JPH05285690A - Composite material for welding and its production - Google Patents

Composite material for welding and its production

Info

Publication number
JPH05285690A
JPH05285690A JP9541392A JP9541392A JPH05285690A JP H05285690 A JPH05285690 A JP H05285690A JP 9541392 A JP9541392 A JP 9541392A JP 9541392 A JP9541392 A JP 9541392A JP H05285690 A JPH05285690 A JP H05285690A
Authority
JP
Japan
Prior art keywords
less
alloy
weight
welding
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9541392A
Other languages
Japanese (ja)
Inventor
Kazunao Kudo
和直 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9541392A priority Critical patent/JPH05285690A/en
Publication of JPH05285690A publication Critical patent/JPH05285690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To prevent the generation of nonuniform hardness, blowholes, crack of build-up parts, etc., by coating an Al alloy core material contg. Mg, Si and Cu with a copper alloy contg. copper or specific elements at specific area coverage. CONSTITUTION:The Al alloy contg. Mg, Si and Cu is used as the core material. The Al alloy core material is coated by using the copper alloy contg. the copper or at least one kind selected from Ni, Fe, Si, Ti, Cu, Mg and Mn at 0 to 10wt.% of the total weight at 8 to 50% area coverage. The copper in the coating material is preferably oxygen-free copper. The method is applicable to a build-up welding method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウムおよびア
ルミニウム合金の表面に耐摩耗性を改善するための表面
硬化層を形成する肉盛溶接法に使用する溶接用複合材お
よびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding composite material used in a build-up welding method for forming a surface hardened layer for improving wear resistance on the surfaces of aluminum and aluminum alloys, and a method for producing the same.

【0002】[0002]

【従来の技術】アルミニウムおよびアルミニウム合金は
軽量、耐食性、熱伝導性が良好なことより、自動車部
品、航空機部品等に広く使用されている。しかし、鉄鋼
材料に比べて耐摩耗性が劣るため、硬質アルマイト加
工、クロムメッキ処理等が施されたり、あるいはアルミ
ニウムの表面にミリオーダーの厚膜表面硬化層を形成す
るための表面溶融合金化法(電子ビーム、レーザービー
ム、プラズマ粉体アーク等)が実用化されている。
2. Description of the Related Art Aluminum and aluminum alloys are widely used in automobile parts, aircraft parts, etc. because of their light weight, good corrosion resistance and good thermal conductivity. However, since it is inferior in wear resistance to steel materials, it is subjected to hard alumite processing, chrome plating treatment, etc., or a surface melt alloying method for forming a thick film hardened layer of millimeter order on the surface of aluminum. (Electron beam, laser beam, plasma powder arc, etc.) have been put to practical use.

【0003】さらに、今日、簡便で汎用性に富みイニシ
ャルコストの低いTIG,MIG肉盛溶接法に適用する
ため、Al−Cu,Al−Si,Al−Ni,Al−F
e合金棒をフープ材(溶加材)として用いたオーバーレ
イ肉盛コーティングが実用化されているが、溶接時の連
続自動化の面で不可欠なフープ材の供給の面で難点があ
った。すなわち、上記合金棒は最大50cm程度の長さし
かなく、しかも脆い(合金化して脆い金属間化合物にな
る)という欠点があった。また、上記合金では比抵抗が
高いので、溶接電流を安定させることも困難であった。
Further, in order to apply to the TIG and MIG overlay welding methods which are simple and versatile and have a low initial cost, Al-Cu, Al-Si, Al-Ni and Al-F are used today.
Although overlay overlay coating using an e-alloy rod as a hoop material (filler material) has been put into practical use, it has a problem in terms of supply of the hoop material, which is essential in terms of continuous automation during welding. That is, the alloy rod has a drawback that it has a maximum length of about 50 cm and is brittle (alloying into a brittle intermetallic compound). Further, since the above-mentioned alloy has a high specific resistance, it was difficult to stabilize the welding current.

【0004】そこで、近時、図3に示すように、Cu,
Ni,Fe等の金属パイプからなる被覆材20にアルミ
ニウムの芯材21を挿入して連続的に被覆加工した複合
ワイヤーが開発されている。このものは、溶接電流が安
定化し、また非常に軟らかくリールに連続的に巻回でき
る等の利点がある。
Therefore, recently, as shown in FIG. 3, Cu,
A composite wire has been developed in which an aluminum core material 21 is inserted into a coating material 20 made of a metal pipe of Ni, Fe or the like and continuously coated. This has the advantages that the welding current is stabilized, and that it is very soft and can be continuously wound on a reel.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
複合ワイヤーを用いて、TIG,MIG溶接法により肉
盛加工を行い、表面硬化層をつくっても、表面硬化層の
硬度が不均一であり、またブローホールや肉盛部の割れ
等が生じるという欠点があった。本発明の目的は、上述
の技術的課題を解決し、表面硬化層の硬度の不均一、ブ
ローホール、肉盛部の割れ等の発生を防止した溶接用複
合材およびその製造方法を提供することである。
However, even if a hardened surface layer is formed by overlaying a conventional composite wire by TIG or MIG welding method, the hardness of the hardened surface layer is not uniform, Further, there is a defect that blowholes and build-up portions are cracked. An object of the present invention is to solve the above technical problems and to provide a welding composite material in which the occurrence of nonuniform hardness of a surface hardened layer, blowholes, cracks in a buildup portion, and the like, and a manufacturing method thereof. Is.

【0006】[0006]

【課題を解決するための手段および作用】上記の目的を
達成するための本発明の溶接用複合材は、Mg,Siお
よびCuを含むアルミニウム合金を芯材とし、この芯材
を、Ni,Fe,Si,Ti,Cr,MgおよびMnよ
りなる群から選ばれる少なくとも1種を総量に対して0
〜10重量%の割合で含む銅または銅合金にて面積被覆
率8〜50%で被覆したものである。
The welding composite material of the present invention for achieving the above object has an aluminum alloy containing Mg, Si and Cu as a core material, and the core material is made of Ni, Fe. , Si, Ti, Cr, Mg and Mn, at least one selected from the group is 0 based on the total amount.
The area coverage is 8 to 50% with copper or a copper alloy containing 10 to 10% by weight.

【0007】本発明の他の溶接用複合材は、Mg,Si
およびCuを含むアルミニウム合金を芯材とし、この芯
材を、無酸素銅または無酸素銅合金にて面積被覆率8〜
50%で被覆したものである。本発明のさらに他の溶接
用複合材は、Mg,SiおよびCuを含むアルミニウム
合金を芯材とし、この芯材を、Ni合金(Ni:99重
量%以上)、Fe合金(Fe:99重量%以上)、Ti
合金(Ti:99重量%以上)およびFe−Cr−Ni
合金(Cr:25重量%以下)よりなる群から選ばれる
少なくとも1種(換言すれば、少なくとも1層)にて面
積被覆率8〜50%で被覆したものである。
Another welding composite material of the present invention is Mg, Si.
And an aluminum alloy containing Cu as a core material, and the area coverage of the core material with oxygen-free copper or oxygen-free copper alloy
It is coated with 50%. Still another welding composite material of the present invention has an aluminum alloy containing Mg, Si and Cu as a core material, and the core material is made of a Ni alloy (Ni: 99% by weight or more) and an Fe alloy (Fe: 99% by weight). Above), Ti
Alloy (Ti: 99% by weight or more) and Fe-Cr-Ni
The area coverage is 8 to 50% with at least one kind (in other words, at least one layer) selected from the group consisting of alloys (Cr: 25% by weight or less).

【0008】前記アルミニウム合金は、Mg:1.5〜
5.0重量%、Si:1.0〜5.0重量%およびC
u:1.0〜5.0重量%を1種以上含むアルミニウム
合金である。前記無酸素銅または無酸素銅合金は、酸素
量が10ppm以下、Pb:10ppm以下およびP:
3ppm以下を含有する。
The aluminum alloy is Mg: 1.5-
5.0 wt%, Si: 1.0-5.0 wt% and C
u: An aluminum alloy containing one or more of 1.0 to 5.0% by weight. The oxygen-free copper or oxygen-free copper alloy has an oxygen content of 10 ppm or less, Pb: 10 ppm or less, and P:
Contains 3 ppm or less.

【0009】前記Ni合金は、C:0.1重量%以下、
Si:0.3重量%以下、Mn:0.2重量%以下、
P:0.02重量%以下、S:0.01重量%以下を含
有し、残部99.0重量%以上がNiである。前記Fe
合金は、C:0.2重量%以下、Si:0.3重量%以
下、Mn:0.2重量%以下、P:0.02重量%以
下、S:0.01重量%以下を含有し、残部99.0重
量%以上がFeである。
The Ni alloy is C: 0.1% by weight or less,
Si: 0.3 wt% or less, Mn: 0.2 wt% or less,
P: 0.02% by weight or less, S: 0.01% by weight or less, and the balance 99.0% by weight or more is Ni. Fe
The alloy contains C: 0.2 wt% or less, Si: 0.3 wt% or less, Mn: 0.2 wt% or less, P: 0.02 wt% or less, S: 0.01 wt% or less. The balance is 99.0% by weight or more of Fe.

【0010】前記Ti合金は、C:0.1重量%以下、
Si:0.3重量%以下、Mn:0.2重量%以下、
P:0.02重量%以下、S:0.01重量%以下を含
有し、残部99.0重量%以上がTiである。前記Fe
−Cr−Ni合金は、Cr:10〜25重量%以下、N
i:10重量%以下、C:0.1重量%以下、Si:
0.3重量%以下、Mn:0.2重量%以下、P:0.
02重量%以下、S:0.01重量%以下を含有し、残
部がFeである。
The Ti alloy contains C: 0.1% by weight or less,
Si: 0.3 wt% or less, Mn: 0.2 wt% or less,
P: 0.02% by weight or less, S: 0.01% by weight or less, and the balance 99.0% by weight or more is Ti. Fe
-Cr-Ni alloy, Cr: 10 to 25 wt% or less, N
i: 10% by weight or less, C: 0.1% by weight or less, Si:
0.3 wt% or less, Mn: 0.2 wt% or less, P: 0.
02% by weight or less, S: 0.01% by weight or less, and the balance being Fe.

【0011】また、本発明の溶接用複合材の製造方法
は、線径6.0mm以上の前記アルミニウム合金芯材を、
前記したいずれかの被覆材にて連続的に被覆しながら、
被覆材のみを超硬アロイ材質でダイス半角α=15〜3
0度のダイスを用いて、減面率30%以上の加工を加え
て嵌合線とした後、この嵌合線をダイス半角α=4〜1
5度の伸線ダイスで70%以上の伸線加工を行った後
に、焼鈍熱処理を行うことを特徴とする。
In the method for manufacturing a composite material for welding according to the present invention, the aluminum alloy core material having a wire diameter of 6.0 mm or more is used.
While continuously coating with any of the above coating materials,
Die half-angle α = 15 to 3 with cemented carbide material for the coating material only
After using a 0 degree die to process the surface reduction rate of 30% or more to form a fitting line, the fitting line is made into a die half angle α = 4 to 1
It is characterized in that annealing heat treatment is performed after 70% or more wire drawing is performed with a 5 degree wire drawing die.

【0012】前記焼鈍熱処理は、200〜400℃の温
度範囲で1分〜24時間行われる。前記焼鈍熱処理後、
減面率50%以上の冷間伸線を少なくとも1回以上繰り
返してもよい。本発明者は、アルミニウム芯材について
研究を重ねた結果、肉盛部のブローホールや割れの防止
には、アルミニウム中にMg,SiおよびCuを添加す
ることが有効であり、とくに溶接割れ感受性が小さくな
ることがわかった。また、フープ材としたときに芯材で
あるアルミニウム合金の強度向上にも有効であることが
わかった。
The annealing heat treatment is performed in the temperature range of 200 to 400 ° C. for 1 minute to 24 hours. After the annealing heat treatment,
Cold drawing with a surface reduction rate of 50% or more may be repeated at least once. As a result of repeated studies on the aluminum core material, the present inventor has found that it is effective to add Mg, Si and Cu to the aluminum in order to prevent blowholes and cracks in the build-up portion, and particularly, the weld crack sensitivity is high. It turned out to be smaller. It was also found that the hoop material is effective for improving the strength of the aluminum alloy which is the core material.

【0013】かかるアルミニウム合金の芯材は、前記M
g,SiおよびCuのうち少なくとも1種と、Cr,M
nと、通常の不純物と、残部Alとからなる。Mgは
1.5%未満では強度不足となり、逆に5%を超え、と
くに10%を超えると、きわめて伸線加工性が悪くな
る。同様に、SiやCuも1.0%未満では強度不足に
なり、5%を超えると伸線加工性が劣るようになる。な
お、強度を必要としない場合はアルミニウム合金でなく
ても、純度99.9%以上のアルミニウムでもよいが、
溶接割れの防止に対しては、Mg,SiおよびCuのう
ち少なくとも1種を添加するのが望ましい。
The core material of the aluminum alloy is M
At least one of g, Si and Cu, and Cr, M
n, normal impurities, and the balance Al. If the Mg content is less than 1.5%, the strength becomes insufficient, and conversely, if it exceeds 5%, and particularly if it exceeds 10%, the wire drawability becomes extremely poor. Similarly, if Si or Cu is less than 1.0%, the strength becomes insufficient, and if it exceeds 5%, the wire drawability becomes poor. If strength is not required, aluminum having a purity of 99.9% or more may be used instead of the aluminum alloy.
To prevent weld cracking, it is desirable to add at least one of Mg, Si and Cu.

【0014】次に、本発明者がアルミニウム合金の芯材
を被覆材料について研究を重ねた。すなわち、TIG,
MIG溶接法においては、溶接用複合材を溶かして種々
の金属間化合物(合金)をアルミニウム母材中に均一に
分散させることにより、用途に応じた各種の硬度のもの
を得ることができる。例えば母材がアルミニウム(AC
2B、硬度Hv=60〜80)であるとき、要求される
硬度をHv=200〜800とすると、被覆材料として
種々の材料組成が使用できる。すなわち、一般に、Hv
=200〜300程度ではCu−Al合金、Al−Si
合金、Hv=400〜800程度ではAl−Ti合金、
Al−Ni合金、Al−Fe合金、Al−Cr合金等を
使用するのが適当である。また、二元合金でなくても、
三元、四元合金とすることにより、硬度を任意に変えら
れることもわかった。これをより詳細に説明すると、以
下のとおりである。 (1) Al−Cu系合金の場合 被覆する銅または銅合金の面積被覆率は8〜50%とす
るのが好ましい。面積被覆率が8%未満、特に5%未満
になると、目的とするAl−Cuからなる金属間化合物
の分散量が少ないためにHv=100程度しかならず、
目的とする硬度が得られない。また、面積被覆率が50
%を超え、特に60%を超えると、銅リッチの層に変わ
り、母材のAlとのマッチング性が悪くなり、割れが発
生しやすい。面積被覆比率は、より好ましくは10〜3
0%である。なお、面積被覆比率は、複合材の断面を見
たとき、(被覆層面積/全面積)×100(%)で表さ
れる。
Next, the present inventor conducted extensive research on coating materials for aluminum alloy core materials. That is, TIG,
In the MIG welding method, various intermetallic compounds (alloys) are uniformly dispersed in the aluminum base material by melting the welding composite material to obtain materials having various hardness according to the application. For example, if the base material is aluminum (AC
2B and hardness Hv = 60 to 80), if the required hardness is Hv = 200 to 800, various material compositions can be used as the coating material. That is, in general, Hv
= About 200 to 300, Cu-Al alloy, Al-Si
Alloy, Al-Ti alloy at Hv = 400 to 800,
It is suitable to use an Al-Ni alloy, an Al-Fe alloy, an Al-Cr alloy, or the like. Also, even if it is not a binary alloy,
It was also found that the hardness can be arbitrarily changed by using a ternary or quaternary alloy. This will be described in more detail as follows. (1) In the case of Al-Cu-based alloy The area coverage of copper or copper alloy to be coated is preferably 8 to 50%. If the area coverage is less than 8%, particularly less than 5%, the target amount of the intermetallic compound made of Al—Cu is small, and thus only Hv = 100 or so.
The desired hardness cannot be obtained. The area coverage is 50
%, Particularly above 60%, the layer changes to a copper-rich layer, the matching property with Al of the base material deteriorates, and cracks easily occur. The area coverage ratio is more preferably 10 to 3
It is 0%. The area coverage ratio is expressed by (covering layer area / total area) × 100 (%) when the cross section of the composite material is viewed.

【0015】また、Cu中に、Ni,Fe,Si,T
i,Cr,MgおよびMnの少なくとも1種を添加する
ことにより、Al−Cuの金属間化合物以外のさらに硬
度の高い金属間化合物をも分散させることができる。こ
のような硬度の高い金属間化合物としては、例えばNi
Al3 ,FeAl3 ,SiAl3 ,TiAl3 ,CrA
7 ,Al3 Mg2 ,MnAl3 などがあげられる。上
記元素の少なくとも1種の添加量を総量で10%以下と
したのは、特に15%以上になると、Cuと合金を形成
して加工性がきわめて悪い材料となるからである。より
好ましい配合量は総量に対して約1〜5%である。
In addition, Cu, Ni, Fe, Si, T
By adding at least one of i, Cr, Mg and Mn, it is possible to disperse an intermetallic compound having a higher hardness in addition to the Al—Cu intermetallic compound. As such an intermetallic compound having high hardness, for example, Ni
Al 3 , FeAl 3 , SiAl 3 , TiAl 3 , CrA
l 7 , Al 3 Mg 2 , MnAl 3 and the like. The total amount of addition of at least one of the above elements is set to 10% or less, because if it is 15% or more, it forms an alloy with Cu and becomes a material having extremely poor workability. A more preferable blending amount is about 1 to 5% based on the total amount.

【0016】さらに、ブローホール、溶接割れを防止す
るためには、被覆する銅または銅合金をいずれも無酸素
型にし、かつPb,Pを低くすることが重要である。す
なわち、酸素10ppm以下、Pb:10ppm以下お
よびP:3ppm以下であるのが好ましく、とくに酸素
は10ppmを超えると著しくブローホールが発生す
る。 (2) Al−Ni,Al−Ti,Al−Fe,Al−Cr
系合金の場合 非常に硬い層を得るには、Al−Cu系以外に、Al−
Ti,Al−Ni,Al−FeまたはAl−Crの金属
間化合物を多く分散させることが重要であることは知ら
れているが、Al母材との整合性(マッチング)を考慮
すると、硬すぎると割れ等が発生するので、Hv=80
0以下となるように調整することが必要である。そのた
め、種々研究を重ねた結果、Al合金の芯材を被覆する
Ni合金,Ti合金,Fe合金、Cr合金(ただし、C
r合金はFe−Cr−Niのステンレス系として)の面
積被覆率は8〜50%の範囲が好ましいことを見出し
た。面積被覆率が8%未満、特に5%未満では硬化の効
果が少なく、逆に50%を超え、特に60%を超えると
Hv=800以上となり、割れ等が発生する。より好ま
しい面積被覆率は10〜30%である。
Further, in order to prevent blowholes and weld cracks, it is important that the coating copper or copper alloy is oxygen-free and Pb and P are low. That is, it is preferable that the oxygen content is 10 ppm or less, Pb: 10 ppm or less, and P: 3 ppm or less. Particularly, when oxygen exceeds 10 ppm, blowholes remarkably occur. (2) Al-Ni, Al-Ti, Al-Fe, Al-Cr
In the case of a system alloy, in order to obtain a very hard layer, in addition to the Al-Cu system, Al-
It is known that it is important to disperse a large amount of an intermetallic compound of Ti, Al-Ni, Al-Fe or Al-Cr, but it is too hard considering the matching with the Al base material (matching). Hv = 80 because cracks will occur.
It is necessary to adjust the value to be 0 or less. Therefore, as a result of various studies, a Ni alloy, a Ti alloy, a Fe alloy, and a Cr alloy (however, C
It has been found that the area coverage of the r alloy (as a Fe-Cr-Ni stainless steel system) is preferably in the range of 8 to 50%. If the area coverage is less than 8%, especially less than 5%, the curing effect is small, and conversely, if it exceeds 50%, especially more than 60%, Hv = 800 or more, and cracks or the like occur. A more preferable area coverage is 10 to 30%.

【0017】また、溶接部のブローホール、割れ等を防
止するためには被覆材の成分も考慮する必要がある。と
くに、リンと硫黄は、P:0.02重量%以下、S:
0.01重量%以下であるのが、ブローホール、割れ等
を防止するうえで好ましい。また、加工性の面で炭素量
が多すぎると、伸線加工が困難になるため、炭素はNi
系,Ti系,Fe−Cr−Ni系では0.1重量%以
下、Fe系では0.2重量%以下であるのが好ましい。
Further, in order to prevent blowholes, cracks and the like in the welded portion, it is necessary to consider the composition of the coating material. Particularly, phosphorus and sulfur are P: 0.02 wt% or less and S:
It is preferably 0.01% by weight or less in order to prevent blowholes, cracks and the like. Further, if the amount of carbon is too large in terms of workability, wire drawing becomes difficult, so carbon is Ni.
It is preferable that the content is 0.1 wt% or less for the Fe, Cr, and Fe-Cr-Ni systems, and 0.2 wt% or less for the Fe system.

【0018】また、脱酸性を上げるために、添加元素と
してSi,Mnを加えることも望ましく、Siは0.3
重量%以下、Mnは0.2重量%以下であるのが適当で
ある。本発明のような複合クラッド材の場合、被覆材と
芯材とは、ある程度金属学的に結合(密着)しているの
が好ましく、それらの間に隙間があると、その隙間内の
空気が溶解時にブローホールになる。種々検討の結果、
そのような隙間の発生は、ある程度太いサイズで嵌合す
る際の嵌合方法とそれ以降の伸線方法および焼鈍条件に
負うところが大きいことがわかった。
It is also desirable to add Si and Mn as additional elements in order to increase deoxidation, and Si is 0.3
It is appropriate that the content of Mn is less than 0.2% by weight and the content of Mn is less than 0.2% by weight. In the case of the composite clad material like the present invention, it is preferable that the covering material and the core material are metallurgically bonded (adhered) to some extent, and if there is a gap between them, the air in the gap is Becomes blowholes when melted. As a result of various studies,
It was found that the occurrence of such a gap depends largely on the fitting method when fitting with a relatively large size, and the wire drawing method and annealing conditions thereafter.

【0019】まず、一般に使用される溶接フープ材は径
が1.0〜1.6mmの線材であることから、本発明にお
けるアルミニウム合金の芯材は線径が6.0mm以上であ
るのがよく、これに上記(1) 、(2) で記載の被覆材を連
続的に供給しながら、ダイス半角α=15〜30度のダ
イスを通すと、被覆材が伸びてAl合金の芯材上ですべ
り抵抗が発生し、密着を増す。これに対して、ダイス半
角α=15度未満、とくに10度未満では、すべりの度
合いが少なく、充分に密着しなくなる。また、ダイス半
角α=15〜30度のダイスを用いることにより、所定
の面積被覆率を得ることができる。
First, since the generally used welding hoop material is a wire having a diameter of 1.0 to 1.6 mm, the aluminum alloy core material of the present invention preferably has a wire diameter of 6.0 mm or more. While continuously supplying the coating material described in the above (1) and (2) to this, when the die half angle α = 15 to 30 degrees is passed through the die, the coating material is stretched to form on the Al alloy core material. Slip resistance occurs and adhesion is increased. On the other hand, if the die half-angle α is less than 15 degrees, particularly less than 10 degrees, the degree of slippage is small and sufficient adhesion cannot be obtained. Further, a predetermined area coverage can be obtained by using a die having a die half angle α = 15 to 30 degrees.

【0020】さらに、得られた嵌合線を伸線する伸線加
工においても、密着をより満足なものにするために、ダ
イス半角α=4〜15度の伸線ダイスで70%以上を減
面した後に、200〜400℃で焼鈍を行うのが好まし
い。ダイス半角が4度未満であるとダイスの摩耗が大き
くなり、逆にダイス半角が15度を超えると被覆層がず
れて、タグレ状になる可能性がある。また、焼鈍温度が
200℃未満、とくに150℃未満では、相互拡散反応
が得られず、逆に400℃を超え、とくに450℃を超
えた温度で焼鈍を長時間行うと、脆い金属間化合物がで
き、線が容易に折損してフープ材とならないからであ
る。また、焼鈍時間は1分〜24時間であるのが好まし
く、焼鈍が1分未満では相互拡散の効果が得られず、ま
た24時間を超えてもコストが高くなると共にそれに見
合うだけの性能向上が得られない。
Further, even in the wire drawing process for drawing the obtained fitting wire, in order to make the contact more satisfactory, the wire drawing die with a half-angle α of 4 to 15 degrees reduces 70% or more. After facing, it is preferable to perform annealing at 200 to 400 ° C. If the die half-angle is less than 4 degrees, the wear of the die increases, and conversely, if the die half-angle exceeds 15 degrees, the coating layer may be displaced to form a tie shape. Further, if the annealing temperature is less than 200 ° C., particularly less than 150 ° C., mutual diffusion reaction cannot be obtained, and conversely, if annealing is performed for a long time at a temperature exceeding 400 ° C., especially exceeding 450 ° C., brittle intermetallic compounds are formed. This is because the wire can be easily broken and does not become a hoop material. Further, the annealing time is preferably from 1 minute to 24 hours, and if the annealing is less than 1 minute, the effect of mutual diffusion cannot be obtained, and even if it exceeds 24 hours, the cost becomes high and the performance improvement corresponding to it is improved. I can't get it.

【0021】ついで、さらに50%以上の減面を加える
と、完全に芯材と被覆材との隙間をなくすことができ
る。
Then, by further reducing the surface area by 50% or more, the gap between the core material and the covering material can be completely eliminated.

【0022】[0022]

【実施例】図1および図2は本発明の溶接用複合材の製
造装置を示している。図2は被覆材がパイプの場合であ
り、図3はテープ状の被覆材をテープの側縁同士を突き
合わせてTIG溶接してパイプ状にして芯材を被覆する
場合である。図1に示すように、アルミニウム合金の芯
材bは芯材供給部5から連続的に繰り出され、ストレー
ナー6で真っ直ぐにされながら清浄装置7を通り、成形
装置2へと導入される。一方、パイプaはパイプ供給部
1から連続的に繰り出され、成形装置2へと導入され
る。そして、成形装置2において、パイプaの軸方向に
沿った突き合わせ部からパイプa内に芯線bを連続的に
押し込み、該突き合わせ部を塞ぎ、ついで所定の面積率
を得る半角α=15〜30度のダイス8を経て芯材bに
パイプaが嵌合された嵌合材dとなって巻取り部9で巻
き取られる。
1 and 2 show an apparatus for producing a welding composite material according to the present invention. FIG. 2 shows a case where the covering material is a pipe, and FIG. 3 shows a case where the tape-shaped covering material is abutted with the side edges of the tape and TIG-welded to form a pipe shape to cover the core material. As shown in FIG. 1, a core material b of aluminum alloy is continuously fed from a core material supply part 5, straightened by a strainer 6, passed through a cleaning device 7, and introduced into a molding device 2. On the other hand, the pipe a is continuously fed from the pipe supply unit 1 and introduced into the molding device 2. Then, in the molding apparatus 2, the core wire b is continuously pushed into the pipe a from the abutting portion along the axial direction of the pipe a to close the abutting portion, and then a predetermined area ratio is obtained. Half angle α = 15 to 30 degrees After passing through the die 8, the core a becomes a fitting material d in which the pipe a is fitted and is wound by the winding section 9.

【0023】また、図2に示す装置においては、前記と
同様にアルミニウム合金の芯材bは芯材供給部5からス
トレーナー6および清浄装置7を経て成形装置12へと
導入される。一方、テープcは供給部10から繰り出さ
れ、清浄装置11を経て成形装置12へ導入される。成
形装置12において、テープcはパイプ形成装置14に
て芯材bを被覆するようにパイプ状に成形され、TIG
溶接装置13にてテープcの側縁同士が突き合わせ溶接
される。成形装置12の出口側には半角α=15〜30
度のダイス8が取付けられ、ついで得られた嵌合材d′
は巻取り部9で巻き取られる。
In the apparatus shown in FIG. 2, the aluminum alloy core material b is introduced from the core material supply section 5 through the strainer 6 and the cleaning apparatus 7 into the molding apparatus 12 as described above. On the other hand, the tape c is unwound from the supply section 10 and introduced into the molding apparatus 12 via the cleaning apparatus 11. In the forming device 12, the tape c is formed into a pipe shape by the pipe forming device 14 so as to cover the core material b.
The side edges of the tape c are butt-welded by the welding device 13. Half angle α = 15 to 30 on the outlet side of the molding device 12.
The die 8 is attached and the fitting material d'obtained is then obtained.
Is taken up by the take-up section 9.

【0024】図1または図2に示す製造装置にて溶接用
複合材を製造するために、芯材bとして径8.5mmのア
ルミニウム合金を準備した。また、被覆材であるパイプ
aとして、外径19mm、肉厚0.7〜3mmのものを準備
した。一方、テープcを用いる場合は、厚さ0.5〜
0.7mmで幅40〜45mmのものを準備した。ダイス8
は所定の面積被覆率を得るために径が9.0〜12.3
mmのものを使用した。
In order to manufacture the composite material for welding with the manufacturing apparatus shown in FIG. 1 or 2, an aluminum alloy having a diameter of 8.5 mm was prepared as the core material b. As the pipe a, which is a covering material, a pipe having an outer diameter of 19 mm and a wall thickness of 0.7 to 3 mm was prepared. On the other hand, when the tape c is used, the thickness is 0.5 to
One having a width of 0.7 mm and a width of 40 to 45 mm was prepared. Dice 8
Has a diameter of 9.0 to 12.3 to obtain a predetermined area coverage.
The thing of mm was used.

【0025】次に、得られた嵌合線d,d′(外径9.
0〜12.3mm)を外径4.0〜4.6mmまで冷間加工
した。そのときの冷間加工には、ダイス半角α=4 3
15度を用いた。その後、300℃で1時間程度焼鈍を
行い、さらに外径1.2〜1.6mmまで冷間加工を行っ
て複合材を得た。かかる条件にて、表1〜表4に示す組
成を有する溶接用複合材No.1〜43を作製した。つ
いで、これらの各複合材を用いて、アルミニウム母材
(AC2B,10mm×100mm×100mm、硬度Hv=
80)にTIG肉盛溶接を行った。溶接電源にはサイリ
スタ制御TIG溶接機を使用し、溶接電流100〜15
0A、溶接スピード100mm/分、複合材供給速度50
0mm/分とし、シールドガスはArまたはHeを用い
た。また、母材は約100℃に予熱した。
Next, the fitting lines d, d '( outer diameter 9.
0 to 12.3 mm) was cold worked to an outer diameter of 4.0 to 4.6 mm . For cold working at that time, the die half-angle α = 4 3
15 degrees were used. After that, annealing was performed at 300 ° C. for about 1 hour, and further cold working was performed to an outer diameter of 1.2 to 1.6 mm to obtain a composite material. Under these conditions, the welding composite material Nos. Having the compositions shown in Tables 1 to 4 were used. 1-43 were produced. Then, using each of these composite materials, an aluminum base material (AC2B, 10 mm × 100 mm × 100 mm, hardness Hv =
80) was subjected to TIG overlay welding. A thyristor-controlled TIG welding machine is used as the welding power source, and the welding current is 100 to 15
0A, welding speed 100mm / min, composite material supply speed 50
The shield gas was 0 mm / min, and Ar or He was used as the shield gas. The base material was preheated to about 100 ° C.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】それらの各複合材の評価試験結果を表5〜
表7に示す。表に示す各評価項目は以下のようにして行
った。肉盛部の硬度は、肉盛溶接後、マイクロビッカー
ス硬度計を用いて測定した。また、ブローホール欠陥は
断面検査で判断し、下記の基準で評価した。 ○ ─ 使用上の問題とならない大きさか、あるいはそ
れ以下 × ─ 肉眼で判別しうるほどの大きいもの ビード部の割れは外観検査にて判断し、下記の基準で評
価した。
Table 5 shows the evaluation test results of each of the composite materials.
It shows in Table 7. Each evaluation item shown in the table was performed as follows. The hardness of the overlay portion was measured using a micro Vickers hardness meter after overlay welding. Further, blowhole defects were judged by cross-section inspection and evaluated according to the following criteria. ○ ─ A size that does not pose a problem in use or less × ─ Large enough to be visually discernible Cracks in the bead were judged by visual inspection and evaluated according to the following criteria.

【0031】○ ─ 割れがない × ─ 割れがある まとめの評価は上記硬度、ブローホール、割れの結果に
基づき、下記の基準で行った。 ○ ─ すべて問題がない △ ─ 使い方によっても可能性ある。
◯: No cracking ×: Cracking A comprehensive evaluation was made based on the above hardness, blowhole and cracking results, according to the following criteria. ○ ─ No problem at all △ ─ It may be possible depending on usage.

【0032】× ─ 何らかの問題がある また、総合結果は上記評価項目の結果に基づき、下記の
基準で判断した。 ○ ─ すべて問題がない × ─ 何らかの問題がある
X: Some problem was found. The overall result was judged according to the following criteria based on the result of the above evaluation items. ○ ─ No problem × ─ Some problem

【0033】[0033]

【表5】 [Table 5]

【0034】[0034]

【表6】 [Table 6]

【0035】[0035]

【表7】 [Table 7]

【0036】表5〜7の結果から、本発明の溶接用複合
材No.2,4〜12,17〜19,24〜25,3
0,33および35〜39は、使用したアルミニウム母
材の硬度Hv=80に比べて硬度が高く、とくにAl−
Cu系ではHv=200〜500にも向上しており、し
かもブローホール、割れ等が見られないことがわかる。
また、Al−Ni,Al−Ti,Al−Fe,Al−C
r系ではHv=300〜800であり、約1mm程度の肉
厚加工を行うことにより、すぐれた耐摩耗表面が得られ
た。
From the results shown in Tables 5 to 7, the welding composite material No. 1 of the present invention was used. 2,4-12,17-19,24-25,3
0, 33 and 35 to 39 have higher hardness than the hardness Hv = 80 of the aluminum base material used, and particularly Al-
It can be seen that the Cu system has improved to Hv = 200 to 500, and that no blowholes, cracks, etc. are observed.
In addition, Al-Ni, Al-Ti, Al-Fe, Al-C
In the r system, Hv = 300 to 800, and an excellent wear-resistant surface was obtained by performing wall thickness processing of about 1 mm.

【0037】なお、TIG溶接に代えて、溶接電極を1
50A程度でMIG溶接を行っても、TIG溶接の場合
とほぼ同等の結果が得られた。
In place of TIG welding, the welding electrode is
Even when MIG welding was performed at about 50 A, almost the same results as in the case of TIG welding were obtained.

【0038】[0038]

【発明の効果】本発明の溶接用複合材は、アルミニウム
やアルミニウム合金の表面の耐摩耗性を改善するために
表面硬化層を形成するための肉盛溶接法に適用でき、表
面硬化層の硬度の不均一、ブローホール、肉盛部の割れ
等の発生が防止される。従って、本発明の溶接用複合材
を用いるMIG,TIG溶接法による表面硬化処理は、
自動車、自動二輪車等のエンジンピストン周辺、アルミ
ダイキャスト、金型鋳造材の局部硬化、アルミニウム金
型、その他アルミニウム製品の耐摩耗性向上が要求され
る船舶部品等のほか、鉄鋼材料の構造物、真空チャンバ
ー等の多くの分野に好適に使用しうるものである。
INDUSTRIAL APPLICABILITY The welding composite material of the present invention can be applied to the overlay welding method for forming a surface-hardened layer in order to improve the wear resistance of the surface of aluminum or aluminum alloy, and the hardness of the surface-hardened layer. Of unevenness, blowholes, and cracks in the build-up portion are prevented. Therefore, the surface hardening treatment by the MIG or TIG welding method using the welding composite material of the present invention is
Around engine pistons for automobiles and motorcycles, aluminum die casting, local hardening of die casting materials, aluminum dies, ship parts that require improved wear resistance of other aluminum products, structures of steel materials, It can be suitably used in many fields such as a vacuum chamber.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の溶接用複合材の製造装置を示す説明図
である。
FIG. 1 is an explanatory view showing an apparatus for manufacturing a welding composite material according to the present invention.

【図2】本発明の溶接用複合材の他の製造装置を示す説
明図である。
FIG. 2 is an explanatory view showing another manufacturing apparatus of the composite material for welding of the present invention.

【図3】金属パイプ中にAl線を挿入した溶接用複合ワ
イヤーの断面図である。
FIG. 3 is a cross-sectional view of a welding composite wire in which an Al wire is inserted into a metal pipe.

【符号の説明】[Explanation of symbols]

a パイプ b 芯材 c テープ d 嵌合材 d′ 嵌合材 2 成形装置 8 ダイス a pipe b core material c tape d fitting material d'fitting material 2 molding device 8 die

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B23K 35/40 330 7362−4E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location B23K 35/40 330 330 7362-4E

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】Mg,SiおよびCuを含むアルミニウム
合金を芯材とし、この芯材を、Ni,Fe,Si,T
i,Cr,MgおよびMnよりなる群から選ばれる少な
くとも1種を総量に対して0〜10重量%の割合で含む
銅または銅合金にて面積被覆率8〜50%で被覆するこ
とを特徴とする溶接用複合材。
1. A core material is an aluminum alloy containing Mg, Si and Cu, and the core material is made of Ni, Fe, Si and T.
and an area coverage of 8 to 50% with copper or a copper alloy containing at least one selected from the group consisting of i, Cr, Mg and Mn in a proportion of 0 to 10% by weight based on the total amount. Welding composite material.
【請求項2】Mg,SiおよびCuを含むアルミニウム
合金を芯材とし、この芯材を、無酸素銅または無酸素銅
合金にて面積被覆率8〜50%で被覆することを特徴と
する溶接用複合材。
2. Welding, characterized in that an aluminum alloy containing Mg, Si and Cu is used as a core material, and the core material is coated with oxygen-free copper or an oxygen-free copper alloy at an area coverage of 8 to 50%. For composites.
【請求項3】前記無酸素銅または無酸素銅合金は、酸素
10ppm以下、Pb:10ppm以下およびP:3p
pm以下を含む請求項2記載の溶接用複合材。
3. The oxygen-free copper or oxygen-free copper alloy has oxygen of 10 ppm or less, Pb: 10 ppm or less, and P: 3 p.
The composite material for welding according to claim 2, containing pm or less.
【請求項4】Mg,SiおよびCuを含むアルミニウム
合金を芯材とし、この芯材を、Ni合金(Ni:99重
量%以上)、Fe合金(Fe:99重量%以上)、Ti
合金(Ti:99重量%以上)およびFe−Cr−Ni
合金(Cr:25重量%以下)よりなる群から選ばれる
少なくとも1種にて面積被覆率8〜50%で被覆するこ
とを特徴とする溶接用複合材。
4. An aluminum alloy containing Mg, Si and Cu is used as a core material, and the core material is made of Ni alloy (Ni: 99% by weight or more), Fe alloy (Fe: 99% by weight or more), Ti.
Alloy (Ti: 99% by weight or more) and Fe-Cr-Ni
A composite material for welding, which is coated with at least one selected from the group consisting of alloys (Cr: 25% by weight or less) at an area coverage of 8 to 50%.
【請求項5】前記アルミニウム合金が含むMg,Siお
よびCuの元素のうち少なくとも1種は、Mg:1.5
〜5.0重量%、Si:1.0〜5.0重量%およびC
u:1.0〜5.0重量%である請求項1、2または4
記載の溶接用複合材。
5. At least one of the elements of Mg, Si and Cu contained in the aluminum alloy is Mg: 1.5.
~ 5.0 wt%, Si: 1.0-5.0 wt% and C
u: 1.0 to 5.0% by weight.
The described composite material for welding.
【請求項6】前記Ni合金は、C:0.1重量%以下、
Si:0.3重量%以下、Mn:0.2重量%以下、
P:0.02重量%以下およびS:0.01重量%以下
を含有し、残部99.0重量%以上がNiである請求項
4記載の溶接用複合材。
6. The Ni alloy comprises C: 0.1% by weight or less,
Si: 0.3 wt% or less, Mn: 0.2 wt% or less,
The composite material for welding according to claim 4, which contains P: 0.02% by weight or less and S: 0.01% by weight or less, and the balance 99.0% by weight or more is Ni.
【請求項7】前記Fe合金は、C:0.2重量%以下、
Si:0.3重量%以下、Mn:0.2重量%以下、
P:0.02重量%以下およびS:0.01重量%以下
を含有し、残部99.0重量%以上がFeである請求項
4記載の溶接用複合材。
7. The Fe alloy comprises C: 0.2 wt% or less,
Si: 0.3 wt% or less, Mn: 0.2 wt% or less,
The composite material for welding according to claim 4, which contains P: 0.02% by weight or less and S: 0.01% by weight or less, and the balance 99.0% by weight or more is Fe.
【請求項8】前記Ti合金は、C:0.1重量%以下、
Si:0.3重量%以下、Mn:0.2重量%以下、
P:0.02重量%以下およびS:0.01重量%以下
を含有し、残部99.0重量%以上がTiである請求項
4記載の溶接用複合材。
8. The Ti alloy comprises C: 0.1% by weight or less,
Si: 0.3 wt% or less, Mn: 0.2 wt% or less,
The composite material for welding according to claim 4, which contains P: 0.02% by weight or less and S: 0.01% by weight or less, and the balance 99.0% by weight or more is Ti.
【請求項9】前記Fe−Cr−Ni合金は、Cr:10
〜25重量%以下、Ni:10重量%以下、C:0.1
重量%以下、Si:0.3重量%以下、Mn:0.2重
量%以下、P:0.02重量%以下およびS:0.01
重量%以下を含有し、残部がFeである請求項4記載の
溶接用複合材。
9. The Fe—Cr—Ni alloy is Cr: 10.
~ 25 wt% or less, Ni: 10 wt% or less, C: 0.1
Wt% or less, Si: 0.3 wt% or less, Mn: 0.2 wt% or less, P: 0.02 wt% or less and S: 0.01
The welding composite material according to claim 4, wherein the composite material contains less than or equal to wt% and the balance is Fe.
【請求項10】Mg,SiおよびCuを含む線径6.0
mm以上のアルミニウム合金芯材を、銅もしくは銅合金、
無酸素銅もしくは無酸素銅合金、Ni合金(Ni:99
重量%以上)、Fe合金(Fe:99重量%以上)、T
i合金(Ti:99重量%以上)またはFe−Cr−N
i合金(Cr:25重量%以下)からなる被覆材で被覆
し、ダイス半角α=15〜30度のダイスを用いて減面
率30%以上の加工を加えて嵌合線とした後、この嵌合
線をダイス半角α=4〜15度の伸線ダイスで70%以
上の伸線加工を行い、ついで焼鈍熱処理を行うことを特
徴とする溶接用複合材の製造方法。
10. A wire diameter of 6.0 containing Mg, Si and Cu.
mm or more aluminum alloy core material, copper or copper alloy,
Oxygen-free copper or oxygen-free copper alloy, Ni alloy (Ni: 99
Wt% or more), Fe alloy (Fe: 99 wt% or more), T
i alloy (Ti: 99% by weight or more) or Fe-Cr-N
After being coated with a coating material made of an i alloy (Cr: 25% by weight or less), a die having a half angle α of 15 to 30 degrees is used to form a fitting line after processing with a surface reduction rate of 30% or more. A method for manufacturing a composite material for welding, wherein the fitting wire is drawn by 70% or more with a wire drawing die having a die half angle α of 4 to 15 degrees, and then an annealing heat treatment is performed.
【請求項11】前記焼鈍熱処理が、200〜400℃の
温度範囲で1分〜24時間行われる請求項10記載の溶
接用複合材の製造方法。
11. The method for producing a welding composite material according to claim 10, wherein the annealing heat treatment is performed in a temperature range of 200 to 400 ° C. for 1 minute to 24 hours.
【請求項12】前記焼鈍熱処理後、減面率50%以上の
冷間伸線を少なくとも1回以上繰り返す請求項10記載
の溶接用複合材の製造方法。
12. The method for manufacturing a composite material for welding according to claim 10, wherein after the annealing heat treatment, cold drawing with a surface reduction rate of 50% or more is repeated at least once.
JP9541392A 1992-04-15 1992-04-15 Composite material for welding and its production Pending JPH05285690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9541392A JPH05285690A (en) 1992-04-15 1992-04-15 Composite material for welding and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9541392A JPH05285690A (en) 1992-04-15 1992-04-15 Composite material for welding and its production

Publications (1)

Publication Number Publication Date
JPH05285690A true JPH05285690A (en) 1993-11-02

Family

ID=14136998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9541392A Pending JPH05285690A (en) 1992-04-15 1992-04-15 Composite material for welding and its production

Country Status (1)

Country Link
JP (1) JPH05285690A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006003191A1 (en) * 2006-01-24 2007-11-15 Airbus Deutschland Gmbh Additional material in particular for improving the quality of a joining seam formed during the thermal joining of two metallic components
JP2011031264A (en) * 2009-07-30 2011-02-17 Fujikura Ltd Method for manufacturing copper-coated aluminum wire
JP2012087368A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Clad material excellent in workability and method for manufacturing the same
CN114045476A (en) * 2021-11-11 2022-02-15 重庆大学 Copper-magnesium composite material and preparation method and application thereof
WO2022190942A1 (en) * 2021-03-12 2022-09-15 国立研究開発法人物質・材料研究機構 Copper-coated aluminum wire material and production method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006003191A1 (en) * 2006-01-24 2007-11-15 Airbus Deutschland Gmbh Additional material in particular for improving the quality of a joining seam formed during the thermal joining of two metallic components
DE102006003191B4 (en) * 2006-01-24 2011-03-17 Airbus Operations Gmbh Additional material for the thermal joining of two metallic components and a corresponding use of a filler material
JP2011031264A (en) * 2009-07-30 2011-02-17 Fujikura Ltd Method for manufacturing copper-coated aluminum wire
JP2012087368A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Clad material excellent in workability and method for manufacturing the same
WO2022190942A1 (en) * 2021-03-12 2022-09-15 国立研究開発法人物質・材料研究機構 Copper-coated aluminum wire material and production method therefor
CN114045476A (en) * 2021-11-11 2022-02-15 重庆大学 Copper-magnesium composite material and preparation method and application thereof
CN114045476B (en) * 2021-11-11 2023-10-20 重庆大学 Copper-magnesium composite material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
EP1919653B1 (en) Method of arc or beam brazing/welding of workspieces of identical or different metals or metal alloys with additional materials of sn base alloys ; sn base alloy wire
US20060272749A1 (en) Method for inert gas welding or inert gas soldering workpieces comprising identical or different metals or metal alloys by means of an additional zn/al metal
US8444042B2 (en) Method for producing steel pipe plated with metal by thermal spraying
JPH1076392A (en) Metal cored welding wire for galvanized steel and galvaannealed steel
JP2002518982A (en) Double or multilayer coating
US5256856A (en) Welding method for aluminum alloys
JPH05285690A (en) Composite material for welding and its production
JP3133669B2 (en) Manufacturing method of composite board
JPH04105787A (en) Filler metal for surface reforming of aluminum material
WO2008103122A1 (en) Method of manufacturing a component and use of said method
US4382169A (en) Weld deposition of metal other than aluminium onto aluminium-base alloy
JP3139325B2 (en) Zn-Ni alloy plated steel sheet with excellent laser weldability
JP2000256809A (en) Welding wire and welding method using same
JP3020670B2 (en) Cu-Al composite wire for overlay welding on Al-based material surface
JPH09314337A (en) Method for welding al or al-si alloy coated stainless steel sheet without welded crack
Imaizumi Welding of aluminium to dissimilar metals
EP0513238B1 (en) Arc spraying of rapidly solidified aluminum base alloys
JPS60216906A (en) Built-up roll and its manufacture
JPH06246483A (en) Composite wire for build-up welding to surface of ti base material
JPH0557480A (en) Composite wire for build up welding to surface of al base material
JP7564227B2 (en) Welding wire capable of producing giga-class welds, welded structure manufactured using the same, and welding method thereof
JP3217536B2 (en) Composite wire for overlay welding on Al-based materials
JPH07204886A (en) Composite wire for build-up welding to surface of al-based material and wear resistant al-based member
JPS6146307A (en) Build-up roll and its manufacture
JPH0615482A (en) Filler metal for build-up welding to surface of al-base material