここで、正孔注入材料として使用
可能な化合物としては、特に制限はないが、前記の好ま
しい性質を有するものであればよく、従来、光導伝材料
において、正孔注入材料として慣用されているものや有
機EL素子の正孔注入層に使用される公知のものの中か
ら任意のものを選択して用いることができる。この正孔
注入材料は、正孔の注入,電子の障壁性のいづれかを有
するものであり、有機物あるいは無機物どちらでもよ
い。該正孔注入材料としては、例えばトリアゾール誘導
体(米国特許第3,112,197号明細書等参照),オキサジ
アゾール誘導体(米国特許第3,189,447 号明細書等参
照),イミダゾール誘導体(特公昭37−16096号
公報等参照),ポリアリールアルカン誘導体(米国特許
第3,615,402 号明細書,同3,820,989 号明細書,同3,54
2,544 号明細書,特公昭45−555号公報,同51−
10983号公報,特開昭51−93224号公報,同
55−17105号公報,同56−4148号公報,同
55−108667号公報,同55−156953号公
報,同56−36656号公報等参照),ピラゾリン誘
導体及びピラゾロン誘導体(米国特許第3,180,729 号明
細書,同4,278,746 号明細書,特開昭55−88064
号公報,同55−88065号公報,同49−1055
37号公報,同55−51086号公報,同56−80
051号公報,同56−88141号公報,同57−4
5545号公報,同54−112637号公報,同55
−74546号公報等参照),フェニレンジアミン誘導
体(米国特許第3,615,404 号明細書,特公昭51−10
105号公報,同46−3712号公報,同47−25
336号公報,特開昭54−53435号公報,同54
−110536号公報,同54−119925号公報等
参照),アリールアミン誘導体(米国特許第3,567,450
号明細書,同3,180,703 号明細書,同3,240,597 号明細
書,同3,658,520 号明細書,同4,232,103 号明細書,同
4,175,961 号明細書,同4,012,376 号明細書,特公昭4
9−35702号公報,同39−27577号公報,特
開昭55−144250号公報,同56−119132
号公報,同56−22437号公報,西独特許第1,110,
518 号明細書等参照),アミノ置換カルコン誘導体(米
国特許第3,526,501 号明細書等参照),オキサゾール誘
導体(米国特許第3,257,203 号明細書などに記載のも
の),スチリルアントラセン誘導体(特開昭56−46
234号公報等参照),フルオレノン誘導体(特開昭5
4−110837号公報等参照),ヒドラゾン誘導体
(米国特許第3,717,462 号明細書,特開昭54−591
43号公報,同55−52063号公報,同55−52
064号公報,同55−46760号公報,同55−8
5495号公報,同57−11350号公報,同57−
148749号公報,特開平2−311591号公報等
参照),スチルベン誘導体(特開昭61−210363
号公報,同61−228451号公報,同61−146
42号公報,同61−72255号公報,同62−47
646号公報,同62−36674号公報,同62−1
0652号公報,同62−30255号公報,同60−
93445号公報,同60−94462号公報,同60
−174749号公報,同60−175052号公報等
参照)などを挙げることができる。さらに、正孔注入輸
送材料としては、シラザン誘導体(米国特許第4950
950号明細書),ポリシラン系(特開平2−2049
96号公報),アニリン系共重合体(特開平2−282
263号公報)、また特願平1−211399号明細書
で示された導電性高分子オリゴマー、特にチオフェンオ
リゴマーなどが挙げられる。
In the present invention, the hole injecting layer and the electron injecting layer are not particularly necessary constituent elements of the organic EL element, and may or may not be used. Here, the compound that can be used as the hole injection material is not particularly limited, but any compound having the above-described preferable properties can be used, and conventionally, it is conventionally used as the hole injection material in the optical transmission material. Any known material used for the hole injection layer of the organic EL element can be selected and used. This hole injection material has either hole injection or electron barrier properties, and may be either an organic substance or an inorganic substance. Examples of the hole injection material include triazole derivatives (see US Pat. No. 3,112,197), oxadiazole derivatives (see US Pat. No. 3,189,447), imidazole derivatives (JP-B-37-16096). ), Polyarylalkane derivative (US Pat. Nos. 3,615,402, 3,820,989, and 3,54).
No. 2,544, Japanese Patent Publication No. 45-555, No. 51-
10983, JP-A-51-93224, JP-A-55-17105, JP-A-56-4148, JP-A-55-108667, JP-A-55-156953, and JP-A-56-36656). , Pyrazoline derivatives and pyrazolone derivatives (US Pat. Nos. 3,180,729 and 4,278,746, JP-A-55-88064).
No. 55-88065 and No. 49-1055.
37, 55-51086, 56-80.
No. 051, No. 56-88141, No. 57-4.
No. 5545, No. 54-112637, No. 55.
No. 74546, etc.), phenylenediamine derivatives (US Pat. No. 3,615,404, JP-B-51-10).
No. 105, No. 46-3712, No. 47-25.
336, JP-A-54-53435, 54
No. 110536, No. 54-119925, etc.), arylamine derivatives (US Pat. No. 3,567,450).
No. 3,180,703, No. 3,240,597, No. 3,658,520, No. 4,232,103, No.
4,175,961 specification, 4,012,376 specification, Japanese Patent Publication No. 4
9-35702, 39-27577, JP-A-55-144250, 56-119132.
No. 56-22437, West German Patent No. 1,110,
518 etc.), amino-substituted chalcone derivatives (see US Pat. No. 3,526,501 etc.), oxazole derivatives (described in US Pat. No. 3,257,203 etc.), styrylanthracene derivatives (JP-A-56- 46
234, etc.), fluorenone derivatives (Japanese Patent Application Laid-Open No. Sho 5
4-110837, etc.), hydrazone derivatives (US Pat. No. 3,717,462, JP-A-54-591).
43, 55-52063, 55-52.
064, 55-46760, 55-8.
No. 5495, No. 57-11350, No. 57-
148749, Japanese Patent Laid-Open No. 2-311591, etc.), Stilbene derivatives (Japanese Patent Laid-Open No. 61-210363)
No. 61-228451 and No. 61-146.
42, 61-72255, 62-47.
No. 646, No. 62-36674, No. 62-1
No. 0652, No. 62-30255, No. 60-
No. 93445, No. 60-94462, No. 60
-174749, 60-175052, etc.) and the like. Further, as a hole injecting and transporting material, a silazane derivative (US Pat.
950), polysilane type (JP-A-2-2049).
96), aniline-based copolymer (JP-A-2-282)
No. 263), and conductive polymer oligomers described in Japanese Patent Application No. 1-211399, particularly thiophene oligomers.

【0021】本発明においては、これらの化合物を正孔
注入材料として使用することができるが、次に示すポル
フィリン化合物(特開昭63−2956965号公報な
どに記載のもの)及び芳香族第三級アミン化合物及びス
チリルアミン化合物(米国特許第4,127,412 号明細書,
特開昭53−27033号公報,同54−58445号
公報,同54−149634号公報,同54−6429
9号公報,同55−79450号公報,同55−144
250号公報,同56−119132号公報,同61−
295558号公報,同61−98353号公報,同6
3−295695号公報等参照),特に該芳香族第三級
アミン化合物を用いることが好ましい。
In the present invention, these compounds can be used as a hole injecting material, and the following porphyrin compounds (described in JP-A No. 63-295965) and aromatic tertiary compounds. Amine compounds and styrylamine compounds (US Pat. No. 4,127,412,
JP-A-53-27033, JP-A-54-58445, JP-A-54-149634, and JP-A-54-6429.
No. 9, gazette 55-79450, gazette 55-144.
No. 250, No. 56-119132, No. 61-
No. 295558, No. 61-98353, No. 6
3-295695, etc.), and it is particularly preferable to use the aromatic tertiary amine compound.

【0022】該ポルフィリン化合物の代表例としては、
ポルフィン;1,10,15,20−テトラフェニル−
21H,23H−ポルフィン銅(II);1,10,1
5,20−テトラフェニル21H,23H−ポルフィン
亜銅(II);5,10,15,20−テトラキス(ペン
タフルオロフェニル)−21H,23H−ポルフィン;
シリコンフタロシアニンオキシド;アルミニウムフタロ
シアニンクロリド;フタロシアニン(無金属);ジリチ
ウムフタロシアニン;銅テトラメチルフタロシアニン;
銅フタロシアニン;クロムフタロシアニン;亜鉛フタロ
シアニン;鉛フタロシアニン;チタニウムフタロシアニ
ンオキシド;Mgフタロシアニン;銅オクタメチルフタ
ロシアニンなどが挙げられる。また、該芳香族第三級ア
ミン化合物及びスチリルアミン化合物の代表例として
は、N,N,N’,N’−テトラフェニル−4,4’−
ジアミノフェニル;N,N’−ジフェニル−N,N’−
ジ(3−メチルフェニル)−4,4’−ジアミノビフェ
ニル(TPDA);2,2−ビス(4−ジ−p−トリル
アミノフェニル)プロパン;1,1−ビス(4−ジ−p
−トリルアミノフェニル)シクロヘキサン;N,N,
N’,N’−テトラ−p−トリル−4,4’−ジアミノ
ビフェニル;1,1−ビス(4−ジ−p−トリルアミノ
フェニル)−4−フェニルシクロヘキサン;ビス(4−
ジメチルアミノ−2−メチルフェニル)フェニルメタ
ン;ビス(4−ジ−p−トリルアミノフェニル)フェニ
ルメタン;N,N’−ジフェニル−N,N’−ジ(4−
メトキシフェニル)−4,4’−ジアミノビフェニル;
N,N,N’,N’−テトラフェニル−4,4’−ジア
ミノジフェニルエーテル;4,4’−ビス(ジフェニル
アミノ)クオードリフェニル;N,N,N−トリ(p−
トリル)アミン;4−(ジ−p−トリルアミノ)−4’
−〔4(ジ−p−トリルアミノ)スチリル〕スチルベ
ン;4−N,N−ジフェニルアミノ−(2−ジフェニル
ビニル)ベンゼン;3−メトキシ−4’−N,N−ジフ
ェニルアミノスチルベンゼン;N−フェニルカルバゾー
ルなどが挙げられる。また、発光材料として示した前述
の芳香族ジメチリディン系化合物も使用可能できる。
Representative examples of the porphyrin compound include:
Porphine; 1,10,15,20-tetraphenyl-
21H, 23H-porphine copper (II); 1,10,1
5,20-Tetraphenyl 21H, 23H-porphine cuprous (II); 5,10,15,20-Tetrakis (pentafluorophenyl) -21H, 23H-porphine;
Silicon phthalocyanine oxide; Aluminum phthalocyanine chloride; Phthalocyanine (no metal); Dilithium phthalocyanine; Copper tetramethylphthalocyanine;
Copper phthalocyanine; chromium phthalocyanine; zinc phthalocyanine; lead phthalocyanine; titanium phthalocyanine oxide; Mg phthalocyanine; copper octamethylphthalocyanine and the like. Further, as typical examples of the aromatic tertiary amine compound and the styrylamine compound, N, N, N ′, N′-tetraphenyl-4,4′-
Diaminophenyl; N, N'-diphenyl-N, N'-
Di (3-methylphenyl) -4,4'-diaminobiphenyl (TPDA); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p
-Tolylaminophenyl) cyclohexane; N, N,
N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl; 1,1-bis (4-di-p-tolylaminophenyl) -4-phenylcyclohexane; bis (4-
Dimethylamino-2-methylphenyl) phenylmethane; Bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N'-di (4-
Methoxyphenyl) -4,4'-diaminobiphenyl;
N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl; N, N, N-tri (p-
Tolyl) amine; 4- (di-p-tolylamino) -4 ′
-[4 (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino- (2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbenzene; N-phenyl Examples include carbazole. Further, the above-mentioned aromatic dimethylidyne compounds shown as the light emitting material can also be used.

【0023】本発明の有機EL素子における正孔注入層
は、上記化合物を、例えば真空蒸着法,スピンコート
法,キャスト法,LB法等の公知の薄膜化法により製膜
して形成することができる。正孔注入層としての膜厚
は、特に制限はないが、通常は5nm〜5μmである。
この正孔注入層は、これらの正孔注入輸送材料一種又は
二種以上からなる一層で構成されてもよいし、あるい
は、前記正孔注入層とは別種の化合物からなる正孔注入
層を積層したものであってもよい。
The hole injecting layer in the organic EL device of the present invention can be formed by forming the above compound into a film by a known thinning method such as a vacuum vapor deposition method, a spin coating method, a casting method and an LB method. it can. The thickness of the hole injection layer is not particularly limited, but is usually 5 nm to 5 μm.
This hole injection layer may be composed of a single layer made of one or more of these hole injection transport materials, or a hole injection layer made of a compound different from the hole injection layer is laminated. It may be one.

【0024】また、電子注入材料として使用可能な化合
物は、陰極より注入された電子を発光層に伝達する機能
を有している。このような電子注入材料については、特
に制限はなく、従来公知の化合物の中から任意のものを
選択して用いることができる。例えば、ニトロ置換フル
オレノン誘導体、特開昭57−149259号,同58
−55450号,同63−104061号公報等に記載
されているアントラキノジメタン誘導体、Polymer Prep
rints, Japan Vol. 37, No.3 (1988),p.681 等に記載さ
れているジフェニルキノン誘導体、チオピランジオキシ
ド誘導体、ナフタレンペリレン等複素環テトラカルボン
酸無水物、カルボジイミド、JapaneaseJournal of Appl
ied Physics,27,L 269(1988) 、特開昭60−6965
7号,同61−143764号,同61−148159
号公報等に記載されているフレオレニリデンメタン誘導
体、特開昭61−225151号,同61−23375
0号公報等に記載されているアントラキノジメタン誘導
体及びアントロン誘導体、 Appl. Phys. Lett.,55,15,1
489 や前述の第38回応用物理学関係連合講演会で浜田
らによって開示されたオキサジアゾール誘導体、特開昭
59−194393号公報に記載されている一連の電子
伝達性化合物等が挙げられる。この公報では該物質は発
光層を形成する材料として開示されているが、我々は検
討の結果、本発明の電子注入層を形成する材料として用
いることができることがわかった。
The compound usable as the electron injection material has a function of transmitting the electrons injected from the cathode to the light emitting layer. Such an electron injection material is not particularly limited, and any one of conventionally known compounds can be selected and used. For example, nitro-substituted fluorenone derivatives, JP-A-57-149259 and 58-58.
-55450, 63-104061 and the like, anthraquinodimethane derivative, Polymer Prep
rints, Japan Vol. 37, No. 3 (1988), p.681 etc., diphenylquinone derivative, thiopyran dioxide derivative, naphthalene perylene, etc. heterocyclic tetracarboxylic acid anhydride, carbodiimide, Japanease Journal of Appl
ied Physics, 27, L 269 (1988), JP-A-60-6965.
No. 7, No. 61-143764, No. 61-148159.
Fluorenylidene methane derivatives described in JP-A Nos. 61-225151 and 61-23375.
Anthraquinodimethane derivatives and anthrone derivatives described in Japanese Patent Publication No. 0, etc., Appl. Phys. Lett., 55, 15, 1
489 and the oxadiazole derivatives disclosed by Hamada et al. At the 38th Applied Physics Association Lecture, and the series of electron-transporting compounds described in JP-A-59-194393. In this publication, the substance is disclosed as a material for forming a light emitting layer, but as a result of studies, we found that it can be used as a material for forming the electron injection layer of the present invention.

【0025】また、8−キノリノール誘導体の金属錯体
で具体的には次に挙げる化合物、即ち、トリス(8−キ
ノリノール)アルミニウム,トリス(5,7−ジクロロ
−8−キノリノール)アルミニウム,トリス(5,7−
ジブロモ−8−キノリノール)アルミニウム,トリス
(2−メチル−8−キノリノール)アルミニウム、なら
びにアルミニウム,In以外のMg,Cu,Ga,S
n,Pb錯体等がある。メタルフリーあるいはメタルフ
タロシアニン,またはそれらの末端がアルキル基,スル
ホン酸基等で置換されているものも望ましい。また、発
光材料として示したジスチリルピラジン誘導体も電子注
入材料として挙げられる。
The metal complexes of 8-quinolinol derivatives, specifically the following compounds, namely, tris (8-quinolinol) aluminum, tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,5). 7-
Dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, and Mg, Cu, Ga, S other than aluminum and In.
There are n, Pb complexes and the like. Metal-free or metal phthalocyanine, or those whose terminal is substituted with an alkyl group, a sulfonic acid group or the like is also desirable. Further, the distyrylpyrazine derivative shown as the light emitting material can also be mentioned as the electron injecting material.

【0026】電子注入層として使用可能な有機化合物と
しては、上記化合物を、例えば真空蒸着法,スピンコー
ト法,キャスト法,LB法等の公知の薄膜化法により製
膜して形成することができる。電子注入層としての膜厚
は、特に制限はないが、通常は5nm〜5μmである。
この電子注入層は、これらの電子注入材料1種又は2種
以上からなる一層で構成されてもよいし、あるいは、前
記層とは別種の化合物からなる電子注入層を積層したも
のであってもよい。さらに無機物であるp型−Si,p
型−SiCによる正孔注入輸送材料、n型−Si,n型
−SiCによる電子注入輸送材料を電子注入輸送材料と
して用いることができる。例えば、国際公開公報WO9
0/05998に開示されている無機半導体等が挙げら
れる。
The organic compound usable as the electron injection layer can be formed by forming the above compound into a film by a known thin film forming method such as a vacuum vapor deposition method, a spin coating method, a casting method and an LB method. . The thickness of the electron injection layer is not particularly limited, but is usually 5 nm to 5 μm.
The electron injection layer may be composed of a single layer made of one or more of these electron injection materials, or may be a stack of electron injection layers made of a compound different from the above layers. Good. Furthermore, p-type Si, p which is an inorganic substance
A hole injecting / transporting material of type-SiC and an electron injecting / transporting material of n-type-Si, n-type-SiC can be used as the electron injecting / transporting material. For example, International Publication WO9
Inorganic semiconductors and the like disclosed in 0/05998 are mentioned.

【0027】次に、本発明の方法において有機EL素子
を作製する好適な例を説明する。本発明の素子構成とし
ては、陽極/発光層/MgO層/陰極,陽極/正孔注入
層/発光層/MgO層/陰極,陽極/発光層/電子注入
層/MgO層/陰極,陽極/発光層/MgO層/電子注
入層/陰極,陽極/正孔注入層/発光層/電子注入層/
MgO層/陰極,陽極/正孔注入層/発光層/MgO層
/電子注入層/陰極等が挙げられるが、ここでは、例え
ば、陽極/正孔注入層/発光層/MgO層/陰極からな
る有機EL素子の作製法について説明する。なお、Mg
Oに代えて他の金属酸化物、例えばBaO,CaO,N
iO等を用いることもできる。まず適当な基板上に、所
望の電極物質、例えば陽極用物質からなる薄膜を、1μ
m以下、好ましくは10〜200nmの範囲の膜厚にな
るように、蒸着やスパッタリングなどの方法により形成
させ、陽極を作製する。次に、この上に正孔注入輸送材
料からなる薄膜を形成し、正孔注入層を設ける。該正孔
注入輸送材料の薄膜化の方法としては、前記のごとくス
ピンコート法,キャスト法,蒸着法などがあるが、均質
な膜が得られやすく、かつピンホールが生成しにくいな
どの点から、真空蒸着法が好ましい。該正孔注入材料の
薄膜化に、この蒸着法を採用する場合、その蒸着条件
は、使用する化合物の種類,分子堆積膜の目的とする結
晶構造,再結合構造などにより異なるが、一般にボート
加熱温度50〜450℃,真空度10-5〜10-3Pa,
蒸着速度0.01〜50nm/sec ,基板温度−50〜3
00℃,膜厚5nm〜5μmの範囲で適宜選ぶことが望
ましい。次に発光層の形成後、前述のMgO層を形成
し、その上に陰極用物質からなる薄膜を、10〜500
nm好ましくは 50〜200nmの範囲の膜厚になる
ように、例えば蒸着やスパッタリングなどの方法により
形成させ、陰極を設けることにより、所望の有機EL素
子が得られる。なお、この有機EL素子の作製において
は、作製順序を逆にして、陰極,MgO層,発光層,正
孔注入層,陽極の順に作製することも可能である。この
ようにして得られた有機EL素子に、直流電圧を印加す
る場合には、陽極を+,陰極を−の極性として電圧5〜
40V程度を印加すると、発光が観測できる。また、逆
の極性で電圧を印加しても電流は流れずに発光は全く生
じない。さらに、交流電圧を印加する場合には、陽極が
+,陰極が−の状態になったときのみ均一な発光をす
る。なお、印加する交流の波形は任意でよい。
Next, a suitable example of producing an organic EL device by the method of the present invention will be described. The device structure of the present invention includes anode / light emitting layer / MgO layer / cathode, anode / hole injection layer / light emitting layer / MgO layer / cathode, anode / light emitting layer / electron injection layer / MgO layer / cathode, anode / light emitting. Layer / MgO layer / electron injection layer / cathode, anode / hole injection layer / light emitting layer / electron injection layer /
Examples include MgO layer / cathode, anode / hole injection layer / light emitting layer / MgO layer / electron injection layer / cathode, and here, for example, anode / hole injection layer / light emitting layer / MgO layer / cathode. A method for manufacturing the organic EL element will be described. Note that Mg
Other metal oxides instead of O, such as BaO, CaO, N
It is also possible to use iO or the like. First, 1 μm of a thin film made of a desired electrode material, for example, an anode material, on a suitable substrate.
The anode is formed by a method such as vapor deposition or sputtering so as to have a film thickness of m or less, preferably 10 to 200 nm. Next, a thin film made of a hole injecting and transporting material is formed on this to provide a hole injecting layer. As a method for thinning the hole injecting and transporting material, there are spin coating method, casting method, vapor deposition method and the like as described above, but it is easy to obtain a uniform film and it is difficult to generate pinholes. The vacuum deposition method is preferred. When this vapor deposition method is used for thinning the hole injection material, the vapor deposition conditions vary depending on the type of compound used, the target crystal structure of the molecular deposited film, the recombination structure, etc. Temperature 50 to 450 ° C, vacuum degree 10 -5 to 10 -3 Pa,
Deposition rate 0.01 to 50 nm / sec, substrate temperature -50 to 3
It is desirable to appropriately select in the range of 00 ° C. and the film thickness of 5 nm to 5 μm. Next, after forming the light emitting layer, the above-mentioned MgO layer is formed, and a thin film of the cathode material is formed on the MgO layer by 10 to 500
A desired organic EL device can be obtained by forming a film having a thickness of 50 to 200 nm, preferably by a method such as vapor deposition or sputtering, and providing a cathode. In the production of this organic EL element, the production order may be reversed, and the cathode, the MgO layer, the light emitting layer, the hole injection layer and the anode may be produced in this order. When a direct current voltage is applied to the organic EL device thus obtained, the positive electrode has a positive polarity and the negative electrode has a negative polarity.
When a voltage of about 40V is applied, light emission can be observed. Moreover, even if a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Furthermore, when an AC voltage is applied, uniform light emission is achieved only when the anode is in the + state and the cathode is in the − state. The waveform of the alternating current applied may be arbitrary.

【0028】[0028]

【実施例】次に、本発明を実施例によりさらに詳しく説
明する。 実施例1 25mm×75mm×1.1mmのサイズの白板ガラス基
板上にITO電極を100nmの厚さで作製したものを
透明電極基板とした。この基板をイソプロピルアルコー
ルにて30分間超音波洗浄した後、純水で30分間超音
波洗浄し、さらにイソプロピルアルコールで30分間超
音波洗浄した。この透明電極基板を市販の蒸着装置(日
本真空技術社製)の基板ホルダに固定し、モリブデン製
の抵抗加熱ボートにN,N' −ジフェニル−N,N' −
ビス(3−メチルフェニル)−〔1,1’−ビフェニ
ル〕−4,4' −ジアミン(TPDA)を200mg入
れ、また別のモリブデン製のボートに4,4’−(2,
2’−ジフェニルビニル)ビフェニル(DPVBi)を
200mg入れて真空層を1×10-4Paまで減圧し
た。その後、TPDA入りの前記ボートを215〜22
0℃まで加熱し、蒸着速度0.1〜0.3nm/秒で透明電
極基板上に蒸着して、膜厚60nmの正孔注入層を製膜
した。この時の基板温度は室温であった。これを真空層
より取り出すことなく、正孔注入層の上に、もう一つの
ボートよりDPVBiを発光層として60nm積層蒸着
した。蒸着条件はボート温度が250℃で蒸着速度が0.
1〜0.2nm/秒、基板温度は室温であった。次にモリ
ブデン製の抵抗加熱ボートにMgリボン1gを入れ、ま
た別のモリブデン製の抵抗加熱ボートにインジウム(I
n)500mgを装着した。その後、真空層を2×10
-4Paまで減圧してから、真空槽内に酸素ガスを8×1
-2Paになるように導入し、Mgを入れたボートを加
熱してMg蒸気を発生させ蒸着速度0.05nm/秒で発
光層上に蒸着して、膜厚10nmの酸化物層を製膜し
た。さらに、再び真空層を2×10-4Paまで減圧して
から、Inの入ったボートを500℃まで加熱して、I
nを蒸着速度0.03〜0.08nm/秒で蒸着させ、同時
に抵抗加熱法により、もう一方のボートからMgの入っ
たボートを800℃まで加熱して、Mgを蒸着速度1.7
〜2.8nm/秒で蒸着した。以上の条件で、InとMg
の混合金属電極を発光層上に150nm積層蒸着し対向
電極とした。得られた有機EL素子のITOを陽極、M
g/In混合電極を陰極として、印加電圧30V,電流
密度300mA/cm2 で3000cd/m2 の輝度の
均一な青色発光を観察した。また、この有機EL素子は
印加電圧32.5Vで破壊した。
EXAMPLES Next, the present invention will be described in more detail by way of examples. Example 1 A transparent electrode substrate was prepared by forming an ITO electrode with a thickness of 100 nm on a white plate glass substrate having a size of 25 mm × 75 mm × 1.1 mm. This substrate was ultrasonically cleaned with isopropyl alcohol for 30 minutes, ultrasonically cleaned with pure water for 30 minutes, and further ultrasonically cleaned with isopropyl alcohol for 30 minutes. This transparent electrode substrate was fixed to a substrate holder of a commercially available vapor deposition device (manufactured by Nippon Vacuum Technology Co., Ltd.), and was placed in a resistance heating boat made of molybdenum, N, N'-diphenyl-N, N'-.
200 mg of bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPDA) was put into another molybdenum boat and 4,4 '-(2,4'-(2
200 mg of 2'-diphenylvinyl) biphenyl (DPVBi) was added, and the vacuum layer was depressurized to 1 x 10 -4 Pa. After that, the TPDA-containing boat is set to 215-22.
The film was heated to 0 ° C. and vapor-deposited on the transparent electrode substrate at a vapor deposition rate of 0.1 to 0.3 nm / sec to form a hole injection layer having a film thickness of 60 nm. The substrate temperature at this time was room temperature. Without taking this out from the vacuum layer, DPVBi as a light emitting layer was laminated and vapor-deposited by 60 nm on the hole injection layer from another boat. As for the vapor deposition conditions, the boat temperature is 250 ° C and the vapor deposition rate is 0.
The substrate temperature was room temperature, 1 to 0.2 nm / sec. Next, 1 g of Mg ribbon was put in a resistance heating boat made of molybdenum, and indium (I) was put in another resistance heating boat made of molybdenum.
n) 500 mg was attached. Then, the vacuum layer is 2 × 10.
After decompressing to -4 Pa, add 8x1 oxygen gas into the vacuum chamber.
It was introduced so as to have a pressure of 0 -2 Pa, a boat containing Mg was heated to generate Mg vapor, and vapor was vapor-deposited on the light emitting layer at a vapor deposition rate of 0.05 nm / sec to form an oxide layer with a thickness of 10 nm. Filmed Further, the vacuum layer was decompressed to 2 × 10 −4 Pa again, and then the boat containing In was heated to 500 ° C.
n is vapor-deposited at a vapor deposition rate of 0.03 to 0.08 nm / sec, and at the same time, the boat containing Mg is heated from the other boat to 800 ° C. by a resistance heating method to deposit Mg at a vapor deposition rate of 1.7.
Deposited at ~ 2.8 nm / sec. Under the above conditions, In and Mg
The mixed metal electrode of was laminated and vapor-deposited on the light emitting layer by 150 nm to form a counter electrode. The ITO of the obtained organic EL device is used as an anode and M
Using the g / In mixed electrode as a cathode, uniform blue light emission with a brightness of 3000 cd / m 2 was observed at an applied voltage of 30 V and a current density of 300 mA / cm 2 . Further, this organic EL device was destroyed by an applied voltage of 32.5V.

【0029】実施例2 発光層に2,5−ビス−(2,2’−ジパラトリルビニ
ル)キシレンを用い、MgO膜厚を20nmにした以外
は、実施例1と同様にして有機EL素子を作成した。こ
の有機EL素子のITOを陽極、Mg/In混合電極を
陰極として、印加電圧35V,電流密度360mA/c
2 で1722cd/m2 の輝度の均一な青緑色発光を
観察した。また、この有機EL素子は印加電圧40Vで
破壊した。
Example 2 An organic EL device was manufactured in the same manner as in Example 1 except that 2,5-bis- (2,2'-diparatolylvinyl) xylene was used for the light emitting layer and the MgO film thickness was 20 nm. It was created. Using ITO of this organic EL element as an anode and a Mg / In mixed electrode as a cathode, an applied voltage of 35 V and a current density of 360 mA / c
It was observed even blue-green light emission luminance of 1722cd / m 2 in m 2. Further, this organic EL element was destroyed by an applied voltage of 40V.

【0030】実施例3 発光層にトリス(8−キノリノール)アルミニウム(A
lq3 )を用いた以外は、実施例1と同様にして有機E
L素子を作成した。この有機EL素子のITOを陽極、
Mg/In混合電極を陰極として、印加電圧30V,電
流密度400mA/cm2 で5000cd/m2 の輝度
の均一な青緑色発光を観察した。また、この有機EL素
子は印加電圧35Vで破壊した。
Example 3 Tris (8-quinolinol) aluminum (A
Organic E was prepared in the same manner as in Example 1 except that 1q 3 ) was used.
An L element was created. ITO of this organic EL element is used as an anode,
Using the Mg / In mixed electrode as a cathode, uniform blue-green light emission with a luminance of 5000 cd / m 2 was observed at an applied voltage of 30 V and a current density of 400 mA / cm 2 . Further, this organic EL element was destroyed by an applied voltage of 35V.

【0031】実施例4 実施例1と同様にして発光層まで作成し、MgOのペレ
ットを同じ真空槽内にある電子ビーム蒸着器に取付け4
kVの加速電圧で電子をMgOのペレットにあて表面を
加熱し、蒸着速度0.05nm/秒で蒸着させ、膜厚10
nmの酸化物層を製膜した。この有機EL素子のITO
を陽極、Mg/In混合電極を陰極として、印加電圧3
0V,電流密度300mA/cm2 で2000cd/m
2 の輝度の均一な青色発光を観察した。また、この有機
EL素子は印加電圧35Vで破壊した。
Example 4 A light emitting layer was prepared in the same manner as in Example 1, and MgO pellets were attached to an electron beam vapor deposition device in the same vacuum chamber.
Electrons are applied to the MgO pellets at an acceleration voltage of kV to heat the surface, and vapor deposition is performed at a vapor deposition rate of 0.05 nm / sec.
nm oxide layer was formed. ITO of this organic EL element
As the anode and the Mg / In mixed electrode as the cathode, and the applied voltage 3
2000 cd / m at 0 V and current density of 300 mA / cm 2.
A uniform blue emission with a brightness of 2 was observed. Further, this organic EL element was destroyed by an applied voltage of 35V.

【0032】実施例5 Mgの代わりにバリウム(Ba)を用いた以外は、実施
例1と同様にして有機EL素子を作成した。即ち、Mg
Oの代わりにBaOを、陰極と発光層の間に挿入した。
このBaOは、モリブデンのボートを800℃に加熱
し、蒸着速度0.05nm/秒で蒸着させて得られた。膜
厚は10nmであった。この有機EL素子のITOを陽
極、Mg/In混合電極を陰極として、印加電圧30
V,電流密度250mA/cm2 で1200cd/m2
の輝度の均一な青色発光を観察した。また、この有機E
L素子は印加電圧32.5Vで破壊した。
Example 5 An organic EL device was prepared in the same manner as in Example 1 except that barium (Ba) was used instead of Mg. That is, Mg
BaO was inserted instead of O between the cathode and the light emitting layer.
This BaO was obtained by heating a molybdenum boat at 800 ° C. and vapor-depositing it at a vapor deposition rate of 0.05 nm / sec. The film thickness was 10 nm. With the ITO of this organic EL element as an anode and the Mg / In mixed electrode as a cathode, an applied voltage of 30
V, at a current density of 250mA / cm 2 1200cd / m 2
A blue light emission with uniform brightness was observed. Also, this organic E
The L element was destroyed at an applied voltage of 32.5V.

【0033】比較例1 MgO膜を設けなかった以外は、実施例1と同様にして
有機EL素子を作成した。この有機EL素子のITOを
陽極、Mg/In混合電極を陰極として、印加電圧12.
5V,電流密度1500mA/cm2 で1500cd/
2 の輝度の直径100μm程度のリング状の形状の青
色発光を観察した。また、この有機EL素子は印加電圧
15Vで破壊した。
Comparative Example 1 An organic EL device was prepared in the same manner as in Example 1 except that the MgO film was not provided. With the ITO of this organic EL element as an anode and the Mg / In mixed electrode as a cathode, an applied voltage of 12.
1500 cd / at 5 V and current density of 1500 mA / cm 2.
Ring-shaped blue light emission with a brightness of m 2 and a diameter of about 100 μm was observed. Moreover, this organic EL element was destroyed at an applied voltage of 15V.

【0034】参考例(MgO膜生成の確認)実施例1と
同じ条件で、真空チャンバーに酸素を導入し、金属Mg
を抵抗加熱して蒸発させ、チャンバー内で酸化し、Au
を蒸着させた(MgOの酸素とガラス基板の酸素との測
定混同を避けるため、ガラス基板と酸化物層の間にAu
を挿入した。)ガラス基板上に蒸着させ膜厚30nmの
膜を作成した。この膜をXPS(X線光電子分光法)で
分析した結果、Mgのピークのシフトと膜内のMgと酸
素の量の割合から、この膜はMgOであることを確認し
た。
Reference Example (Confirmation of MgO Film Formation) Oxygen was introduced into the vacuum chamber under the same conditions as in Example 1 to produce metallic Mg.
By resistance heating to evaporate and oxidize in the chamber.
(In order to avoid measurement confusion between the oxygen of MgO and the oxygen of the glass substrate, Au was deposited between the glass substrate and the oxide layer).
Inserted. ) A film having a thickness of 30 nm was formed by vapor deposition on a glass substrate. As a result of XPS (X-ray photoelectron spectroscopy) analysis of this film, it was confirmed that this film was MgO from the peak shift of Mg and the ratio of the amounts of Mg and oxygen in the film.

【0035】[0035]

【発明の効果】上述の如く、本発明によれば、発光層と
陰極の間に絶縁性(4.0eV以上)の金属酸化物層を挿
入してなる有機EL素子は、耐電圧性を向上させ、陰極
に用いる金属の付着性を改善させ均一発光を可能にし、
さらに広いエネルギーギャップ(4.0eV以上)の効果
により正孔障壁性を有し、電子と正孔の再結合性を高
め、発光効率を落とさず高効率の有機EL素子を得るこ
とができる。従って、本発明は、化学工業、特に表示素
子の分野で有効に利用することが期待できる。
As described above, according to the present invention, an organic EL element having an insulating (4.0 eV or more) metal oxide layer inserted between a light emitting layer and a cathode has improved withstand voltage. To improve the adhesion of the metal used for the cathode and enable uniform light emission,
Due to the effect of a wider energy gap (4.0 eV or more), it has a hole barrier property, enhances the recombination property of electrons and holes, and a highly efficient organic EL device can be obtained without lowering the light emission efficiency. Therefore, the present invention can be expected to be effectively used in the chemical industry, particularly in the field of display devices.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発光層と陰極との間に、エネルギーギャ
ップが4.0eV以上の絶縁性の金属酸化物を挿入してな
る有機エレクトロルミネッセンス素子。
1. An organic electroluminescence device comprising an insulating metal oxide having an energy gap of 4.0 eV or more inserted between a light emitting layer and a cathode.
【請求項2】 金属酸化物が、MgOである請求項1記
載の有機エレクトロルミネッセンス素子。
2. The organic electroluminescence device according to claim 1, wherein the metal oxide is MgO.
【請求項3】 発光層が、芳香族メチリディン化合物で
ある請求項1記載の有機エレクトロルミネッセンス素
子。
3. The organic electroluminescent device according to claim 1, wherein the light emitting layer is an aromatic methylidin compound.
JP15148691A 1991-06-24 1991-06-24 Organic electroluminescence device Expired - Fee Related JP2793383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15148691A JP2793383B2 (en) 1991-06-24 1991-06-24 Organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15148691A JP2793383B2 (en) 1991-06-24 1991-06-24 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JPH053080A true JPH053080A (en) 1993-01-08
JP2793383B2 JP2793383B2 (en) 1998-09-03

Family

ID=15519557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15148691A Expired - Fee Related JP2793383B2 (en) 1991-06-24 1991-06-24 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP2793383B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950034864A (en) * 1994-02-17 1995-12-28 리차드 제이. 보토스 Light emitting diode device and manufacturing method thereof
WO1997042666A1 (en) * 1996-05-03 1997-11-13 Cambridge Display Technology Limited Organic light-emitting device and method of fabricating the same
GB2331181A (en) * 1996-05-03 1999-05-12 Cambridge Display Tech Ltd Organic light-emitting device and method of fabricating the same
WO1999053727A1 (en) * 1998-04-09 1999-10-21 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JPH11307261A (en) * 1998-04-16 1999-11-05 Tdk Corp Organic el element
WO2000005929A1 (en) * 1998-07-24 2000-02-03 Seiko Epson Corporation Electroluminescent element
JP2000040592A (en) * 1998-07-21 2000-02-08 Casio Comput Co Ltd Electroluminescence element
EP0980104A2 (en) * 1998-08-13 2000-02-16 TDK Corporation Organic electroluminescent device
WO2000010366A1 (en) * 1998-08-13 2000-02-24 Tdk Corporation Organic el device
JP2000068060A (en) * 1998-08-13 2000-03-03 Tdk Corp Organic el element and its manufacture
WO2000048430A1 (en) * 1999-02-10 2000-08-17 Tdk Corporation Organic el device
WO2000060906A1 (en) * 1999-04-05 2000-10-12 Tdk Corporation Organic el device
JP2000315581A (en) * 1999-04-30 2000-11-14 Idemitsu Kosan Co Ltd Organic electroluminescence element and manufacture thereof
US6166488A (en) * 1998-12-29 2000-12-26 Tdk Corporation Organic electroluminescent device
US6198219B1 (en) 1999-01-13 2001-03-06 Tdk Corporation Organic electroluminescent device
US6200695B1 (en) 1998-06-26 2001-03-13 Tdk Corporation Organic electroluminescent device
US6222314B1 (en) 1998-07-24 2001-04-24 Tdk Corporation Organic electoluminescent device with inorganic insulating hole injecting layer
US6262433B1 (en) 1999-03-16 2001-07-17 Tdk Corporation Organic electroluminescent device
US6288487B1 (en) 1999-03-17 2001-09-11 Tdk Corporation Organic electroluminescent device with a high-resistance inorganic electron injecting and transporting layer
US6296954B1 (en) 1998-12-07 2001-10-02 Tdk Corporation Organic electroluminescent device
US6303239B1 (en) 1998-10-09 2001-10-16 Tdk Corporation Organic electroluminescent device
US6322910B1 (en) 1998-07-22 2001-11-27 Tdk Corporation Organic electroluminescent device
US6338908B1 (en) 1998-06-26 2002-01-15 Tdk Corporation Organic electroluminescent device
US6369507B1 (en) 1999-06-07 2002-04-09 Tdk Corporation Organic EL display apparatus with a switching device
US6707248B1 (en) 1999-02-12 2004-03-16 Cambridge Display Technology Ltd. Opto-electrical devices
US6788278B2 (en) 2002-06-07 2004-09-07 Seiko Epson Corporation Electro-optical device and electronic apparatus
JP2005190998A (en) * 2003-12-02 2005-07-14 Semiconductor Energy Lab Co Ltd Light-emitting element and light-emitting device using same
JP2005527076A (en) * 2002-04-15 2005-09-08 ショット アーゲー Hermetic sealing of organic electro-optic elements
US7053548B2 (en) 2002-05-28 2006-05-30 Seiko Epson Corporation Light-emitting device with improved brightness control and narrow frame and electronic apparatus with the light-emitting device
JP2008098137A (en) * 2006-10-12 2008-04-24 Lg Electron Inc Display element, and its manufacturing method
JP2008166034A (en) * 2006-12-27 2008-07-17 Nippon Hoso Kyokai <Nhk> Light-emitting element and display device
JP2008527636A (en) * 2004-12-30 2008-07-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Process for forming electronic devices and electronic devices formed by such processes
JP2010514092A (en) * 2006-07-19 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Laminated electro-optic active organic diode with inorganic semiconductor connection layer
WO2010134237A1 (en) * 2009-05-22 2010-11-25 シャープ株式会社 Organic el display device and method for manufacturing same
JP4601234B2 (en) * 1999-09-30 2010-12-22 出光興産株式会社 Organic electroluminescence device
US7955718B2 (en) 2004-11-30 2011-06-07 Tdk Corporation Organic EL element and process for manufacture of organic EL element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005020642A1 (en) * 2003-08-20 2007-11-01 Tdk株式会社 Organic EL device and manufacturing method thereof

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950034864A (en) * 1994-02-17 1995-12-28 리차드 제이. 보토스 Light emitting diode device and manufacturing method thereof
US6541790B1 (en) 1996-05-03 2003-04-01 Cambridge Display Technology Limited Organic light-emitting device and method of fabricating the same
GB2331181A (en) * 1996-05-03 1999-05-12 Cambridge Display Tech Ltd Organic light-emitting device and method of fabricating the same
EP1684368A3 (en) * 1996-05-03 2010-06-30 Cambridge Display Technology Limited Organic light-emitting device and method of fabricating the same
EP1672721A3 (en) * 1996-05-03 2010-06-30 Cambridge Display Technology Limited Organic light-emitting device and method of fabricating the same
EP1684368A2 (en) * 1996-05-03 2006-07-26 Cambridge Display Technology Limited Organic light-emitting device and method of fabricating the same
US7786474B2 (en) 1996-05-03 2010-08-31 Cambridge Display Technology Limited Organic light-emitting device and method of fabricating the same
US7394093B2 (en) 1996-05-03 2008-07-01 Cambridge Display Technology Ltd. Organic light-emitting device and method of fabricating the same
EP1672722A3 (en) * 1996-05-03 2010-06-30 Cambridge Display Technology Limited Organic light-emitting device and method of fabricating the same
US6881598B2 (en) 1996-05-03 2005-04-19 Cambridge Display Technology Ltd. Organic light-emitting device and method of fabricating the same
EP1672721A2 (en) * 1996-05-03 2006-06-21 Cambridge Display Technology Limited Organic light-emitting device and method of fabricating the same
EP1672722A2 (en) * 1996-05-03 2006-06-21 Cambridge Display Technology Limited Organic light-emitting device and method of fabricating the same
WO1997042666A1 (en) * 1996-05-03 1997-11-13 Cambridge Display Technology Limited Organic light-emitting device and method of fabricating the same
US6617054B2 (en) 1998-04-09 2003-09-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JPH11297478A (en) * 1998-04-09 1999-10-29 Idemitsu Kosan Co Ltd Organic electroluminescence element
WO1999053727A1 (en) * 1998-04-09 1999-10-21 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JPH11307261A (en) * 1998-04-16 1999-11-05 Tdk Corp Organic el element
US6338908B1 (en) 1998-06-26 2002-01-15 Tdk Corporation Organic electroluminescent device
US6200695B1 (en) 1998-06-26 2001-03-13 Tdk Corporation Organic electroluminescent device
JP2000040592A (en) * 1998-07-21 2000-02-08 Casio Comput Co Ltd Electroluminescence element
US6322910B1 (en) 1998-07-22 2001-11-27 Tdk Corporation Organic electroluminescent device
WO2000005929A1 (en) * 1998-07-24 2000-02-03 Seiko Epson Corporation Electroluminescent element
US6222314B1 (en) 1998-07-24 2001-04-24 Tdk Corporation Organic electoluminescent device with inorganic insulating hole injecting layer
US7061176B2 (en) 1998-07-24 2006-06-13 Seiko Epson Corporation Electroluminescent device having a thin-film layer, and electronic device having the electroluminescent device
US7026757B1 (en) 1998-07-24 2006-04-11 Seiko Epson Corporation Electroluminescent device having a thin-film layer, and electronic device having the electroluminescent device
US6316874B1 (en) 1998-08-13 2001-11-13 Tdk Corporation Organic electroluminescent device
EP0980104A3 (en) * 1998-08-13 2000-08-02 TDK Corporation Organic electroluminescent device
JP2000068060A (en) * 1998-08-13 2000-03-03 Tdk Corp Organic el element and its manufacture
WO2000010366A1 (en) * 1998-08-13 2000-02-24 Tdk Corporation Organic el device
EP0980104A2 (en) * 1998-08-13 2000-02-16 TDK Corporation Organic electroluminescent device
US6303239B1 (en) 1998-10-09 2001-10-16 Tdk Corporation Organic electroluminescent device
US6296954B1 (en) 1998-12-07 2001-10-02 Tdk Corporation Organic electroluminescent device
US6166488A (en) * 1998-12-29 2000-12-26 Tdk Corporation Organic electroluminescent device
US6198219B1 (en) 1999-01-13 2001-03-06 Tdk Corporation Organic electroluminescent device
WO2000048430A1 (en) * 1999-02-10 2000-08-17 Tdk Corporation Organic el device
US6707248B1 (en) 1999-02-12 2004-03-16 Cambridge Display Technology Ltd. Opto-electrical devices
US6992438B2 (en) 1999-02-12 2006-01-31 Cambridge Display Technology Limited Opto-electrical devices
US6765350B1 (en) 1999-02-12 2004-07-20 Cambridge Display Technology Ltd. Opto-electrical devices
US7071612B2 (en) 1999-02-12 2006-07-04 Cambridge Display Technology Limited Opto-electrical devices
US6262433B1 (en) 1999-03-16 2001-07-17 Tdk Corporation Organic electroluminescent device
US6288487B1 (en) 1999-03-17 2001-09-11 Tdk Corporation Organic electroluminescent device with a high-resistance inorganic electron injecting and transporting layer
WO2000060906A1 (en) * 1999-04-05 2000-10-12 Tdk Corporation Organic el device
US6252246B1 (en) 1999-04-05 2001-06-26 Tdk Corporation Organic electroluminescent device
JP2000315581A (en) * 1999-04-30 2000-11-14 Idemitsu Kosan Co Ltd Organic electroluminescence element and manufacture thereof
US6369507B1 (en) 1999-06-07 2002-04-09 Tdk Corporation Organic EL display apparatus with a switching device
JP4601234B2 (en) * 1999-09-30 2010-12-22 出光興産株式会社 Organic electroluminescence device
JP2005527076A (en) * 2002-04-15 2005-09-08 ショット アーゲー Hermetic sealing of organic electro-optic elements
US7309959B2 (en) 2002-05-28 2007-12-18 Seiko Epson Corporation Light-emitting device with improved brightness control and narrow frame and electronic apparatus with the light-emitting device
US7944142B2 (en) 2002-05-28 2011-05-17 Seiko Epson Corporation Light-emitting device with improved brightness control and narrow frame and electronic apparatus with the light-emitting device
US8294363B2 (en) 2002-05-28 2012-10-23 Seiko Epson Corporation Light-emitting device with improved brightness control and narrow frame and electronic apparatus with the light-emitting device
US7053548B2 (en) 2002-05-28 2006-05-30 Seiko Epson Corporation Light-emitting device with improved brightness control and narrow frame and electronic apparatus with the light-emitting device
US7932672B2 (en) 2002-05-28 2011-04-26 Seiko Epson Corporation Light-emitting device with improved brightness control and narrow frame and electronic apparatus with the light-emitting device
US6788278B2 (en) 2002-06-07 2004-09-07 Seiko Epson Corporation Electro-optical device and electronic apparatus
JP2005190998A (en) * 2003-12-02 2005-07-14 Semiconductor Energy Lab Co Ltd Light-emitting element and light-emitting device using same
US7955718B2 (en) 2004-11-30 2011-06-07 Tdk Corporation Organic EL element and process for manufacture of organic EL element
JP2008527636A (en) * 2004-12-30 2008-07-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Process for forming electronic devices and electronic devices formed by such processes
JP2010514092A (en) * 2006-07-19 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Laminated electro-optic active organic diode with inorganic semiconductor connection layer
JP2008098137A (en) * 2006-10-12 2008-04-24 Lg Electron Inc Display element, and its manufacturing method
JP2008166034A (en) * 2006-12-27 2008-07-17 Nippon Hoso Kyokai <Nhk> Light-emitting element and display device
WO2010134237A1 (en) * 2009-05-22 2010-11-25 シャープ株式会社 Organic el display device and method for manufacturing same
US8822983B2 (en) 2009-05-22 2014-09-02 Sharp Kabushiki Kaisha Organic electroluminescent display device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2793383B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
JP2793383B2 (en) Organic electroluminescence device
JP3366401B2 (en) White organic electroluminescence device
JP2846571B2 (en) Organic electroluminescence device
JP2651233B2 (en) Thin-film organic EL device
JP3170542B2 (en) Organic EL device
JP4152173B2 (en) Organic electroluminescence device
JPH02247278A (en) Electroluminescence element
JP2838063B2 (en) Organic electroluminescence device
JPH03274693A (en) Organic thin film electroluminescence (el) element and manufacture thereof
JP2846503B2 (en) Device thin film electrode, electroluminescent device having the same, and methods of manufacturing the same
JPH05101884A (en) Sealing method and patterning method of organic electroluminescent element
JPH08248276A (en) Structure for coupling optical fiber and organic element
JPH05159882A (en) Manufacture of electron injectable electrode and manufacture of organic electroluminescence element therewith
JP3508805B2 (en) Multicolor light emitting device and method of manufacturing the same
JP2895868B2 (en) Organic electroluminescence device
JPH07224012A (en) Diphenylamine derivative
JPH07169569A (en) Organic el element and manufacture thereof
JPH07147189A (en) Organic electroluminescent element
JPH0726255A (en) Organic el element
JPH07119408B2 (en) Organic electroluminescent device
JPH06223970A (en) Manufacture of organic electroluminescence element
WO1994003032A1 (en) Organic el device
JPH06330034A (en) Organic electroluminescent element
JP3983405B2 (en) Organic electroluminescence device and method for manufacturing the same
JPH04298596A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080619

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110619

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees