JPH05291117A - Projection exposure method and its equipment - Google Patents
Projection exposure method and its equipmentInfo
- Publication number
- JPH05291117A JPH05291117A JP4094067A JP9406792A JPH05291117A JP H05291117 A JPH05291117 A JP H05291117A JP 4094067 A JP4094067 A JP 4094067A JP 9406792 A JP9406792 A JP 9406792A JP H05291117 A JPH05291117 A JP H05291117A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- projection exposure
- heating
- mirror
- exposure apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
- G03F7/70883—Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
- G03F7/70891—Temperature
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ウェハ上に微細パター
ンを転写する投影露光装置に係り、特に、X線領域ある
いは真空紫外領域のビームを用いた解像力の高い投影露
光方法およびその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus for transferring a fine pattern onto a wafer, and more particularly to a projection exposure method and apparatus having a high resolving power using a beam in the X-ray region or vacuum ultraviolet region.
【0002】[0002]
【従来の技術】マスク上に描かれた半導体素子等の回路
パターンをウェハ上に転写する投影露光装置には、解像
力が高く微細なパターンの転写が可能な性能が要求され
る。この露光装置は、回路パターンの5倍の大きさの原
画が描かれているマスクを用いて、縮小投影レンズを介
してウェハ上にパターンを形成していく縮小投影露光装
置が主に用いられている。一般に、投影レンズの開口数
(NA)が大きいほど、あるいは露光光の波長が短いほ
ど解像力は向上する。ここで、NAを大きくする方法は
パターン転写時に焦点深度の低下をもたらすので、その
大きさには限界がある。そこで、X線等の短波長のビー
ムを用いて解像力を向上させる検討が盛んに行なわれて
きた。しかし、波長が短いほどビームは吸収されやすく
なるので、水銀ランプを光源とするような従来の露光装
置のように透過型レンズによる結像光学系を実現するこ
とは難しい。そこで、反射型結像光学系を用いる方法が
提案されてきた。2. Description of the Related Art A projection exposure apparatus for transferring a circuit pattern of a semiconductor element or the like drawn on a mask onto a wafer is required to have a high resolution and a capability of transferring a fine pattern. This exposure apparatus is mainly a reduction projection exposure apparatus that forms a pattern on a wafer through a reduction projection lens using a mask on which an original image that is five times the size of a circuit pattern is drawn. There is. Generally, the larger the numerical aperture (NA) of the projection lens or the shorter the wavelength of the exposure light, the higher the resolution. Here, the method of increasing the NA causes a decrease in the depth of focus at the time of transferring the pattern, and therefore the size thereof is limited. Therefore, studies have been actively conducted to improve the resolution by using a short wavelength beam such as X-rays. However, the shorter the wavelength, the more easily the beam is absorbed, so it is difficult to realize an imaging optical system using a transmissive lens like a conventional exposure apparatus using a mercury lamp as a light source. Therefore, a method using a reflection type imaging optical system has been proposed.
【0003】X線を用いることを前提とした従来の反射
型結像光学系は、特開昭63−18626号公報や特開昭63−3
12638号公報に開示されている。この従来例は、マスク
パターンをウェハ上に転写する結像光学系の構成につい
て開示されている。A conventional reflection type image forming optical system based on the assumption that X-rays are used is disclosed in JP-A-63-18626 and JP-A-63-3.
It is disclosed in Japanese Patent No. 12638. This conventional example discloses the configuration of an imaging optical system that transfers a mask pattern onto a wafer.
【0004】[0004]
【発明が解決しようとする課題】上記従来例は、X線を
集光させてパターンを結像する反射型結像光学系の詳細
な構成を開示している。また、反射型結像光学系を構成
する反射鏡は多層膜鏡であってその反射率が高くないた
めにエネルギを吸収して温度が上昇するため、反射鏡を
冷却する必要があることも示している。この冷却は、反
射鏡のわずかな熱変形をも防止する上で重要である。し
かし、実際の露光に際しては、X線等の露光用ビームが
照射されてパターン転写が行なわれている間だけ反射鏡
がエネルギを吸収し、温度上昇の要因となる。ウェハ上
の1ヵ所の露光位置から隣の露光位置へ移動する場合、
あるいは、ウェハを交換する際は、露光用ビームは遮断
されているので反射鏡の温度上昇は起こらない。このよ
うに、反射鏡の温度上昇の要因となるエネルギ吸収は間
歇的に起こる。すなわち、反射鏡の温度変化に起因する
反射鏡の熱変形は繰返し生じる。The above-mentioned conventional example discloses a detailed structure of a reflection type image forming optical system for forming a pattern by condensing X-rays. It also shows that the reflective mirror that composes the reflective imaging optical system is a multilayer mirror and its reflectance is not high, so energy is absorbed and the temperature rises, so it is necessary to cool the reflective mirror. ing. This cooling is important in preventing even a slight thermal deformation of the reflecting mirror. However, in the actual exposure, the reflecting mirror absorbs energy only while the exposure beam such as X-rays is irradiated and the pattern transfer is performed, which causes a temperature rise. When moving from one exposure position on the wafer to the next exposure position,
Alternatively, when the wafer is replaced, the temperature of the reflecting mirror does not rise because the exposure beam is blocked. In this way, energy absorption that causes the temperature rise of the reflecting mirror occurs intermittently. That is, the thermal deformation of the reflecting mirror due to the temperature change of the reflecting mirror occurs repeatedly.
【0005】この従来例は、反射鏡が定常的にエネルギ
を吸収する場合について有効であるが、実際の間歇的に
エネルギを吸収する場合の温度制御については何ら考慮
されていない。このため、反射鏡の形状精度を一定に保
つことができず、微細パターンを安定に転写することが
できないという問題があった。This conventional example is effective in the case where the reflecting mirror constantly absorbs energy, but no consideration is given to the temperature control in the case of intermittently absorbing energy in practice. Therefore, there has been a problem that the shape accuracy of the reflecting mirror cannot be kept constant and a fine pattern cannot be transferred stably.
【0006】本発明の目的は、露光用ビームの照射の有
無にかかわらず反射鏡の温度を一定に保って熱変形を防
止し、反射鏡の形状精度を常に保つことにより高い信頼
性のもとに微細パターンを転写できる投影露光方法およ
びその装置を提供することにある。An object of the present invention is to maintain high reliability by keeping the temperature of the reflecting mirror constant regardless of the irradiation of the exposure beam to prevent thermal deformation and always maintaining the shape accuracy of the reflecting mirror. It is an object of the present invention to provide a projection exposure method and an apparatus therefor capable of transferring a fine pattern onto a substrate.
【0007】[0007]
【課題を解決するための手段】上記課題は、前記反射鏡
に冷却手段を設けると同時に、X線等の露光用ビームが
遮断されている場合、あるいは、前記反射鏡に入射する
露光用ビームのエネルギが少ない場合でも、前記反射鏡
が所定量のエネルギを吸収できるように反射鏡を加熱す
る手段を設けることにより達成される。SUMMARY OF THE INVENTION The above-mentioned problems are solved by providing a cooling means on the reflecting mirror and simultaneously blocking the exposure beam such as X-rays, or the exposure beam incident on the reflecting mirror. Even if the energy is low, it is achieved by providing means for heating the mirror so that the mirror can absorb a certain amount of energy.
【0008】[0008]
【作用】上記反射鏡を加熱するための加熱手段は、その
加熱量をX線等の露光用ビーム照射量に応じて変化させ
ることにより、常に前記反射鏡に所定量のエネルギを吸
収させる。さらに、反射鏡の裏面側に冷却手段を設ける
ことによって温度勾配を一定にし熱的定常状態を保って
いるので、反射鏡の形状誤差は生じない。この結果、結
像光学系の性能劣化は回避され、精度よく微細パターン
の転写が行なわれる。The heating means for heating the reflecting mirror causes the reflecting mirror to always absorb a predetermined amount of energy by changing the heating amount according to the irradiation amount of the exposure beam such as X-rays. Further, since the cooling means is provided on the back side of the reflecting mirror to keep the temperature gradient constant and keep the thermal steady state, the shape error of the reflecting mirror does not occur. As a result, the performance deterioration of the imaging optical system is avoided, and the fine pattern is accurately transferred.
【0009】[0009]
【実施例】図1は、X線源1として電子蓄積リングを用
い、そこから放射されるX線(シンクロトロン放射光)
を露光光として用いる本発明の微細パターン転写装置を
示す図である。X線源1から放射されたX線は、照明光
学系として作用する楕円面鏡2で反射して、第1の基板
であるマスク3を照明する。X線源1は、電子蓄積リン
グに限られることなく、例えばレーザプラズマX線源等
の他のX線源を用いてもよい。楕円面鏡2はトロイダル
面鏡でもよいし、また、複数枚の反射鏡で構成してもよ
い。マスク3からの反射光は、凹面鏡6,凸面鏡7,凹
面鏡8および平面鏡9から構成される反射型結像光学系
10を通して第2の基板であるウェハ11に到達する。
その結果、マスク3上の照明された領域に描かれている
パターンがウェハ11上に転写される。マスク3上の照
明領域が狭い場合は、マスク3を搭載したステージ4と
ウェハ11を載置したウェハ載置台12を反射型結像光
学系10の縮小倍率にあわせて同期走査させることによ
り、マスク3上のパターンを全てウェハ11上に転写で
きる。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an electron storage ring used as an X-ray source 1, and X-rays emitted from the electron storage ring (synchrotron radiation).
It is a figure which shows the fine pattern transfer apparatus of this invention which uses as an exposure light. X-rays emitted from the X-ray source 1 are reflected by the ellipsoidal mirror 2 acting as an illumination optical system to illuminate the mask 3, which is the first substrate. The X-ray source 1 is not limited to the electron storage ring, and another X-ray source such as a laser plasma X-ray source may be used. The ellipsoidal mirror 2 may be a toroidal surface mirror, or may be composed of a plurality of reflecting mirrors. The reflected light from the mask 3 reaches the wafer 11, which is the second substrate, through the reflective imaging optical system 10 including the concave mirror 6, the convex mirror 7, the concave mirror 8 and the plane mirror 9.
As a result, the pattern drawn in the illuminated area on the mask 3 is transferred onto the wafer 11. When the illumination area on the mask 3 is narrow, the stage 4 on which the mask 3 is mounted and the wafer mounting table 12 on which the wafer 11 is mounted are synchronously scanned according to the reduction magnification of the reflective imaging optical system 10. All the patterns on 3 can be transferred onto the wafer 11.
【0010】ウェハ載置台12はウェハ11の面と直角
方向に移動できるzステージ15上に固定され、zステ
ージ15はウェハ11の面方向に移動可能なxyステー
ジ16上に搭載されている。ウェハ11の載置位置誤差
は裏面に形成されているマークを検出光学系20を介し
てベース19に固定された位置検出器21で検出され、
その検出結果は制御系22に送られる。一方、ウェハ1
1の移動位置の計測は、レーザ測長器13でステージ1
5上に固定されたミラー14の位置を測定することによ
り行なわれ、その結果は常に制御系22に送られる。制
御系22は、マスク駆動手段5,zステージ駆動手段1
7およびxyステージ駆動手段18を制御することによ
り、マスク3とウェハ11を所望の位置関係に保つ。The wafer mounting table 12 is fixed on a z stage 15 which is movable in a direction perpendicular to the surface of the wafer 11, and the z stage 15 is mounted on an xy stage 16 which is movable in the surface direction of the wafer 11. The mounting position error of the wafer 11 is detected by the position detector 21 fixed to the base 19 via the detection optical system 20 for the mark formed on the back surface.
The detection result is sent to the control system 22. On the other hand, wafer 1
The measurement of the moving position of No. 1 is performed by the laser length measuring machine 13 at the stage 1
This is done by measuring the position of the mirror 14 fixed on the mirror 5, the result of which is always sent to the control system 22. The control system 22 includes the mask driving means 5 and the z stage driving means 1.
The mask 3 and the wafer 11 are maintained in a desired positional relationship by controlling the 7 and the xy stage driving means 18.
【0011】ここで、反射面は全てMo(モリブデン)
とSi(シリコン)とを交互に積層させた多層膜構造体
とし、波長14nmのX線に対して、50%以上の反射
率が得られるようにした。また、凹面鏡6,凸面鏡7,
凹面鏡8の面は、いずれも一つの中心軸のまわりに回転
軸対称に配置された面、あるいはその一部を切り出した
面とした。Here, the reflective surfaces are all Mo (molybdenum).
And Si (silicon) are alternately laminated to form a multi-layer film structure so that a reflectance of 50% or more can be obtained for X-rays having a wavelength of 14 nm. In addition, the concave mirror 6, the convex mirror 7,
The surfaces of the concave mirrors 8 are surfaces arranged symmetrically about one central axis about the axis of rotation, or surfaces cut out from a part thereof.
【0012】図2は、図1に示した微細パターン転写装
置のうち、凹面鏡6,凸面鏡7,凹面鏡8による結像関
係のみを示す部分を抽出して示した図である。反射鏡9
はx線の進行方向を変えるだけで結像性能を支配するも
のではないので、図2では省略している。ここで、各光
学素子の間の距離は光学系の中心軸上の距離で表わすこ
ととする。図2に示すように、マスク3に相当する物体
面300と凹面鏡6との間の距離をt1、凹面鏡6から
凸面鏡7までの距離をt2、凸面鏡7から凹面鏡8まで
の距離をt3 、凹面鏡8からウェハ11の表面に相当す
る像面110までの距離をt4 とし、凹面鏡6,凸面鏡
7,凹面鏡8の面頂点の曲率半径をそれぞれr1,r2,
r3,さらに、それぞれの面の非球面量を表わす円錐定
数をc1,c2,c3とすると、本実施例ではパラメータ
の値を以下のように選んだ。FIG. 2 is a diagram showing an extracted portion of the fine pattern transfer apparatus shown in FIG. 1, which shows only the image forming relationship by the concave mirror 6, the convex mirror 7, and the concave mirror 8. Reflector 9
Is not shown in FIG. 2 because it does not control the imaging performance only by changing the traveling direction of x-rays. Here, the distance between the optical elements is represented by the distance on the central axis of the optical system. As shown in FIG. 2, the distance between the object surface 300 corresponding to the mask 3 and the concave mirror 6 is t 1 , the distance from the concave mirror 6 to the convex mirror 7 is t 2 , and the distance from the convex mirror 7 to the concave mirror 8 is t 3. , The distance from the concave mirror 8 to the image plane 110 corresponding to the surface of the wafer 11 is t 4, and the radius of curvature of the apex of the concave mirror 6, the convex mirror 7 and the concave mirror 8 is r 1 , r 2 , respectively.
If r 3 , and the conic constants representing the aspherical amount of each surface are c 1 , c 2 , and c 3 , the parameter values are selected as follows in this embodiment.
【0013】t1=1000.0mm, t2=−149.863m
m, t3=70.003mm t4=−120.951mm r1=−393.970mm, r2=108.6567mm, r3=
−149.640mm c1=−0.9430, c2=−0.09193, c3=
0.14273 図2に示す系だけでは、像面110に沿って移動位置決
めされるウェハ11が物体面300と凹面鏡6との間の
光路をさえぎる可能性があるので、実際には図1に示す
ように平面鏡9を挿入してウェハ11の移動方向をxy
面内にしている。平面鏡9は、光源1とマスク3の間に
配置することもできる。T 1 = 1000.0 mm, t 2 = -149.863 m
m, t 3 = 70.003mm t 4 = -120.951mm r 1 = -393.970mm, r 2 = 108.6567mm, r 3 =
-149.640 mm c 1 = -0.9430, c 2 = -0.09193, c 3 =
0.14273 In the system shown in FIG. 2 alone, since the wafer 11 which is moved and positioned along the image plane 110 may block the optical path between the object plane 300 and the concave mirror 6, as shown in FIG. The plane mirror 9 is inserted and the movement direction of the wafer 11 is set to xy.
It is in the plane. The plane mirror 9 can also be arranged between the light source 1 and the mask 3.
【0014】凹面鏡6,凸面鏡7,凹面鏡8のX線反射
率は約50%であるから、残りのX線エネルギは多層膜
鏡に吸収されることになる。ここで、図1に示すよう
に、凹面鏡6の反射面とは異なる面には冷却手段32が
設けられている。この冷却手段32は、その中を低温の
液体または気体等の流体を流すことによって凹面鏡6の
裏面を冷却している。一方、加熱手段31は凹面鏡6の
反射面に熱エネルギを与える熱源であり、露光用X線の
光路をさえぎらないように配置されている。Since the X-ray reflectance of the concave mirror 6, the convex mirror 7, and the concave mirror 8 is about 50%, the remaining X-ray energy is absorbed by the multilayer mirror. Here, as shown in FIG. 1, cooling means 32 is provided on the surface of the concave mirror 6 different from the reflecting surface. The cooling means 32 cools the back surface of the concave mirror 6 by flowing a fluid such as a low temperature liquid or gas through the cooling means 32. On the other hand, the heating means 31 is a heat source that gives heat energy to the reflecting surface of the concave mirror 6, and is arranged so as not to interrupt the optical path of the exposure X-ray.
【0015】加熱手段31は、図1に示すように凹面鏡
6から離れた位置からエネルギビームを照射するもので
もよいし、または凹面鏡6の縁から直接加熱するもので
もよい。加熱量は、加熱制御手段33によって制御され
ている。すなわち、X線のマスクへの照射を制御するシ
ャッタ30が開いてパターン転写が行なわれているとき
は、加熱量を低下あるいはゼロにし、シャッタ30が閉
じているときは加熱量を多くする。この結果、シャッタ
30の開閉にかかわらず常に一定量のエネルギが凹面鏡
6の反射面に注入される。図1には示していないが、凹
面鏡6以外の多層膜鏡についても、凹面鏡6と同様の反
射面の加熱、裏面の冷却が行なわれている。また、マス
ク3や照明用の楕円面鏡2も同様の加熱と冷却を行なっ
てもよい。シャッタの開閉や加熱量の増減等は、制御系
22によって制御される。The heating means 31 may be one that irradiates the energy beam from a position away from the concave mirror 6 as shown in FIG. 1, or one that heats directly from the edge of the concave mirror 6. The heating amount is controlled by the heating control means 33. That is, when the shutter 30 that controls the irradiation of the mask with X-rays is opened and pattern transfer is being performed, the heating amount is reduced or reduced to zero, and when the shutter 30 is closed, the heating amount is increased. As a result, a constant amount of energy is constantly injected into the reflecting surface of the concave mirror 6 regardless of whether the shutter 30 is opened or closed. Although not shown in FIG. 1, with respect to the multilayer film mirrors other than the concave mirror 6, the reflective surface is heated and the rear surface is cooled in the same manner as the concave mirror 6. Further, the mask 3 and the ellipsoidal mirror 2 for illumination may be similarly heated and cooled. The control system 22 controls opening / closing of the shutter and increase / decrease of the heating amount.
【0016】本実施例では、多層膜鏡に吸収させる一定
のエネルギ量は、マスク3が全面反射のときに各多層膜
鏡に吸収されるエネルギと同量となるようにした。この
エネルギ量は、露光に用いるマスクの反射部の面積に応
じて適宜設定してもよい。In this embodiment, the constant amount of energy absorbed by the multilayer film mirrors is made equal to the amount of energy absorbed by each multilayer film mirror when the mask 3 is totally reflected. This amount of energy may be appropriately set according to the area of the reflecting portion of the mask used for exposure.
【0017】図3は、凹面鏡6の断面における温度分布
を示す図である。反射面は、露光用X線または加熱手段
31からの熱エネルギ34の吸収によって常に裏面より
高い一定温度に保たれている。一方、裏面は冷却されて
いるから、温度分布35は露光の有無にかかわらず変化
しない。このため、各反射鏡の形状は変化しないから、
反射型結像光学系10の結像性能の劣化が回避される。
反射面の温度は、多層膜の界面での相互拡散が生じない
ように設定される。また、反射面はこの温度分布で設計
形状となるように製作されている。本発明で、反射面を
高温に保つと、X線等のビームの照射によって生じやす
い炭素付着を低減することもできる。FIG. 3 is a diagram showing the temperature distribution in the cross section of the concave mirror 6. The reflecting surface is always kept at a constant temperature higher than that of the back surface by absorbing the X-ray for exposure or the thermal energy 34 from the heating means 31. On the other hand, since the back surface is cooled, the temperature distribution 35 does not change regardless of the presence or absence of exposure. Therefore, since the shape of each reflecting mirror does not change,
Degradation of the imaging performance of the reflective imaging optical system 10 is avoided.
The temperature of the reflecting surface is set so that mutual diffusion does not occur at the interface of the multilayer film. Further, the reflecting surface is manufactured so as to have a designed shape with this temperature distribution. In the present invention, if the reflecting surface is kept at a high temperature, it is possible to reduce carbon deposition that is likely to occur due to irradiation with a beam such as X-ray.
【0018】尚、パターン転写とは通常ウェハ上に塗布
されたレジストにX線等のビームを照射して感光させて
潜像を作ることであるが、本発明はX線を用いてマスク
パターンの像をウェハ上に形成する光学系に関するもの
であるから、レジストの使用に限ることなく、例えば、
X線照射による試料表面の直接加工やX線を励起光とす
る加工等にも適用できる。The pattern transfer is usually to irradiate a resist coated on a wafer with a beam such as X-rays and expose the resist to form a latent image. However, the present invention uses X-rays to form a mask pattern. Since it relates to an optical system for forming an image on a wafer, it is not limited to the use of a resist, for example,
It can also be applied to direct processing of the sample surface by X-ray irradiation, processing using X-rays as excitation light, and the like.
【0019】[0019]
【発明の効果】本発明によれば、X線領域あるいは真空
紫外領域のビームと多層膜鏡を用いてパターン転写を行
なう装置において、多層膜鏡の温度分布が時間的に一定
に保たれるように冷却手段と加熱量が制御できる加熱手
段を設けたので露光光学系の熱変形による性能劣化が回
避される。According to the present invention, the temperature distribution of the multi-layer film mirror can be kept constant over time in an apparatus for performing pattern transfer using a beam in the X-ray region or the vacuum ultraviolet region and the multi-layer film mirror. Since the cooling means and the heating means capable of controlling the heating amount are provided in the above, performance deterioration due to thermal deformation of the exposure optical system is avoided.
【図1】本発明の一実施例である投影露光装置のブロッ
ク図。FIG. 1 is a block diagram of a projection exposure apparatus that is an embodiment of the present invention.
【図2】投影露光装置の結像光学系における主光線の進
行経路を示す説明図。FIG. 2 is an explanatory diagram showing a traveling path of a chief ray in an imaging optical system of a projection exposure apparatus.
【図3】結像光学系を構成する反射鏡の断面における温
度分布を示す説明図。FIG. 3 is an explanatory diagram showing a temperature distribution in a cross section of a reflecting mirror which constitutes the imaging optical system.
1…X線源、2…楕円面鏡、3…マスク、6…凹面鏡、
7…凸面鏡、8…凹面鏡、9…平面鏡、11…ウェハ、
30…シャッタ、31…加熱手段、32…冷却手段、3
3…加熱制御手段、35…温度分布曲線。1 ... X-ray source, 2 ... Ellipsoidal mirror, 3 ... Mask, 6 ... Concave mirror,
7 ... Convex mirror, 8 ... Concave mirror, 9 ... Plane mirror, 11 ... Wafer,
30 ... Shutter, 31 ... Heating means, 32 ... Cooling means, 3
3 ... Heating control means, 35 ... Temperature distribution curve.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 瀬谷 英一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 片桐 創一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eiichi Seya 1-280 Higashi Koikeku, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Inventor Soichi Katagiri 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Central Research Laboratory
Claims (7)
放射する光源を用いて、第1の基板上に描かれているパ
ターンを結像光学系を介して第2の基板上に縮小転写す
る投影露光方法であって、前記結像光学系を構成する光
学素子を連続的あるいは間歇的に加熱しながらパターン
転写を行なうことを特徴とする投影露光方法。1. A pattern which is drawn on a first substrate is reduced and transferred onto a second substrate through an imaging optical system by using a light source which emits a beam in an X-ray region or a vacuum ultraviolet region. A projection exposure method, wherein pattern transfer is performed while continuously or intermittently heating an optical element forming the imaging optical system.
タイミングは、前記X線領域あるいは前記真空紫外領域
のビームが遮断されてパターン転写が行なわれていない
ときに加熱し、前記ビームの照射によって前記パターン
転写が行なわれている間には加熱を行なわないかあるい
は加熱量を低下させる投影露光方法。2. The heating of the optical element according to claim 1, wherein when the beam in the X-ray region or the vacuum ultraviolet region is cut off and pattern transfer is not performed, the optical element is heated and irradiated with the beam. A projection exposure method in which heating is not performed or the amount of heating is reduced while the pattern transfer is being performed by.
放射する光源と、前記ビームを第1の基板上に照明する
照明手段と、前記第1の基板から反射する前記ビームあ
るいは前記第1の基板を透過するビームを第2の基板上
に集光させる結像光学手段と、前記第1の基板および前
記第2の基板を所望の位置に移動あるいは位置決めする
位置決め手段からなる投影露光装置において、前記結像
光学手段を構成する光学素子を加熱する加熱手段を含む
ことを特徴とする投影露光装置。3. A light source that emits a beam in an X-ray region or a vacuum ultraviolet region, an illuminating unit that illuminates the beam onto a first substrate, and the beam or the first beam reflected from the first substrate. A projection exposure apparatus comprising an imaging optical means for condensing a beam passing through a substrate onto a second substrate, and a positioning means for moving or positioning the first substrate and the second substrate to desired positions, A projection exposure apparatus comprising: a heating unit that heats an optical element that constitutes the image forming optical unit.
あるいは前記第1の基板から反射して前記結像光学手段
に入射する前記ビームの入射量に応じて、前記加熱手段
の加熱量を制御する加熱制御手段を設けた投影露光装
置。4. The heating amount of the heating means according to claim 3, according to an incident amount of the beam which is transmitted through the first substrate or reflected from the first substrate and is incident on the imaging optical means. A projection exposure apparatus provided with a heating control means for controlling.
手段を構成する反射鏡の反射面とはことなる面には、前
記反射鏡を冷却する冷却手段が設けられている投影露光
装置。5. A projection exposure apparatus according to claim 3, wherein a cooling means for cooling said reflecting mirror is provided on a surface different from the reflecting surface of said reflecting mirror constituting said image forming optical means.
多層膜鏡で構成されている投影露光装置。6. The projection exposure apparatus according to claim 3, wherein the reflecting mirror is a multilayer film mirror.
あるいは真空紫外領域のビームを放射する光源は、シン
クロトロン放射である投影露光装置。7. The projection exposure apparatus according to claim 3, wherein the light source that emits the beam in the X-ray region or the vacuum ultraviolet region is synchrotron radiation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4094067A JPH05291117A (en) | 1992-04-14 | 1992-04-14 | Projection exposure method and its equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4094067A JPH05291117A (en) | 1992-04-14 | 1992-04-14 | Projection exposure method and its equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05291117A true JPH05291117A (en) | 1993-11-05 |
Family
ID=14100173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4094067A Pending JPH05291117A (en) | 1992-04-14 | 1992-04-14 | Projection exposure method and its equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05291117A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1120690A2 (en) * | 1999-12-27 | 2001-08-01 | Svg Lithography Systems, Inc. | EUV reticle thermal management |
EP1376239A2 (en) * | 2002-06-25 | 2004-01-02 | Nikon Corporation | Cooling device for an optical element |
WO2004003982A1 (en) * | 2002-06-28 | 2004-01-08 | Canon Kabushiki Kaisha | Reflection mirror apparatus, exposure apparatus and device manufacturing method |
WO2004034447A1 (en) * | 2002-10-10 | 2004-04-22 | Nikon Corporation | Ultra-short ultraviolet optical system-use reflection mirror, ultra-short ultraviolet optical system, application method for ultra-short ultraviolet optical system, production method for ultra-short ultraviolet optical system, ultra-short ultraviolet exposure system, and application method for ultra-short ultraviolet exposu |
JP2005175255A (en) * | 2003-12-12 | 2005-06-30 | Canon Inc | Exposure device |
US7081949B2 (en) | 2003-01-27 | 2006-07-25 | Canon Kabushiki Kaisha | Illumination apparatus, projection exposure apparatus, and device fabrication method |
US7102727B2 (en) | 2003-03-14 | 2006-09-05 | Canon Kabushiki Kaisha | Optical system for use in exposure apparatus and device manufacturing method using the same |
US7375794B2 (en) | 2004-08-04 | 2008-05-20 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP2010517279A (en) * | 2007-01-22 | 2010-05-20 | カール・ツァイス・エスエムティー・アーゲー | Method and optical system for improving the imaging characteristics of an optical system |
JP2014165460A (en) * | 2013-02-27 | 2014-09-08 | Toshiba Corp | Semiconductor manufacturing apparatus and semiconductor device manufacturing method |
JP2014179624A (en) * | 2007-10-09 | 2014-09-25 | Carl Zeiss Smt Gmbh | Temperature control device of optical element |
-
1992
- 1992-04-14 JP JP4094067A patent/JPH05291117A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1120690A3 (en) * | 1999-12-27 | 2004-12-15 | Svg Lithography Systems, Inc. | EUV reticle thermal management |
EP1120690A2 (en) * | 1999-12-27 | 2001-08-01 | Svg Lithography Systems, Inc. | EUV reticle thermal management |
EP1376239A2 (en) * | 2002-06-25 | 2004-01-02 | Nikon Corporation | Cooling device for an optical element |
EP1376239A3 (en) * | 2002-06-25 | 2005-06-29 | Nikon Corporation | Cooling device for an optical element |
US7349063B2 (en) | 2002-06-28 | 2008-03-25 | Canon Kabushiki Kaisha | Reflection mirror apparatus, exposure apparatus and device manufacturing method |
WO2004003982A1 (en) * | 2002-06-28 | 2004-01-08 | Canon Kabushiki Kaisha | Reflection mirror apparatus, exposure apparatus and device manufacturing method |
CN100377303C (en) * | 2002-06-28 | 2008-03-26 | 佳能株式会社 | Reflection mirror apparatus, exposure apparatus and device manufacturing method |
WO2004034447A1 (en) * | 2002-10-10 | 2004-04-22 | Nikon Corporation | Ultra-short ultraviolet optical system-use reflection mirror, ultra-short ultraviolet optical system, application method for ultra-short ultraviolet optical system, production method for ultra-short ultraviolet optical system, ultra-short ultraviolet exposure system, and application method for ultra-short ultraviolet exposu |
US7081949B2 (en) | 2003-01-27 | 2006-07-25 | Canon Kabushiki Kaisha | Illumination apparatus, projection exposure apparatus, and device fabrication method |
US7102727B2 (en) | 2003-03-14 | 2006-09-05 | Canon Kabushiki Kaisha | Optical system for use in exposure apparatus and device manufacturing method using the same |
JP2005175255A (en) * | 2003-12-12 | 2005-06-30 | Canon Inc | Exposure device |
JP4666908B2 (en) * | 2003-12-12 | 2011-04-06 | キヤノン株式会社 | Exposure apparatus, measurement method, and device manufacturing method |
US7375794B2 (en) | 2004-08-04 | 2008-05-20 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP2010517279A (en) * | 2007-01-22 | 2010-05-20 | カール・ツァイス・エスエムティー・アーゲー | Method and optical system for improving the imaging characteristics of an optical system |
US8462315B2 (en) | 2007-01-22 | 2013-06-11 | Carl Zeiss Smt Gmbh | Optical system and method of use |
US8947633B2 (en) | 2007-01-22 | 2015-02-03 | Carl Zeiss Smt Gmbh | Optical system and method of use |
US9823579B2 (en) | 2007-01-22 | 2017-11-21 | Carl Zeiss Smt Gmbh | Optical system and method of use |
JP2014179624A (en) * | 2007-10-09 | 2014-09-25 | Carl Zeiss Smt Gmbh | Temperature control device of optical element |
JP2014165460A (en) * | 2013-02-27 | 2014-09-08 | Toshiba Corp | Semiconductor manufacturing apparatus and semiconductor device manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5222112A (en) | X-ray pattern masking by a reflective reduction projection optical system | |
US7250616B2 (en) | Temperature adjustment apparatus, exposure apparatus having the same, and device fabricating method | |
US6727980B2 (en) | Apparatus and method for pattern exposure and method for adjusting the apparatus | |
US6208707B1 (en) | X-ray projection exposure apparatus | |
US7265812B2 (en) | Cooling apparatus | |
JP2000349009A (en) | Exposure method and aligner | |
JP2004095993A (en) | Method for cooling optical component, apparatus for cooling optical component, and euv exposure system employing the apparatus | |
US6225027B1 (en) | Extreme-UV lithography system | |
JP2000091220A (en) | Method and apparatus of projection exposure | |
JPH05291117A (en) | Projection exposure method and its equipment | |
JP2000036449A (en) | Aligner | |
JP2001013297A (en) | Catoptric element and exposure device | |
US7319505B2 (en) | Exposure apparatus and device fabrication method | |
US7110084B2 (en) | Illumination optical system and exposure apparatus | |
JP2001052986A (en) | X-ray projection aligner | |
US7360366B2 (en) | Cooling apparatus, exposure apparatus, and device fabrication method | |
US7295284B2 (en) | Optical system, exposure apparatus using the same and device manufacturing method | |
US7027131B2 (en) | Exposure apparatus | |
JP2001110713A (en) | Reflection optical element, lighting optical device having the same, projection aligner, and device manufacturing method | |
EP1517338A2 (en) | Illumination optical system and exposure apparatus | |
JPH11238666A (en) | X-ray projection aligner | |
JP3060540B2 (en) | Fine pattern transfer method and apparatus | |
JPH06177003A (en) | Projection exposure and projection aligner exposing device | |
JPH11233416A (en) | X-ray projection aligner | |
JPH0582418A (en) | Method and device for transferring fine pattern |