JPH0529007A - Manufacture of solid electrolyte fuel cell - Google Patents

Manufacture of solid electrolyte fuel cell

Info

Publication number
JPH0529007A
JPH0529007A JP3208684A JP20868491A JPH0529007A JP H0529007 A JPH0529007 A JP H0529007A JP 3208684 A JP3208684 A JP 3208684A JP 20868491 A JP20868491 A JP 20868491A JP H0529007 A JPH0529007 A JP H0529007A
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel electrode
compact
molded body
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3208684A
Other languages
Japanese (ja)
Inventor
Ryoichi Okuyama
良一 奥山
Eiichi Nomura
栄一 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP3208684A priority Critical patent/JPH0529007A/en
Priority to EP92900502A priority patent/EP0514552B1/en
Priority to PCT/JP1991/001701 priority patent/WO1992010862A1/en
Priority to US07/915,699 priority patent/US5290323A/en
Publication of JPH0529007A publication Critical patent/JPH0529007A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To control porosity of a fuel electrode and contraction of this compound compact in the case of baking by constituting a compound compact integrally composed of an electrolytic compact and a fuel electrode compact obtained by adding slurry including metallic oxide or metal and organic substance powder to the electrolytic compact. CONSTITUTION:After an electrolytic compact is formed of slurry containing zirconia obtained by adding stabilizer, the slurry containing metallic oxide or metal and organic substance powder is poured onto the electrolytic compact, and fuel electrode compact is constituted, and a compound compact can be formed. Afterwards, it is baked, and a solid electrolyte/fuel electrode complex having a fuel electrode 7 on one surface and a solid electrolytic film 8 on the other surface is formed. Since the solid electrolytic film 8 and the fuel electrode 7 can be integrally constituted, its porosity and mechanical strength can be controlled optionally, so that high performance of a solid electrolyte fuel cell can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質燃料電池の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid oxide fuel cell.

【0002】[0002]

【従来の技術】固体電解質燃料電池としては、リン酸型
燃料電池、溶融炭酸塩型燃料電池と類似した構造の平板
型、米国のアルゴンヌ国立研究所によって提案されたモ
ノリシック型、日本の電子技術総合研究所によって開発
中の円筒多素子型、米国のウェスティングハウス社によ
って提案された円筒単素子型が知られているが、現在は
高温におけるガスシールの容易さ、スタック構成の容易
さの点でウェスティングハウス社の円筒単素子型が注目
されている。
2. Description of the Related Art Solid electrolyte fuel cells include phosphoric acid fuel cells, flat-plate fuel cells having a structure similar to molten carbonate fuel cells, monolithic fuel cells proposed by Argonne National Laboratory in the United States, and Japanese electronic technology comprehensive. The cylindrical multi-element type being developed by the laboratory and the cylindrical single-element type proposed by Westinghouse, Inc. in the United States are known, but at the present time, Westin is easy to gas seal at high temperature and easy to construct a stack. Guhouse's cylindrical single element type is receiving attention.

【0003】このような固体電解質燃料電池に用いられ
る固体電解質の製造方法としては、プラズマ溶射法、化
学蒸着法(CVD)、電気化学蒸着法(EVD)、有機
金属ジルコニウム塩の熱分解法などが知られているが、
緻密な固体電解質膜が得られる方法としては、プラズマ
溶射法、電気化学蒸着法(EVD)があるのみである。
As a method for producing a solid electrolyte used in such a solid electrolyte fuel cell, there are a plasma spraying method, a chemical vapor deposition method (CVD), an electrochemical vapor deposition method (EVD), a thermal decomposition method of an organometallic zirconium salt, and the like. Known,
The only methods for obtaining a dense solid electrolyte membrane are plasma spraying and electrochemical vapor deposition (EVD).

【0004】さらに、上記のような緻密な固体電解質膜
を作成する方法としては、図5のように安定化ジルコニ
ア粉末3をスラリーにし、基材1上に塗布して焼成する
試みもなされている。
Further, as a method of forming the dense solid electrolyte membrane as described above, an attempt has been made to make the stabilized zirconia powder 3 into a slurry as shown in FIG. .

【0005】[0005]

【発明が解決しようとする課題】上記した前者の製造方
法では、高価な製造装置を必要とするうえに、固体電解
質膜を必要とする部分と必要としない部分とを構成する
マスキングに時間がかかるため、電池の量産性に問題が
あった。
In the former manufacturing method described above, an expensive manufacturing apparatus is required, and it takes a long time to perform masking for forming a portion requiring the solid electrolyte membrane and a portion not requiring the solid electrolyte membrane. Therefore, there was a problem in mass productivity of the battery.

【0006】また、後者の製造方法では、焼成時に安定
化ジルコニア粉末3が収縮するため、基材1の上に構成
された固体電解質膜8に割れ2を生じたり、固体電解質
膜8が剥離するという問題があった。
Further, in the latter manufacturing method, the stabilized zirconia powder 3 shrinks during firing, so that cracks 2 occur in the solid electrolyte membrane 8 formed on the substrate 1 or the solid electrolyte membrane 8 peels off. There was a problem.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、安定化剤を添加したジルコニアを含有す
るスラリーを成形して電解質成形体とする工程と、前記
電解質成形体の一方の面に、金属もしくは金属酸化物と
有機物粉末とを含有するスラリーを成形して燃料極成形
体を構成し、電解質成形体と燃料極成形体とを一体化し
た複合成形体を得る工程と、この複合成形体を焼成して
固体電解質−燃料極複合体を得る工程と、この固体電解
質−燃料極複合体の固体電解質側に空気極を形成するこ
とを特徴とするものである。
In order to solve the above-mentioned problems, the present invention provides a step of forming a slurry containing a zirconia to which a stabilizer is added to form an electrolyte molded body, and one of the above-mentioned electrolyte molded bodies. A step of molding a slurry containing a metal or metal oxide and an organic powder on the surface to form a fuel electrode molded body, and obtaining a composite molded body in which an electrolyte molded body and a fuel electrode molded body are integrated; It is characterized in that the composite molded body is fired to obtain a solid electrolyte-fuel electrode composite, and an air electrode is formed on the solid electrolyte side of the solid electrolyte-fuel electrode composite.

【0008】[0008]

【作用】上記のように、本発明は、燃料極成形体中に含
有させた有機物粉末により、電解質成形体と燃料極成形
体とを一体化した複合成形体を焼成して固体電解質−燃
料極複合体とする時、前記有機物粉末が酸化されて水蒸
気、一酸化炭素もしくは二酸化炭素等として外部に放出
されるので、含有させる有機物粉末の量をコントロール
すると、燃料極側の収縮を固体電解質膜側の収縮に近似
させることができる。
As described above, according to the present invention, the solid electrolyte-fuel electrode is manufactured by firing the composite molded body in which the electrolyte molded body and the fuel electrode molded body are integrated with the organic substance powder contained in the fuel electrode molded body. When forming a composite, the organic powder is oxidized and released to the outside as water vapor, carbon monoxide, carbon dioxide, or the like. Can be approximated by the contraction of.

【0009】また、有機物粉末の粒度をコントロールす
ることにより、燃料極側の多孔度を変化させることがで
きる。
Further, the porosity on the fuel electrode side can be changed by controlling the particle size of the organic powder.

【0010】さらに、本発明は、複合成形体を焼成して
いるので、燃料極の強度が高まり基材としての作用もす
る。
Further, according to the present invention, since the composite molded body is fired, the strength of the fuel electrode is increased and it also functions as a base material.

【0011】[0011]

【実施例】図1は、本発明の固体電解質燃料電池の製造
方法によって形成した電解質成形体5の断面図で、石膏
のような吸水性を有する材料からなる型4に安定化剤と
してのイットリアを添加したジルコニア、水、分散材、
バインダー、消泡剤からなるスラリーを流し込んで一定
時間放置した後、余剰のスラリーを除去した状態を示
す。
EXAMPLE FIG. 1 is a cross-sectional view of an electrolyte molding 5 formed by the method for manufacturing a solid oxide fuel cell of the present invention, in which a mold 4 made of a material having a water absorbing property such as gypsum is used as a stabilizer for yttria. Added zirconia, water, dispersant,
A state in which a surplus slurry is removed after pouring a slurry composed of a binder and an antifoaming agent and leaving it for a certain period of time is shown.

【0012】図2は、前記電解質成形体5の一方の面、
すなわち内側の面に燃料極成形体6を形成した状態の断
面図で、金属もしくは金属酸化物と有機物粉末としての
テフロン粉末とを含有するスラリーを電解質成形体5の
内側の面に流し込んで一定時間放置した後、余剰のスラ
リーを除去して電解質成形体5と燃料極成形体6とを一
体化した複合成形体を形成した状態を示す。
FIG. 2 shows one surface of the electrolyte molded body 5,
That is, in a cross-sectional view of a state where the fuel electrode compact 6 is formed on the inner surface, a slurry containing a metal or a metal oxide and Teflon powder as an organic powder is poured into the inner surface of the electrolyte compact 5 for a predetermined time. The figure shows a state in which, after being allowed to stand, excess slurry is removed to form a composite molded body in which the electrolyte molded body 5 and the fuel electrode molded body 6 are integrated.

【0013】図3は、図2の複合成形体を乾燥させて型
4を除去した後焼成して得た固体電解質−燃料極複合体
の断面図で、内側に多孔性の燃料極7が、外側に緻密な
固体電解質膜8が形成される。
FIG. 3 is a cross-sectional view of a solid electrolyte-fuel electrode composite obtained by drying the composite molded body of FIG. 2 to remove the mold 4 and then firing the composite molded body. A dense solid electrolyte membrane 8 is formed on the outside.

【0014】前記複合成形体の焼成時、燃料極成形体6
中に含有させたテフロン粉末は酸化されて一酸化炭素も
しくは二酸化炭素、水蒸気、フッ化水素として外部に放
出されるので、含有させるテフロン粉末の量を増加させ
ると、燃料極7側の収縮率は大きくなる。これに対し
て、固体電解質膜8側の収縮率はほぼ一定であるから、
燃料極成形体6中に含有させるテフロン粉末の量をコン
トロールし、燃料極7側の収縮率を固体電解質膜8側の
収縮率に近似させると、多孔性の燃料極7と緻密な固体
電解質膜8とを同時に製造することができる。
At the time of firing the composite molded body, the fuel electrode molded body 6
The Teflon powder contained therein is oxidized and released to the outside as carbon monoxide or carbon dioxide, water vapor, and hydrogen fluoride. Therefore, if the amount of Teflon powder contained is increased, the contraction rate on the fuel electrode 7 side will decrease. growing. On the other hand, since the shrinkage rate on the solid electrolyte membrane 8 side is almost constant,
By controlling the amount of Teflon powder contained in the fuel electrode compact 6 so that the shrinkage rate on the fuel electrode 7 side is approximated to the shrinkage rate on the solid electrolyte membrane 8 side, a porous fuel electrode 7 and a dense solid electrolyte membrane are formed. 8 and 8 can be manufactured simultaneously.

【0015】一方、添加するイットリアの量に応じてジ
ルコニアを立方晶ジルコニア、正方晶ジルコニア、部分
安定化ジルコニアにすることができ、固体電解質膜8の
強度をコントロールすることができるので、前述したテ
フロン粉末の量のコントロールと併用することにより、
複合成形体の焼成時の割れや剥離を防止することがで
き、固体電解質−燃料極複合体の性能を向上させること
ができる。
On the other hand, zirconia can be cubic zirconia, tetragonal zirconia, or partially stabilized zirconia depending on the amount of yttria to be added, and the strength of the solid electrolyte membrane 8 can be controlled. By using it together with the powder amount control,
The composite molded body can be prevented from cracking or peeling during firing, and the performance of the solid electrolyte-fuel electrode composite can be improved.

【0016】また、含有させるテフロンに代えて、スラ
リーに対して難溶性である塩化ビニル、ナイロン、アク
リル等の粉末を用いても同様の効果を得ることができ
る。
The same effect can be obtained by using a powder of vinyl chloride, nylon, acrylic or the like, which is hardly soluble in the slurry, instead of Teflon to be contained.

【0017】図4は、前記固体電解質−燃料極複合体の
固体電解質膜8の外側に空気極9として、ストロンチウ
ムドープしたLaMnO3 をデイッピング法によって形
成した状態の断面図、すなわち本発明の製造方法によっ
て得られた固体電解質燃料電池の断面図である。なお、
空気極9の形成方法としては、デイッピング法以外にス
ラリー塗布法、溶射法等があり、特に限定するものでな
いことは言うまでもない。
FIG. 4 is a sectional view showing a state in which strontium-doped LaMnO 3 is formed as the air electrode 9 on the outside of the solid electrolyte membrane 8 of the solid electrolyte-fuel electrode composite by the dipping method, that is, the manufacturing method of the present invention. FIG. 3 is a cross-sectional view of a solid oxide fuel cell obtained by. In addition,
It goes without saying that the method for forming the air electrode 9 includes a slurry coating method, a thermal spraying method and the like other than the dipping method and is not particularly limited.

【0018】こうして得られた図4のような固体電解質
燃料電池を作動温度である700℃から1000℃に昇
温し、燃料極7側に燃料を、空気極9側に空気を供給す
ると、燃料によって燃料極7中の酸化ニッケルが還元さ
れる。
When the solid electrolyte fuel cell thus obtained as shown in FIG. 4 is heated from the operating temperature of 700 ° C. to 1000 ° C. and fuel is supplied to the fuel electrode 7 side and air to the air electrode 9 side, Thereby, nickel oxide in the fuel electrode 7 is reduced.

【0019】従って、図4の燃料極7と空気極9とを外
部回路に接続すると、空気極9から取り入れられた酸素
は外部回路から供給される電子を取り込んで酸素イオン
となり、この酸素イオンは固体電解質膜8を通って固体
電解質膜8と燃料極7との界面に到達する。
Therefore, when the fuel electrode 7 and the air electrode 9 of FIG. 4 are connected to an external circuit, the oxygen taken in from the air electrode 9 takes in the electrons supplied from the external circuit to become oxygen ions, and these oxygen ions It reaches the interface between the solid electrolyte membrane 8 and the fuel electrode 7 through the solid electrolyte membrane 8.

【0020】一方、この界面には燃料極7中を拡散して
きた水素もしくは一酸化炭素が存在し、この水素もしく
は一酸化炭素と前記酸素イオンとが反応して水蒸気およ
び二酸化炭素を生成するとともに、外部回路に電子を放
出するので、外部回路には空気極9を正極、燃料極7を
負極とした起電力が生じ、電池としての作用がなされる
ことになる。
On the other hand, hydrogen or carbon monoxide that has diffused in the fuel electrode 7 is present at this interface, and the hydrogen or carbon monoxide reacts with the oxygen ions to generate water vapor and carbon dioxide, and Since electrons are emitted to the external circuit, an electromotive force is generated in the external circuit with the air electrode 9 as the positive electrode and the fuel electrode 7 as the negative electrode, and the battery functions.

【0021】以上の説明は、型4を用いて複合成形体を
形成しているが、カレンダーロール等を用いてスラリー
をテープ状に成形すれば平板型の複合成形体を形成でき
ることは言うまでもない。
In the above description, the composite molded body is formed using the mold 4, but it goes without saying that a flat-plate type composite molded body can be formed by molding the slurry into a tape using a calender roll or the like.

【0022】[0022]

【発明の効果】上記した如く、本発明は緻密な固体電解
質膜8と多孔性の燃料極7とが容易に形成でき、その多
孔度は含有させる有機物粉末の粒度をコントロールする
ことによって変化させることができ、その機械的強度は
含有させる有機物粉末の量をコントロールすることによ
って変化させることができるので、高性能な固体電解質
燃料電池が得られる。
As described above, according to the present invention, the dense solid electrolyte membrane 8 and the porous fuel electrode 7 can be easily formed, and the porosity can be changed by controlling the particle size of the organic powder to be contained. Since its mechanical strength can be changed by controlling the amount of organic powder to be contained, a high performance solid electrolyte fuel cell can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】型4にスラリーを流し込んで一定時間放置して
電解質成形体5とした後、余剰のスラリーを除去した状
態の断面図である。
FIG. 1 is a cross-sectional view of a state where a slurry is poured into a mold 4 and left for a certain period of time to form an electrolyte molded body 5, and then excess slurry is removed.

【図2】図1の電解質成形体5の上にスラリーを流し込
んで一定時間放置して燃料極成形体6とした後、余剰の
スラリーを除去して複合成形体とした状態の断面図であ
る。
FIG. 2 is a cross-sectional view showing a state where a slurry is poured onto the electrolyte molded body 5 of FIG. 1 and left for a certain period of time to form a fuel electrode molded body 6, and then excess slurry is removed to form a composite molded body. .

【図3】図2の複合成形体から型4を除去した後焼成し
て得た固体電解質−燃料極複合体の断面図である。
3 is a cross-sectional view of a solid electrolyte-fuel electrode composite body obtained by firing after removing the mold 4 from the composite molded body of FIG.

【図4】固体電解質−燃料極複合体の外側に空気極9を
形成した状態の断面図である。
FIG. 4 is a cross-sectional view showing a state in which an air electrode 9 is formed outside the solid electrolyte-fuel electrode composite.

【図5】従来の固体電解質燃料電池の製造方法により製
造された固体電解質膜8の断面図である。
FIG. 5 is a cross-sectional view of a solid electrolyte membrane 8 manufactured by a conventional method for manufacturing a solid electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

4 型 5 電解質成形体 6 燃料極成形体 7 燃料極 8 固体電解質膜 9 空気極 Type 4 5 Electrolyte compact 6 Fuel electrode compact 7 Fuel pole 8 Solid electrolyte membrane 9 air poles

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 安定化剤を添加したジルコニアを含有す
るスラリーを成形して電解質成形体とする工程と、前記
電解質成形体の一方の面に、金属もしくは金属酸化物と
有機物粉末とを含有するスラリーを成形して燃料極成形
体を構成し、電解質成形体と燃料極成形体とを一体化し
た複合成形体を得る工程と、この複合成形体を焼成して
固体電解質−燃料極複合体を得る工程と、この固体電解
質−燃料極複合体の固体電解質側に空気極を形成するこ
とを特徴とする固体電解質燃料電池の製造方法。
1. A step of forming a slurry containing zirconia to which a stabilizer is added to obtain an electrolyte compact, and one surface of the electrolyte compact containing a metal or metal oxide and an organic powder. A step of forming a fuel electrode molded body by molding the slurry to obtain a composite molded body in which the electrolyte molded body and the fuel electrode molded body are integrated, and firing the composite molded body to form a solid electrolyte-fuel electrode composite body. A method for producing a solid electrolyte fuel cell, comprising the steps of obtaining and an air electrode formed on the solid electrolyte side of the solid electrolyte-fuel electrode composite.
【請求項2】 有機物粉末は、テフロン粉末、塩化ビニ
ル粉末、ナイロン粉末、アクリル粉末等であることを特
徴とする請求項第1項記載の固体電解質燃料電池の製造
方法。
2. The method for producing a solid electrolyte fuel cell according to claim 1, wherein the organic powder is Teflon powder, vinyl chloride powder, nylon powder, acrylic powder or the like.
【請求項3】 安定化剤を添加したジルコニアは立方晶
ジルコニア、正方晶ジルコニア、部分安定化ジルコニア
の単独物もしくは複数種の混合物からなることを特徴と
する請求項第1項記載の固体電解質燃料電池の製造方
法。
3. The solid electrolyte fuel according to claim 1, wherein the zirconia to which the stabilizer is added comprises cubic zirconia, tetragonal zirconia, partially stabilized zirconia alone or as a mixture of plural kinds. Battery manufacturing method.
【請求項4】 安定化剤は、イットリウム、カルシウ
ム、スカンジウム、イッテルビウム、ネオジウム、ガド
リニウムの酸化物であることを特徴とする請求項第1項
記載の固体電解質燃料電池の製造方法。
4. The method for producing a solid electrolyte fuel cell according to claim 1, wherein the stabilizer is an oxide of yttrium, calcium, scandium, ytterbium, neodymium, or gadolinium.
【請求項5】 金属酸化物もしくは金属は、ニッケルま
たはコバルトの酸化物もしくは金属ニッケルまたは金属
コバルトであることを特徴とする請求項第1項記載の固
体電解質燃料電池の製造方法。
5. The method for producing a solid oxide fuel cell according to claim 1, wherein the metal oxide or metal is an oxide of nickel or cobalt, or metal nickel or metal cobalt.
【請求項6】 焼成は、空気中または酸素を含む雰囲気
中で行うことを特徴とする請求項第1項記載の固体電解
質燃料電池の製造方法。
6. The method for producing a solid oxide fuel cell according to claim 1, wherein the firing is performed in air or an atmosphere containing oxygen.
【請求項7】 空気極は、ストロンチウムもしくはカル
シウムをドープしたLaMnO3 、LaCoO3 、Ca
MnO3 であることを特徴とする請求項第1項記載の固
体電解質燃料電池の製造方法。
7. The air electrode comprises LaMnO 3 , LaCoO 3 , Ca doped with strontium or calcium.
Claim method for producing a solid electrolyte fuel cell of claim 1 wherein characterized in that it is a MnO 3.
JP3208684A 1990-12-10 1991-07-24 Manufacture of solid electrolyte fuel cell Pending JPH0529007A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3208684A JPH0529007A (en) 1991-07-24 1991-07-24 Manufacture of solid electrolyte fuel cell
EP92900502A EP0514552B1 (en) 1990-12-10 1991-12-09 Method for manufacturing solid-state electrolytic fuel cell
PCT/JP1991/001701 WO1992010862A1 (en) 1990-12-10 1991-12-09 Method for manufacturing solid-state electrolytic fuel cell
US07/915,699 US5290323A (en) 1990-12-10 1991-12-09 Manufacturing method for solid-electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3208684A JPH0529007A (en) 1991-07-24 1991-07-24 Manufacture of solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH0529007A true JPH0529007A (en) 1993-02-05

Family

ID=16560360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3208684A Pending JPH0529007A (en) 1990-12-10 1991-07-24 Manufacture of solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH0529007A (en)

Similar Documents

Publication Publication Date Title
US5290323A (en) Manufacturing method for solid-electrolyte fuel cell
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
JP2706197B2 (en) Method of forming ceramic thin film
KR20110074528A (en) Electrolyte for an sofc battery, and method of making same
JP2000030728A (en) Making method of dense sintered film and manufacture of solid electrolyte-type fuel cell using the method
JP3050328B2 (en) Method for manufacturing solid electrolyte fuel cell
JP3050331B2 (en) Method for manufacturing solid electrolyte fuel cell
JPH0529007A (en) Manufacture of solid electrolyte fuel cell
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JPH04322061A (en) Manufacture of solid electrolytic fuel cell
JPH04315769A (en) Manufacture of solid electrolyte fuel cell
JPH0529008A (en) Manufacture of solid electrolyte fuel cell
JP3451627B2 (en) Method for manufacturing solid electrolyte fuel cell
JPH05198305A (en) Manufacture of solid electrolyte fuel cell
JPH04218264A (en) Manufacture of solid electrolyte fuel cell
JPH05144450A (en) Manufacture of fuel cell with solid electrolyte
JPH1012252A (en) Solid electrolyte fuel cell and manufacture therefor
JPH04289666A (en) Manufacture of solid electrolyte fuel battery
JPH0629031A (en) Manufacture of solid electrolyte fuel cell
JPH04289668A (en) Manufacture of solid electrolyte fuel battery
JPH0696791A (en) Solid electrolytic fuel cell and its manufacture
JPH05101841A (en) Manufacture of solid electrolytic fuel cell
JPH04218265A (en) Manufacture of solid electrolyte fuel cell
JPH09115542A (en) Manufacture of solid oxide fuel cell
JPH04289669A (en) Manufacture of solid electrolyte fuel battery