JPH05291182A - Ecr plasma treating method - Google Patents
Ecr plasma treating methodInfo
- Publication number
- JPH05291182A JPH05291182A JP8739492A JP8739492A JPH05291182A JP H05291182 A JPH05291182 A JP H05291182A JP 8739492 A JP8739492 A JP 8739492A JP 8739492 A JP8739492 A JP 8739492A JP H05291182 A JPH05291182 A JP H05291182A
- Authority
- JP
- Japan
- Prior art keywords
- film
- tin
- chamber
- ecr
- ecr plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はECR放電を用いたプラ
ズマ処理装置に関する。本発明は例えば、電子材料(半
導体装置など)の製造時にメタル膜とりわけTiN膜を
形成する場合に、好適に利用することができる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus using ECR discharge. The present invention can be suitably used, for example, when a metal film, particularly a TiN film, is formed at the time of manufacturing an electronic material (such as a semiconductor device).
【0002】[0002]
【従来の技術】ここでは、特にTiN膜を作製する場合
により説明する。2. Description of the Related Art Here, the case of forming a TiN film will be described.
【0003】TiN(又はTiNO膜)は、例えば、半
導体装置の分野において、或は種の配線材料層と基板と
の間の密着層を形成するものとして用いられている。例
えば、以下述べるBlk−W(ブランケットタングステ
ン)と称される基板の必要箇所の全面にW膜を形成し
て、その後必要に応じてW膜をパターニングする技術に
おいては、密着層が必須とされている。即ち、電子材
料、例えば半導体装置は年々微細化して来ているが、特
に半導体集積回路の微細化に伴い、開孔部(コンタクト
ホールやビアホール)の寸法も小さくなり、例えばAl
のバイアススパッタ法などの従来技術では、もはや対応
できなくなっていると言われ、このような背景で、カバ
レージの良いBlk−Wが注目されるに至っているので
ある。この技術においては、図4に示すようにBlk−
W2は、下地10との密着性が悪いため、いわゆる、密
着層と必要とするが、従来よりTiNなどから成る密着
層1のカバレージが悪いと、図5に示すように、Blk
−W2をCVDした後、層間膜3に形成したコンタクト
ホール4中のBlk−W2にボイド(中空)2aが生じ
るという問題があった。TiN (or TiNO film) is used, for example, in the field of semiconductor devices or for forming an adhesion layer between a wiring material layer of some kind and a substrate. For example, an adhesion layer is indispensable in the technique of forming a W film on the entire surface of a necessary portion of a substrate called Blk-W (blanket tungsten) described below and then patterning the W film as needed. There is. That is, electronic materials, such as semiconductor devices, have been miniaturized year by year, but the dimensions of the openings (contact holes and via holes) have become smaller with the miniaturization of semiconductor integrated circuits.
It is said that the conventional techniques such as the bias sputtering method can no longer support this, and Blk-W having good coverage has been attracting attention in this background. In this technique, as shown in FIG.
W2 is required to be a so-called adhesion layer because it has poor adhesion to the underlayer 10. However, if coverage of the adhesion layer 1 made of TiN or the like is poorer than that of the prior art, as shown in FIG.
After CVD of -W2, there was a problem that a void (hollow) 2a was generated in Blk-W2 in the contact hole 4 formed in the interlayer film 3.
【0004】更に、通常、TiNのCVDには、TiC
l4をソースとして用いるため、膜にClを取り込み易
いなどの問題がある(これについて、例えば、1990
Symposium on VLSIT echno
logy 61〜62頁のKOICHI IKEDA他
「Photo Assisted LP−CVDTiN
For Deep Submicron Conta
ct UsingOrgano−titanium C
ompound」参照)。Further, in general, TiC is used for CVD of TiN.
Since l 4 is used as a source, there is a problem that Cl is easily incorporated into the film (for example, 1990
Symposium on VLSIT techno
KOICHI IKEDA et al., "Photo Assisted LP-CVD TiN" on pages 61-62.
For Deep Submicron Conta
ct UsingOrgano-titanium C
(see "Ompound").
【0005】そこで、TiN成膜をECRプラズマCV
Dによって行なう技術の提案が出てきた(1990年春
応用物理学会予稿集,第591頁29a−ZA−6参
照)。これによれば、カバレージ良くTiNを形成で
き、しかも650℃位の温度で成膜することにより、膜
中のClの取り込み量が少なくなったとされている。Therefore, a TiN film is formed by ECR plasma CV.
A proposal for a technique carried out by D came out (see Spring 1992, Applied Physics Society Proceedings, p. 591, 29a-ZA-6). According to this, it is said that TiN can be formed with good coverage and that the amount of Cl taken into the film is reduced by forming the film at a temperature of about 650 ° C.
【0006】[0006]
【発明が解決しようとする課題】しかし、TiN膜は低
温では成長メカニズムが異なり、粗な膜、特に著しい場
合は粉状になることが知られている。従って、ウェハ
は、上述のように650℃に加熱されているため、良質
な膜が成長するが、チャンバは、加熱されていないた
め、チャンバ内壁には粗な膜が成長してしまい、パーテ
ィクルの原因になる。これは、デバイスの歩留まりを著
しく低下させてしまうという問題があり、このパーティ
クルを発生させないTiN用ECR CVD装置及びプ
ロセスが切望されていた。However, it is known that the TiN film has a different growth mechanism at a low temperature and becomes a rough film, especially in a remarkable case, a powdery state. Therefore, since the wafer is heated to 650 ° C. as described above, a good quality film grows, but since the chamber is not heated, a rough film grows on the inner wall of the chamber, which causes particle generation. Cause. This has a problem that the yield of the device is significantly reduced, and an ECR CVD apparatus and process for TiN that does not generate the particles have been earnestly desired.
【0007】本発明は、上記問題点に鑑みて考案された
ものであり、前記問題を解決しパーティクルの少ない成
膜を行い、高歩留まりでデバイスを供給できるプロセス
を可能するECRプラズマ処理方法を得んとするもので
ある。The present invention has been devised in view of the above problems, and provides an ECR plasma processing method which solves the above problems, performs film formation with few particles, and enables a process capable of supplying devices with high yield. It is intended.
【0008】[0008]
【課題を解決するための手段】本発明は、TiNをCV
Dする際、成膜の回数を重ねてゆく過程でTiのダミー
成膜を入れることを特徴とするECRプラズマプロセス
であって、これにより上記問題点を解決するものであ
る。SUMMARY OF THE INVENTION The present invention uses TiN as a CV.
This is an ECR plasma process characterized in that a Ti dummy film is formed in the process of repeating the number of film formations during D, which solves the above problems.
【0009】[0009]
【作用】元来、TiN膜自信は、低温で成膜しても密着
もよく剥がれにくい。このTi膜をもって剥がれ易いT
iN膜を剥がれにくくする。従って、パーティクルを誘
起することもなく、歩留まりの高いプロセスを提供する
ことができる。[Function] Originally, the TiN film has good adhesion and is not easily peeled off even if it is formed at a low temperature. This Ti film makes it easy to peel off T
Makes the iN film difficult to peel off. Therefore, it is possible to provide a process with high yield without inducing particles.
【0010】即ち、本発明によれば、ある程度成膜を重
ねた後、Tiをダミー成膜してTiNの剥がれを防止す
るのでその効果は大きい。That is, according to the present invention, after the film formation is repeated to some extent, a dummy film of Ti is formed to prevent the peeling of TiN, so that the effect is great.
【0011】[0011]
【実施例】以下本発明の詳細を図面に示す実施例に基づ
いて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below based on the embodiments shown in the drawings.
【0012】(実施例1)この実施例は、半導体集積回
路装置の製造の際に、コンタクトホールの埋め込み及び
配線材料としてBlk金属層、特にBlk−W層を形成
する場合に、その基板との密着層及びバリア層としてT
i及びTiN膜を連続形成する工程に本発明を適用した
ものである。(Embodiment 1) In this embodiment, in the case of manufacturing a semiconductor integrated circuit device, when a Blk metal layer, especially a Blk-W layer is formed as a wiring material and a contact hole, it is used as a substrate. T as an adhesion layer and a barrier layer
The present invention is applied to the step of continuously forming i and TiN films.
【0013】図1(A)に示すように、シリコン等の半
導体基板10の拡散層11上に、SiO2等の絶縁物に
より層間膜3を形成し、この層間膜3にリソグラフィー
技術とドライエッチング技術を用いて、コンタクトホー
ル4を形成する。この工程は、通常の各種の方法を任意
に用いることができる。これにより図1(A)の構造を
得る。As shown in FIG. 1A, an interlayer film 3 is formed of an insulating material such as SiO 2 on a diffusion layer 11 of a semiconductor substrate 10 made of silicon or the like, and a lithography technique and dry etching are applied to the interlayer film 3. The contact hole 4 is formed by using a technique. For this step, various ordinary methods can be arbitrarily used. As a result, the structure shown in FIG. 1A is obtained.
【0014】次に、図2に示すようなECR−CVD装
置にて、ガス導入口51よりTiCl4を流し、まず、
Ti膜1aを30nm形成する。つづいて、同じく、ガ
ス導入口51より、TiCl4もう一方のガス導入口5
2よりN2及びH2ガスを流し、TiN膜1b50nmを
形成する。この時、TiN膜1bは低圧で形成されるた
め、底部にも厚く形成され、図1(B)に示す構造が得
られる。また、Clも揮発性の高い化学物TiClXOY
又はHClという形で排気され、Cl含有量は少なくな
り膜質は良くなる。又、これらの膜を真空を破らず連続
で形成するので、膜質も安定し、スループットも向上す
る。Next, in an ECR-CVD apparatus as shown in FIG. 2, TiCl 4 is caused to flow from the gas inlet 51, and first,
The Ti film 1a is formed to 30 nm. Similarly, from the gas inlet 51, TiCl 4 the other gas inlet 5
N 2 and H 2 gas are caused to flow from No. 2 to form a TiN film 1b of 50 nm. At this time, since the TiN film 1b is formed at a low pressure, the TiN film 1b is also formed thickly on the bottom portion, and the structure shown in FIG. 1B is obtained. In addition, Cl is a highly volatile chemical substance, TiCl X O Y
Or, it is evacuated in the form of HCl, and the Cl content is reduced and the film quality is improved. Further, since these films are continuously formed without breaking the vacuum, the film quality is stable and the throughput is improved.
【0015】なお、図2及び図3中、51aは塩化チタ
ン源であるタンク、52a,52bは各々窒素ガス導入
口、水素ガス導入口である。53は反応チャンバ、54
はプラズマチャンバ、55はプラズマ流、56は被処理
基板でこの場合図1(A)の構造のもの、57はサセプ
タ中に埋設されたヒータであり被処理基板56を加熱す
る役割を果たす。58はArの導入口であり、これはプ
ラズマ照射窓59のクリーニングを行うものである(こ
の技術については、1989年春の応用物理学会予稿集
第721頁3P−2F−1参照)。60はレクタングラ
ーウェイブガイドであり、61はマイクロ波(2.45
GHz)を示す。2 and 3, reference numeral 51a is a tank as a titanium chloride source, and 52a and 52b are a nitrogen gas inlet and a hydrogen gas inlet, respectively. 53 is a reaction chamber, 54
Is a plasma chamber, 55 is a plasma flow, 56 is a substrate to be processed, which has the structure shown in FIG. 1A in this case, and 57 is a heater embedded in the susceptor, which serves to heat the substrate 56 to be processed. Reference numeral 58 is an Ar inlet, which cleans the plasma irradiation window 59 (for this technique, see Proceedings of the Applied Physics Society of Japan, Spring 1989, p. 721, 3P-2F-1). Reference numeral 60 is a rectangle wave guide, and 61 is a microwave (2.45).
GHz).
【0016】次に、同じく図2に示すようなECR−C
VD装置にて、まずTi膜1a30nmを形成する。条
件は、 ガス:TiCl4/H2/Ar=10/50/50 sc
cm 温度:〜400℃ 圧力:1.33Pa マイクロ波:2.8kW である。次に、TiN膜1bを形成した。ガス導入口5
1よりTiCl4を、もう一方のガス導入口52よりN2
及びH2ガスを流し、TiN膜1bを形成する。TiN
膜1bは、低圧で形成されるため、底部にも厚く形成さ
れ、図1(B)の構造が得られる。又、Clも揮発性の
高い化学物TiClXOY又はHClという形で排気さ
れ、Cl含有量は少なくなり、また、連続で形成するの
で膜質の向上はもとよりスループットも向上した。Next, the ECR-C as also shown in FIG.
First, a Ti film 1a having a thickness of 30 nm is formed by a VD apparatus. The conditions are gas: TiCl 4 / H 2 / Ar = 10/50/50 sc
cm Temperature: ˜400 ° C. Pressure: 1.33 Pa Microwave: 2.8 kW. Next, the TiN film 1b was formed. Gas inlet 5
TiCl 4 from No. 1 and N 2 from the other gas inlet 52
And H 2 gas are flowed to form the TiN film 1b. TiN
Since the film 1b is formed at a low pressure, it is also formed thickly on the bottom portion, and the structure shown in FIG. 1B is obtained. Further, Cl is also exhausted in the form of highly volatile chemicals such as TiCl X O Y or HCl, the Cl content is reduced, and since it is continuously formed, not only the film quality is improved but also the throughput is improved.
【0017】TiNの具体的な形成条件は次のようにし
た。The specific conditions for forming TiN were as follows.
【0018】温度:〜650℃ マイクロ波:2.8kW 圧力:0.13Pa RF bias:300W ガス:TiCl4/N2/H2/Ar=10/30/30
/50 sccm その他のガス流量比は適宜に設定してもよいが、一般的
には、TiCl4 1に対してN2+H2などが1〜2程
度が好ましい。この時、RF biasを印加したの
で、TiNのカバレージは向上し、更に緻密な膜とな
り、バリア性は向上する。Temperature: up to 650 ° C. Microwave: 2.8 kW Pressure: 0.13 Pa RF bias: 300 W Gas: TiCl 4 / N 2 / H 2 / Ar = 10/30/30
The gas flow rate ratio of / 50 sccm and others may be appropriately set, but generally, N 2 + H 2 or the like is preferably about 1 to 2 with respect to TiCl 4 1. At this time, since RF bias is applied, the coverage of TiN is improved, a more dense film is formed, and the barrier property is improved.
【0019】これを25枚繰り返すごとに上と同じ条件
でTiを100nmダミーデポした。Each time 25 sheets of this were repeated, 100 nm of dummy Ti was deposited under the same conditions as above.
【0020】次に、別の装置でBlk−W2を形成す
る。形成条件は 第1ステップ:WF6/SiH4=25/10 scc
m,1.06×104Pa,475℃ 第2ステップ:WF6/H2=60/360 sccm,
1.06×104Pa,475℃ とした。これにより、カバレージ良くBlk−W2が形
成された。これにより図1(C)に示す構造が得られ
た。その際、Ti/TiNのオーバーハングもなくカバ
レージも良いのでコンタクトホール4内にもBlk−W
2のボイドは発生しなかった。また、コンタクトホール
4上において、このTi/TiN膜は良好なバリア性を
もつ膜として機能するものであった。Next, Blk-W2 is formed by another device. The formation condition is the first step: WF 6 / SiH 4 = 25/10 scc
m, 1.06 × 10 4 Pa, 475 ° C. Second step: WF 6 / H 2 = 60/360 sccm,
The temperature was 1.06 × 10 4 Pa and 475 ° C. As a result, Blk-W2 was formed with good coverage. As a result, the structure shown in FIG. 1C was obtained. At that time, since the Ti / TiN does not overhang and the coverage is good, Blk-W also exists in the contact hole 4.
No void of 2 was generated. Further, on the contact hole 4, the Ti / TiN film functions as a film having a good barrier property.
【0021】一方、従来は、処理枚数が増すごとに、チ
ャンバ内壁についた、TiNが剥離してパーティクルと
なり、ウエハ上に付着し、歩留まりを著しく低減させて
いたが、本発明により、Tiのダミーを入れたためチャ
ンバ内壁についたTiNは処理数を300枚まで増やし
ても、パーティクルは増加しなかった。On the other hand, in the past, as the number of processed wafers increased, TiN on the inner wall of the chamber peeled off to become particles, which adhered to the wafer and significantly reduced the yield. Since TiN on the inner wall of the chamber was added, the number of particles did not increase even if the number of treatments was increased to 300.
【0022】(実施例2)本実施例では、ゲートバルブ
を介して、連続的に接続されたECR CVD反応室に
応用した例を示す。(Embodiment 2) This embodiment shows an example of application to an ECR CVD reaction chamber continuously connected through a gate valve.
【0023】実施例1と同様、図1を参照にするが、図
1(A)の構造の形成は、実施例1と同様である。Similar to the first embodiment, reference is made to FIG. 1, but the formation of the structure of FIG. 1A is similar to the first embodiment.
【0024】次に、図3に示すような2チャンバーバイ
アスECR−CVD装置にて、まずチャンバAでTi膜
1a30nmを実施例1と同じ条件で形成する。条件
は、 ガス:TiCl4/H2/Ar=10/50/50 sc
cm 温度:〜400℃ 圧力:0.13Pa マイクロ波:2.8kW である。次に、ゲートバルブを介して図示せざる搬送手
段にてウェハをチャンバBに運び、TiN膜1bを形成
した。ガス導入口51よりTiCl4を、もう一方のガ
ス導入口52よりN2及びH2ガスを流し、TiN膜1b
を形成する。TiN膜は、低圧で形成されるため、底部
にも厚く形成され、図1(B)の構造が得られる。又、
実施例1と同様、Clも揮発性の高い化学物TiClX
OY又はHClという形で排気され、Cl含有量は少な
くなり、また、連続で形成するので膜質の向上はもとよ
りスループットも向上した。Next, using a two-chamber bias ECR-CVD apparatus as shown in FIG. 3, first, a Ti film 1a of 30 nm is formed in the chamber A under the same conditions as in the first embodiment. The conditions are gas: TiCl 4 / H 2 / Ar = 10/50/50 sc
cm Temperature: ˜400 ° C. Pressure: 0.13 Pa Microwave: 2.8 kW. Next, the wafer was carried to the chamber B by a carrying means (not shown) through the gate valve, and the TiN film 1b was formed. TiCl 4 is flown from the gas inlet 51, and N 2 and H 2 gases are flown from the other gas inlet 52.
To form. Since the TiN film is formed at a low pressure, it is also formed thickly on the bottom, and the structure shown in FIG. 1B is obtained. or,
As in Example 1, Cl is a highly volatile chemical substance, TiCl x.
It was evacuated in the form of O Y or HCl to reduce the Cl content, and since it was formed continuously, not only the film quality was improved, but also the throughput was improved.
【0025】TiNの具体的な形成条件は次のようにし
た。The specific conditions for forming TiN were as follows.
【0026】温度:〜650℃ マイクロ波:2.8kW 圧力:0.13Pa RF bias:300W ガス:TiCl4/N2/H2/Ar=10/30/30
/50 sccm その他、ガス流量比は適宜に設定してもよいが、一般的
には、TiCl4 1に対してN2+H2などが1〜2程
度が好ましい。この時、RF biasを印加したの
で、TiNのカバレージは向上し、更に緻密な膜とな
り、バリア性は向上する。Temperature: up to 650 ° C. Microwave: 2.8 kW Pressure: 0.13 Pa RF bias: 300 W Gas: TiCl 4 / N 2 / H 2 / Ar = 10/30/30
/ 50 sccm In addition, the gas flow rate ratio may be appropriately set, but generally, N 2 + H 2 or the like is preferably about 1 to 2 with respect to TiCl 4 1. At this time, since RF bias is applied, the coverage of TiN is improved, a more dense film is formed, and the barrier property is improved.
【0027】このプロセスを用いて、例えばAチャンバ
でTi、BチャンバでTiNを連続25枚形成した後、
上と全く同じ条件で、今度はBチャンバでTi、Aチャ
ンバでTiNを連続25秒形成した。このように、チャ
ンバを入れ替えることによって、AチャンバについたT
iNは厚いTi膜で抑えられパーティクルの発生は抑制
される。この逆も可能であることはいうまでもない。Using this process, for example, after continuously forming 25 sheets of Ti in the A chamber and TiN in the B chamber,
Under the same conditions as above, Ti in the B chamber and TiN in the A chamber were continuously formed for 25 seconds. Thus, by exchanging the chambers, the T
iN is suppressed by the thick Ti film, and the generation of particles is suppressed. It goes without saying that the reverse is also possible.
【0028】次に、Blk−W2を形成する。形成条件
は実施例1と同様とし、 WF6/H2=60/360 sccm,1.06×10
4Pa,475℃ とした。あるいは、次の2ステップ条件としてもよい。
即ち、 第1ステップ:WF6/SiH4=25/10 scc
m,1.06×104Pa,475℃ 第2ステップ:WF6/H2=60/360 sccm,
1.06×104Pa,475℃ この条件としてもよい。これにより同様にカバレージ良
くBlk−W2が形成され、図1(C)の構造が得られ
た。本実施例においても、Ti/TiNのオーバーハン
グもなく、カバレージが良いのでコンタクトホール4内
にもBlk−W2のボイドは発生せず、また、コンタク
トホール4上において、このTi/TiN膜は良好なバ
リア性をもつ膜として機能した。Next, Blk-W2 is formed. The formation conditions were the same as in Example 1, and WF 6 / H 2 = 60/360 sccm, 1.06 × 10
The temperature was 4 Pa and 475 ° C. Alternatively, the following two-step condition may be used.
That is, the first step: WF 6 / SiH 4 = 25/10 scc
m, 1.06 × 10 4 Pa, 475 ° C. Second step: WF 6 / H 2 = 60/360 sccm,
1.06 × 10 4 Pa, 475 ° C. This condition may be used. As a result, Blk-W2 was similarly formed with good coverage, and the structure of FIG. 1C was obtained. Also in this embodiment, there is no overhang of Ti / TiN and the coverage is good, so that voids of Blk-W2 do not occur in the contact hole 4 and the Ti / TiN film is good on the contact hole 4. Functioned as a film with excellent barrier properties.
【0029】一方、従来は、処理枚数が増すごとに、チ
ャンバ内壁についた、TiNが剥離してパーティクルと
なり、ウェハ上に付着し、歩留まりを著しく低減させて
いたが、本発明により、各チャンバでTiが交互に厚く
形成されるため、チャンバ内壁についたTiNは処理数
を1チャンバあたり300枚まで増やしても、パーティ
クルは増加しなかった。On the other hand, in the past, as the number of processed wafers increased, TiN on the inner wall of the chamber peeled off to become particles, which adhered to the wafer and significantly reduced the yield. Since Ti was alternately formed to be thick, particles of TiN on the inner wall of the chamber did not increase even if the number of treatments was increased to 300 per chamber.
【0030】以上、述べた実施例は、ほんの一例であ
り、本発明の主旨に反しない限り他の例も考えられるこ
とはいうまでもない。例えば、TiNのかわりにTiN
Oを成膜することも可能である。It is needless to say that the above-mentioned embodiment is just an example, and other examples are conceivable without departing from the gist of the present invention. For example, instead of TiN, TiN
It is also possible to form O as a film.
【0031】[0031]
【発明の効果】以上述べたように、本発明の密着層/バ
リヤ層連続形成法によれば、例えばTiとTiNを連続
で形成するチャンバをTiNがパーティクルにならない
ようにTiで押え込んでいるので、処理枚数が増えても
パーティクルの発生が抑えられる。従って、メンテナン
ス頻度も少なくて済みスループットも向上する。ひいて
は信頼性の良い電子デバイスを高歩留まりで生産性良く
製造することができる。As described above, according to the adhesion layer / barrier layer continuous forming method of the present invention, for example, a chamber for continuously forming Ti and TiN is pressed with Ti so that TiN does not become particles. Therefore, the generation of particles can be suppressed even if the number of processed sheets increases. Therefore, the maintenance frequency is low and the throughput is improved. As a result, highly reliable electronic devices can be manufactured with high yield and high productivity.
【図1】本発明の実施例の工程を示す断面図。FIG. 1 is a sectional view showing a process of an embodiment of the present invention.
【図2】本発明の実施例1で用いるECR CVD装置
の一例の構成図。FIG. 2 is a configuration diagram of an example of an ECR CVD apparatus used in Example 1 of the present invention.
【図3】本発明の実施例2で用いる2チャンバのバイア
スECR CVD装置の一例の構成図。FIG. 3 is a configuration diagram of an example of a two-chamber bias ECR CVD apparatus used in a second embodiment of the present invention.
【図4】従来技術を示す断面図。FIG. 4 is a sectional view showing a conventional technique.
【図5】従来技術の問題点を示す断面図。FIG. 5 is a cross-sectional view showing a problem of the conventional technique.
1a…Ti膜 1b…TiN膜 2…配線材料層(Blk−W膜) 2a…ボイド 3…層間膜(SiO2膜) 4…コンタクトホール 10…半導体基板 11…拡散層1a ... Ti film 1b ... TiN film 2 ... Wiring material layer (Blk-W film) 2a ... Void 3 ... Interlayer film (SiO 2 film) 4 ... Contact hole 10 ... Semiconductor substrate 11 ... Diffusion layer
Claims (1)
該プラズマを用いてTi及びTi合金膜形成の処理プロ
セスを行なう装置にて、成膜の回数を重ねてゆく過程
で、Tiのダミー成膜を入れることを特徴とするECR
プラズマ処理方法。1. A plasma is generated by ECR discharge,
ECR is characterized in that a dummy film formation of Ti is introduced in the process of stacking the number of film formations in an apparatus for performing a process for forming a Ti and Ti alloy film using the plasma.
Plasma processing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04087394A JP3127557B2 (en) | 1992-04-09 | 1992-04-09 | ECR plasma processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04087394A JP3127557B2 (en) | 1992-04-09 | 1992-04-09 | ECR plasma processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05291182A true JPH05291182A (en) | 1993-11-05 |
JP3127557B2 JP3127557B2 (en) | 2001-01-29 |
Family
ID=13913669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04087394A Expired - Fee Related JP3127557B2 (en) | 1992-04-09 | 1992-04-09 | ECR plasma processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3127557B2 (en) |
-
1992
- 1992-04-09 JP JP04087394A patent/JP3127557B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3127557B2 (en) | 2001-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6355571B1 (en) | Method and apparatus for reducing copper oxidation and contamination in a semiconductor device | |
JP3221025B2 (en) | Plasma process equipment | |
US6319728B1 (en) | Method for treating a deposited film for resistivity reduction | |
US7484513B2 (en) | Method of forming titanium film by CVD | |
KR20030001939A (en) | Method And Apparatus For Manufacturing Barrier Layer Of Semiconductor Device | |
JPH1187341A (en) | Film formation and film-forming apparatus | |
JPH0922896A (en) | Method of selective forming of metal film | |
JPH02281627A (en) | Manufacture of semiconductor device | |
JP3492634B2 (en) | Method for filling a gap on a semiconductor wafer | |
JPH0697111A (en) | Formation of barrier metal | |
JP3085364B2 (en) | Cleaning method for CVD equipment | |
JP3381774B2 (en) | Method of forming CVD-Ti film | |
JP2006156486A (en) | Substrate processing method and method of manufacturing semiconductor device | |
JP2004363558A (en) | Manufacturing method of semiconductor device, and cleaning method of plasma etching device | |
JP2000058650A (en) | Semiconductor device, and method and device for manufacturing the device | |
US7033939B2 (en) | Chemistry for chemical vapor deposition of titanium containing films | |
US6355553B1 (en) | Method of forming a metal plug in a contact hole | |
TW202043520A (en) | Methods and apparatus for filling a feature disposed in a substrate | |
JPH11330047A (en) | Etching apparatus and method thereof | |
JP3449736B2 (en) | Metal plug formation method | |
JPH05291182A (en) | Ecr plasma treating method | |
JPH05267220A (en) | Method of forming sealing layer and metal plug in semiconductor device | |
JP2002064067A (en) | Conditioned chamber for improving chemical vapor deposition | |
JPH05343354A (en) | Close contact layer of semiconductor device and forming method for metal plug | |
JP4312291B2 (en) | Film formation method by plasma CVD |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |