JPH05283796A - Surface emission type semiconductor laser - Google Patents

Surface emission type semiconductor laser

Info

Publication number
JPH05283796A
JPH05283796A JP4077976A JP7797692A JPH05283796A JP H05283796 A JPH05283796 A JP H05283796A JP 4077976 A JP4077976 A JP 4077976A JP 7797692 A JP7797692 A JP 7797692A JP H05283796 A JPH05283796 A JP H05283796A
Authority
JP
Japan
Prior art keywords
reflecting mirror
type
layer
semiconductor laser
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4077976A
Other languages
Japanese (ja)
Other versions
JP3271291B2 (en
Inventor
Akihiko Okuhora
明彦 奥洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP07797692A priority Critical patent/JP3271291B2/en
Publication of JPH05283796A publication Critical patent/JPH05283796A/en
Application granted granted Critical
Publication of JP3271291B2 publication Critical patent/JP3271291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable a surface emission type high-power semiconductor laser having low thermal resistance, which is provided with a vertical resonator structure possessed of a multilayered reflecting mirror, by providing at least one electrode which is possessed of a heat sink function and kept in contact with the laminate side face of the multilayered film reflecting mirror traversing the side face. CONSTITUTION:An N-type first DBR reflecting mirror 11, an N-type GaAs first clad layer 15, an InGaAs active layer 16, a P-type GaAs second clad layer 17, and a P-type second DBR reflecting mirror 12 are epitaxially grown in succession on a semiconductor substrate 14 through the intermediary of an N-type buffer layer 15 of GaAs of the like. A part of the second clad layer 17 and the peripheral side face of the second reflecting mirror 12 are exposed, a high impurity concentration layer is formed, a P-type contact metal electrode 13 is evaporated on the whole surface, and a metal 26 excellent thermal conductivity and possessed of a heat sink function is formed on a part around the metal electrode 13 which is not covered with a plating resist layer 25 to enhance the metal electrode 13 in heat dissipation effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、面発光型半導体レーザ
すなわち垂直共振器構造を有し垂直方向にレーザ光を出
射させる半導体レーザに係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting semiconductor laser, that is, a semiconductor laser having a vertical cavity structure for emitting laser light in a vertical direction.

【0002】[0002]

【従来の技術】垂直共振構造を有する面発光半導体レー
ザは、近年急速に発展を遂げ、その優れた低しきい値特
性、高周波特性等が注目され次世代OEIC(光電気集
積回路)用光源等への応用が期待されている。
2. Description of the Related Art A vertical cavity surface emitting semiconductor laser has been rapidly developed in recent years, and its excellent low threshold characteristics, high frequency characteristics, etc. have attracted attention, and light sources for next-generation OEIC Is expected to be applied.

【0003】その典型的な構造は、図7に示すように基
体1上に、バッファ層2、第1の多層反射膜3、第1の
クラッド層4、活性層5、第2のクラッド層6、第2の
多層反射膜7を順次連続エピタキシャル成長し、第2の
多層反射膜7から第1の多層反射膜3に至る深さに例え
ば円柱状に中央部を残してその周辺をエッチング除去
し、この円柱状部分を囲むようにその周側面に接してす
なわちこの円柱状部を埋め込むように絶縁性平坦化膜8
例えばポリイミドを塗布し、これの上に第2の多層反射
膜7上を覆って一方の電極9をオーミックに被着する構
成が採られる。
A typical structure thereof is, as shown in FIG. 7, a buffer layer 2, a first multilayer reflective film 3, a first cladding layer 4, an active layer 5 and a second cladding layer 6 on a substrate 1. , The second multilayer reflective film 7 is successively epitaxially grown, and the peripheral portion thereof is removed by etching, leaving a central portion, for example, in a cylindrical shape at a depth from the second multilayer reflective film 7 to the first multilayer reflective film 3. The insulating flattening film 8 is in contact with the peripheral side surface of the columnar portion so as to surround it, that is, so as to fill the columnar portion.
For example, a configuration may be adopted in which polyimide is applied, and one electrode 9 is ohmicly deposited on the second multilayer reflective film 7 by coating the same.

【0004】今、InGaAs歪量子井戸(発振波長λ
≒1μm)の垂直共振器による面発光半導体レーザにつ
いて説明すると、基体1は例えばn型のGaAsサブス
トレイトよりなり、同様にバッファ層2はn型のGaA
sよりなり、第1の多層反射膜3はそれぞれn型のAl
As膜とGaAs膜の繰り返し積層膜をもってλ/4周
期の多層膜構造として形成される。
Now, InGaAs strained quantum well (oscillation wavelength λ
≈1 μm) A vertical cavity surface emitting semiconductor laser will be described. The substrate 1 is made of, for example, n-type GaAs substrate, and similarly the buffer layer 2 is made of n-type GaA.
s, and the first multilayer reflective film 3 is made of n-type Al.
A repeating laminated film of an As film and a GaAs film is formed as a multilayer film structure of λ / 4 period.

【0005】第1のクラッド層4は、n型のGaAsよ
りなり、活性層はIn0.2 Ga0.8Asよりなり、第2
のクラッド層6はp型のGaAsよりなり、第2の多層
反射膜7はそれぞれp型のAlAs及びGaAsの繰り
返し積層膜の同様にλ/4周期の多層膜によって形成し
得る。
The first cladding layer 4 is made of n-type GaAs, the active layer is made of In 0.2 Ga 0.8 As, and the second
The clad layer 6 is made of p-type GaAs, and the second multilayer reflective film 7 can be formed by a multilayer film of λ / 4 period like a repeated laminated film of p-type AlAs and GaAs.

【0006】また、電極9は例えばAuZn金属電極に
よって構成される。
The electrode 9 is composed of, for example, an AuZn metal electrode.

【0007】このようにして第1及び第2の多層反射膜
3及び7間に垂直共振器が構成され、電極9及び基体1
間に動作電源Vが接続されることによって両第1及び第
2の多層反射膜3及び7を通じて活性層5に電流の注入
がなされて垂直共振器長によって決定される波長のレー
ザ光を発振するようになされている。
In this way, a vertical resonator is formed between the first and second multilayer reflective films 3 and 7, and the electrode 9 and the substrate 1 are formed.
By connecting the operating power supply V between them, a current is injected into the active layer 5 through the first and second multilayer reflective films 3 and 7, and a laser beam having a wavelength determined by the vertical cavity length is oscillated. It is done like this.

【0008】このような構成による垂直共振構造を有す
る面発光半導体レーザは、多層反射膜を用いることで極
めて高い反射率のミラーが構成されることから光閉じ込
め係数を大きくすることができること、また共振器長を
波長と等価にすることで極低しきい値化、光のライフタ
イムの低減が達成される。また、多層膜反射鏡(以下D
BR反射鏡(Distributed Brugg Reflection Mirror )
という)が用いられることによって光の出射条件が、ブ
ラッグ反射条件を満足される光に限られること、さらに
多層反射膜に垂直の方向に関してのみ所定の波長の発振
光が得られることから、狭出射角、単一モードの半導体
レーザが構成される。
In the surface emitting semiconductor laser having the vertical resonance structure having such a structure, since the mirror having an extremely high reflectance is formed by using the multilayer reflection film, the light confinement coefficient can be increased and the resonance can be achieved. By making the device length equivalent to the wavelength, it is possible to achieve an extremely low threshold value and reduce the lifetime of light. In addition, a multilayer film reflecting mirror (hereinafter D
BR Reflective Mirror
Since the emission condition of light is limited to the light satisfying the Bragg reflection condition and the oscillation light of a predetermined wavelength can be obtained only in the direction perpendicular to the multilayer reflection film, An angular, single mode semiconductor laser is constructed.

【0009】この種の垂直共振器構造による面発光半導
体レーザにおいては、そのDBR反射鏡を通じて通電が
なされることと、その一方を通じて光の導出を行うこと
から、その多層反射膜は、前述した半導体の積層による
DBR反射鏡が用いられるものであり、このDBR反射
鏡は特にキャリアの移動度の低いp側のDBRにおいて
直列抵抗の増大が問題となる。
In the surface emitting semiconductor laser having the vertical cavity structure of this kind, since the electric current is supplied through the DBR reflecting mirror and the light is led out through one of the two, the multilayer reflective film is formed by the above-mentioned semiconductor. The DBR reflecting mirror formed by stacking is used. This DBR reflecting mirror has a problem that the series resistance increases especially in the p-side DBR where the carrier mobility is low.

【0010】すなわち、ホールの移動度は、電子のそれ
に比し1/10以下であることから、特にp側のDBR
反射鏡、上述の例においては、第2の多層反射膜7側に
おける直列抵抗が問題となって、これが熱抵抗の増大を
来す。
That is, since the mobility of holes is 1/10 or less of that of electrons, the DBR on the p-side is
In the reflecting mirror, in the above example, the series resistance on the side of the second multilayer reflective film 7 becomes a problem, which causes an increase in thermal resistance.

【0011】この抵抗は、高濃度ドーピングによりある
程度低めることが可能ではあるが、この場合にはフリー
キャリアによる光吸収(プラズモン吸収)が効率的発振
の障害となるため、通常5×1010cm-3以上の不純物
ドーピングは避けられるものであり、このため、このp
側において充分なオン抵抗の低減化をはかることができ
ず、このため高電流注入時に熱抵抗の増大が生じ、大出
力化が困難であることが問題となってきている。
This resistance can be lowered to some extent by high-concentration doping. In this case, however, light absorption by free carriers (plasmon absorption) becomes a hindrance to efficient oscillation, so that it is usually 5 × 10 10 cm −. Impurity doping of 3 or more is avoidable, so this p
On the other hand, it is not possible to sufficiently reduce the on-resistance, which causes an increase in thermal resistance during high current injection, which makes it difficult to achieve high output.

【0012】[0012]

【発明が解決しようとする課題】本発明は、上述したよ
うに特に半導体多層膜反射鏡による垂直共振器面発光半
導体レーザにおけるオン抵抗の増大による高電流注入時
の熱抵抗の増大、大出力化の阻害の問題を解決するもの
である。
SUMMARY OF THE INVENTION As described above, the present invention increases the thermal resistance at the time of high current injection and increases the output, especially due to the increase of the on-resistance in the vertical cavity surface emitting semiconductor laser using the semiconductor multilayer film reflecting mirror. It solves the problem of inhibition.

【0013】[0013]

【課題を解決するための手段】本発明は、図1にその一
例の略線的拡大断面図を示し、図2にその略線的平面図
を示すように、多層膜反射鏡(DBR反射鏡)11及び
12を有する垂直共振器構造を有する面発光半導体レー
ザにおいて、少なくとも一方の電極13が対応する側の
多層膜反射鏡12に対し、この多層膜反射鏡12の多層
膜積層側面を横切って接触するヒートシンク機能を有す
る電極とする。
The present invention is shown in FIG. 1 which is an enlarged schematic cross-sectional view of one example thereof, and in FIG. 2 which is a schematic plan view thereof, a multilayer film reflecting mirror (DBR reflecting mirror). ) In a surface emitting semiconductor laser having a vertical cavity structure having 11 and 12, at least one electrode 13 is provided on the multilayer film reflecting mirror 12 on the side to which the multilayer film stacking side face of the multilayer film reflecting mirror 12 is crossed. It is an electrode having a heat sink function to be in contact with.

【0014】[0014]

【作用】上述したように本発明においては、少なくとも
一方の多層膜反射鏡の側面にヒートシンク効果を有する
電極が被着されていることによって半導体多層膜反射鏡
で問題となる抵抗熱抵抗の減少化がはかられ大出力化が
可能となる。
As described above, in the present invention, at least one of the multilayer film reflecting mirrors is covered with the electrode having the heat sink effect, so that the resistance thermal resistance which is a problem in the semiconductor multilayer film reflecting mirror is reduced. It is possible to increase the output by peeling off.

【0015】[0015]

【実施例】本発明による面発光型半導体レーザの実施例
を図面を参照して説明するに、その理解を容易にするた
めに図3〜図6を参照してその製造方法の一例と共に詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a surface-emitting type semiconductor laser according to the present invention will be described with reference to the drawings. To facilitate understanding, referring to FIGS. explain.

【0016】図3Aに示すように、例えばn型のGaA
sサブストレイトよりなる半導体基体14上に、MOC
VD(有機金属化学的気相成長法)あるいはMBE(分
子線エピタキシー法)等によって必要に応じてn型のG
aAs等のバッファ層15を介して、n型の第1のDB
R反射鏡11、n型のGaAsより成る第1のクラッド
層15、InGaAsより成る活性層16、p型のGa
Asより成る第2のクラッド層17、p型の第2のDB
R反射鏡12を順次エピタキシャル成長する。
As shown in FIG. 3A, for example, n-type GaA
MOC is formed on the semiconductor substrate 14 made of s-substrate.
If necessary, n-type G may be formed by VD (metalorganic chemical vapor deposition) or MBE (molecular beam epitaxy).
n-type first DB through the buffer layer 15 such as aAs
R reflector 11, first cladding layer 15 made of n-type GaAs, active layer 16 made of InGaAs, p-type Ga
Second clad layer 17 made of As, second p-type DB
The R reflector 12 is sequentially epitaxially grown.

【0017】第1及び第2のDBR反射鏡11及び12
は、例えばそれぞれn型及びp型のAlAs、GaAs
の繰り返し積層とし、発光レーザ光の波長に対する反射
率がR1 及びR2 とされ、{(R1 +R2 )/2}>9
0%で、例えばR2 <R1 とする。次いで、第2のDB
R反射鏡層12上に、例えばSiO2 マスク層18とS
3 4 マスク層19の2層構造のマスク層20を例え
ばプラズマCVD法によって形成する。
First and second DBR reflectors 11 and 12
Are, for example, n-type and p-type AlAs and GaAs, respectively.
And the reflectance with respect to the wavelength of the emitted laser light is R 1 and R 2, and {(R 1 + R 2 ) / 2}> 9
At 0%, for example, R 2 <R 1 . Then the second DB
On the R reflecting mirror layer 12, for example, a SiO 2 mask layer 18 and S
A mask layer 20 having a two-layer structure of the i 3 N 4 mask layer 19 is formed by, for example, a plasma CVD method.

【0018】そして、これの上に周知のフォトグラフィ
によるフォトレジスト層21を最終的に垂直共振器を形
成する部分に例えば円形パターンに形成する。
Then, a photoresist layer 21 by well-known photography is formed on this in a portion where the vertical resonator is finally formed, for example, in a circular pattern.

【0019】次に、図3Bに示すように、このフォトレ
ジスト層21をマスクとして、まず上層のSi3 4
スク層19のエッチングレジスト層21の被着部以外を
エッチング除去し、さらにこれをマスクとしてこれの下
のSiO2 マスク層18をエッチングする。そして、こ
れらマスク層18及び19によるマスク20をエッチン
グマスクとして、これの下を柱状部22として残して第
2のDBR反射鏡12と、クラッド層17と活性層16
を横切る深さに、例えばCl2 等のハロゲン系のガスを
用いたRIE(反応性イオンエッチング)、あるいはE
CR−RIE(エレクトロン・サイクロトロン・レゾナ
ンス−RIE)等の垂直方向の異方性ドライエッチング
を行って円柱状部22の周辺をエッチング除去する。そ
の後、残ったフォトレジスト層21をアッシング等によ
って取り去る。
Next, as shown in FIG. 3B, using the photoresist layer 21 as a mask, first, the portions of the upper Si 3 N 4 mask layer 19 other than the adhered portion of the etching resist layer 21 are removed by etching. The SiO 2 mask layer 18 below this is etched as a mask. The mask 20 formed by the mask layers 18 and 19 is used as an etching mask, and the second DBR reflecting mirror 12, the cladding layer 17, and the active layer 16 are left below the pillar 20 as a columnar portion 22.
RIE (reactive ion etching) using a halogen-based gas such as Cl 2 or E
Vertically anisotropic dry etching such as CR-RIE (electron cyclotron resonance-RIE) is performed to remove the periphery of the columnar portion 22 by etching. After that, the remaining photoresist layer 21 is removed by ashing or the like.

【0020】図3Cに示すように、そのエッチングによ
って残された柱状部22の周面を含んで全表面に絶縁層
23例えばSi3 4 膜をプラズマCVDによって被着
する。
As shown in FIG. 3C, an insulating layer 23 such as a Si 3 N 4 film is deposited by plasma CVD on the entire surface including the peripheral surface of the columnar portion 22 left by the etching.

【0021】図4Aに示すように、円柱部22の基部側
を埋め込むように、ポリイミドあるいはSOG(スピン
・オン・グラス(低融点ガラス))等の塗布型の絶縁材
24を円柱部22の活性層16の周端面と対向する部分
を覆ってコーティングする。
As shown in FIG. 4A, a coating type insulating material 24 such as polyimide or SOG (spin on glass (low melting point glass)) is applied to the column portion 22 so as to embed the base portion side of the column portion 22. The portion of the layer 16 facing the peripheral end face is coated and covered.

【0022】次に、図4Bに示すように等方性エッチン
グによって絶縁材24をエッチングマスクとしてこれに
よって覆われていない円柱部22の上部周囲の絶縁層2
3をエッチバックし第2のクラッド層17の一部と第2
のDBR反射鏡12の周側面を露出させる。その後、Z
n等の第2のクラッド層17及び第2のDBR反射鏡1
2と同導電型のp型のドーパントを円柱部22の外部に
露出した周面に拡散して高不純物濃度層25を形成す
る。
Next, as shown in FIG. 4B, the insulating layer 2 around the upper portion of the columnar portion 22 not covered with the insulating material 24 as an etching mask by isotropic etching is used.
3 is etched back to form a part of the second cladding layer 17 and the second cladding layer 17.
The peripheral side surface of the DBR reflecting mirror 12 is exposed. Then Z
The second cladding layer 17 such as n and the second DBR reflector 1
A p-type dopant having the same conductivity type as that of No. 2 is diffused on the peripheral surface exposed to the outside of the cylindrical portion 22 to form the high impurity concentration layer 25.

【0023】図4Cに示すように、高不純物濃度層25
を含んで全面的に例えばAu/Zn/Au等のp型コン
タクト用金属電極13を蒸着する。
As shown in FIG. 4C, the high impurity concentration layer 25
A metal electrode 13 for p-type contact such as Au / Zn / Au is vapor-deposited over the entire surface including.

【0024】次に、図5Aに示すように、さらに例えば
フォトレジストによるメッキレジスト層25を円柱部2
2より所要の間隔を保持して例えばリング状に形成し、
メッキレジスト層25によって覆われていない部分にA
uメッキ等の良熱伝導性を有するヒートシンク機能を有
する金属部26をメッキする。
Next, as shown in FIG. 5A, a plating resist layer 25 made of, for example, photoresist is further added to the cylindrical portion 2.
2 form a ring, for example, with a required gap
A on the part not covered by the plating resist layer 25
A metal portion 26 having a heat sink function having good thermal conductivity such as u plating is plated.

【0025】次に図5Bに示すように、第2のDBR反
射鏡12上のマスク層20等を除去し、全面的にポリイ
ミド等の塗布型の平坦化膜27を塗布し、その後エッチ
バックを施して平坦化を行う。
Next, as shown in FIG. 5B, the mask layer 20 and the like on the second DBR reflecting mirror 12 are removed, a coating type planarizing film 27 of polyimide or the like is applied over the entire surface, and then etch back is performed. And flatten it.

【0026】次に、このポリイミド等よりなる平坦化膜
27の一部に電極窓開けを行って図1及び図2に示すよ
うに、Au/Ge等の他方の電極28を第1のクラッド
層に対してオーミックにコンタクトする。13A及び2
8Aは、電極13及び28から延長して設けられた外部
リード接続等のコンタクト部を示す。
Next, an electrode window is opened in a part of the flattening film 27 made of polyimide or the like, and as shown in FIGS. 1 and 2, the other electrode 28 of Au / Ge or the like is formed on the first cladding layer. Ohmic contact with. 13A and 2
8A indicates a contact portion such as an external lead connection provided extending from the electrodes 13 and 28.

【0027】そして、この電極13及び28間に動作電
源を接続して第1及び第2のDBR反射鏡11及び12
間の共振器部において発振を生じさせ、図においては第
2のDBR反射膜12側を通じてレーザ光を取出す。
Then, an operating power source is connected between the electrodes 13 and 28, and the first and second DBR reflecting mirrors 11 and 12 are connected.
Oscillation is caused in the cavity portion between them, and the laser light is extracted through the second DBR reflection film 12 side in the figure.

【0028】尚、図示の例においては、柱状部22が円
柱状とされた場合であるが、角柱状等任意のパターンと
することができる。
In the illustrated example, the columnar portion 22 has a cylindrical shape, but it may have an arbitrary pattern such as a prismatic shape.

【0029】また、図示の例では、図3Bの工程におけ
るエッチングの深さをp型の第2のクラッド層15の位
置に止めた場合で、前述したように特に抵抗が問題とな
るp型の第2のDBR膜12の側面、即ち、その多層膜
の積層方向を横切って電極13が設けられているので、
抵抗の問題が改善され、しかもヒートシンク効果を有す
る金属部26が設けられていることから放熱効果にもす
ぐれ、熱抵抗の改善がはかられる。
Further, in the illustrated example, when the etching depth in the step of FIG. 3B is stopped at the position of the p-type second cladding layer 15, as described above, the resistance of the p-type is particularly problematic. Since the electrode 13 is provided across the side surface of the second DBR film 12, that is, the laminating direction of the multilayer film,
Since the problem of resistance is improved and the metal portion 26 having a heat sink effect is provided, the heat dissipation effect is excellent and the thermal resistance can be improved.

【0030】しかしながら図6に示すように、図4Bで
説明したエッチングの深さを、第1のDBR反射鏡11
を横切る深さとして金属部26がこれの近傍に絶縁層2
3を介して入り込むようにして、この第1のDBR反射
鏡11における熱抵抗の低減化をはかることができる。
図6において図1と対応する部分に同一符号を付して重
複説明を省略する。
However, as shown in FIG. 6, the etching depth explained in FIG. 4B is set to the first DBR reflecting mirror 11.
The metal portion 26 is formed in the vicinity of the insulating layer 2 as a depth across the
The thermal resistance in the first DBR reflecting mirror 11 can be reduced by entering the through-hole 3.
6, parts corresponding to those in FIG. 1 are designated by the same reference numerals, and duplicate description will be omitted.

【0031】更に、上述した例では、第2のDBR反射
鏡12側からレーザ光の導出を行うようにした場合であ
るが、基体14の第1のDBR反射鏡11側をエッチン
グして窓を形成し(図示せず)、これよりレーザ光の導
出を行うべくR1 <R2 とすることもできる。
Further, in the above-mentioned example, the laser light is guided from the second DBR reflecting mirror 12 side, but the first DBR reflecting mirror 11 side of the substrate 14 is etched to form a window. It may be formed (not shown), and R 1 <R 2 may be set so that the laser light is derived therefrom.

【0032】また、各部の導電型を図示とは逆の導電型
に選択できるなど上述の例に限らず種々の変型変更を行
うことができる。
Further, the conductivity type of each part can be selected to be the conductivity type opposite to that shown in the drawing, and various modifications can be made without being limited to the above example.

【0033】そして、上述の構成によれば垂直共振器を
構成する柱状部22の外周が金属部26、平坦化膜27
等によって埋込まれて全体として平坦に形成されている
のでOEICへの適用に有利となる。
Further, according to the above-mentioned structure, the outer periphery of the columnar portion 22 constituting the vertical resonator is the metal portion 26 and the flattening film 27.
Since it is embedded by means of the like and is formed flat as a whole, it is advantageous for application to OEIC.

【0034】[0034]

【発明の効果】上述したように本発明においては、少な
くとも一方の多層膜反射鏡の側面に金属部26によるヒ
ートシンク効果を有する電極が被着されていることによ
って半導体多層膜反射鏡で問題となる抵抗、熱抵抗の減
少化がはかられ大出力化が可能となる。
As described above, in the present invention, since the electrode having the heat sink effect by the metal portion 26 is attached to the side surface of at least one of the multilayer film reflecting mirrors, there is a problem in the semiconductor multilayer film reflecting mirror. It is possible to increase the output by reducing the resistance and thermal resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による面発光半導体レーザの一例の略線
的拡大断面図である。
FIG. 1 is an enlarged schematic cross-sectional view of an example of a surface emitting semiconductor laser according to the present invention.

【図2】本発明による面発光半導体レーザの略線的拡大
平面図である。
FIG. 2 is an enlarged schematic plan view of a surface emitting semiconductor laser according to the present invention.

【図3】本発明による面発光半導体レーザの一例の製造
工程図(その1)である。
FIG. 3 is a manufacturing process diagram (1) of an example of the surface emitting semiconductor laser according to the present invention.

【図4】本発明による面発光半導体レーザの一例の製造
工程図(その2)である。
FIG. 4 is a manufacturing process diagram (2) of an example of the surface emitting semiconductor laser according to the present invention.

【図5】本発明による面発光半導体レーザの一例の製造
工程図(その3)である。
FIG. 5 is a manufacturing process diagram (3) of an example of the surface emitting semiconductor laser according to the present invention.

【図6】本発明の他の例の略線的断面図である。FIG. 6 is a schematic cross-sectional view of another example of the present invention.

【図7】従来の面発光半導体レーザの略線的断面図であ
る。
FIG. 7 is a schematic cross-sectional view of a conventional surface emitting semiconductor laser.

【符号の説明】[Explanation of symbols]

11 第1の多層膜反射鏡 15 第1のクラッド層 16 活性層 17 第2のクラッド層 12 第2の多層膜反射鏡 11 First Multilayer Reflector 15 First Cladding Layer 16 Active Layer 17 Second Cladding Layer 12 Second Multilayer Reflector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多層膜反射鏡を有する垂直共振器構造を
有する面発光型半導体レーザにおいて、 少なくとも一方の電極を、対応する側の多層膜反射鏡に
対し多層膜反射鏡の多層膜積層側面を横切って接触する
ヒートシンク機能を有する電極としたことを特徴とする
面発光型半導体レーザ。
1. A surface-emitting type semiconductor laser having a vertical cavity structure having a multi-layered film reflecting mirror, wherein at least one electrode is provided on the side of the multi-layered film laminated mirror of the multi-layered film reflecting mirror with respect to the corresponding multi-layered film reflecting mirror. A surface-emitting type semiconductor laser characterized in that it is an electrode having a heat sink function which is in contact with and across the surface.
JP07797692A 1992-03-31 1992-03-31 Surface emitting semiconductor laser Expired - Fee Related JP3271291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07797692A JP3271291B2 (en) 1992-03-31 1992-03-31 Surface emitting semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07797692A JP3271291B2 (en) 1992-03-31 1992-03-31 Surface emitting semiconductor laser

Publications (2)

Publication Number Publication Date
JPH05283796A true JPH05283796A (en) 1993-10-29
JP3271291B2 JP3271291B2 (en) 2002-04-02

Family

ID=13648930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07797692A Expired - Fee Related JP3271291B2 (en) 1992-03-31 1992-03-31 Surface emitting semiconductor laser

Country Status (1)

Country Link
JP (1) JP3271291B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0748007A2 (en) * 1995-06-08 1996-12-11 Hewlett-Packard Company Surface-emitting lasers
JP2000016861A (en) * 1998-06-30 2000-01-18 Inax Corp Easily processable pottery plate and board using the same
JP2002353563A (en) * 2001-05-24 2002-12-06 Rohm Co Ltd Semiconductor light-emitting element and manufacturing method therefor
JP2006024665A (en) * 2004-07-07 2006-01-26 Ricoh Printing Systems Ltd Array type semiconductor laser device
JP2007073585A (en) * 2005-09-05 2007-03-22 Ricoh Co Ltd Surface-emitting laser array, electrophotographic system, and optical interconnection system
US7245646B2 (en) 2004-01-20 2007-07-17 Seiko Epson Corporation Surface-emitting type semiconductor laser and its manufacturing method, and optical module
JP2007529910A (en) * 2004-03-19 2007-10-25 アリゾナ ボード オブ リージェンツ High output VCSEL with lateral mode control
JP2008311491A (en) * 2007-06-15 2008-12-25 Ricoh Co Ltd Surface emitting laser array, optical scanning apparatus, image forming apparatus, light transmission module, and light transmission system
JP2010003885A (en) * 2008-06-20 2010-01-07 Rohm Co Ltd Surface-emitting laser
JP2011520272A (en) * 2008-05-08 2011-07-14 ウニヴェルズィテート・ウルム Fully tuned surface emitting semiconductor laser for surface mounting with optimized properties
US20130196459A1 (en) * 2012-01-31 2013-08-01 National Tsing Hua University Hybrid optoelectronic device
JP2014135371A (en) * 2013-01-10 2014-07-24 Ricoh Co Ltd Surface emitting laser, surface emitting laser array and optical scanning device
CN110904412A (en) * 2019-12-16 2020-03-24 中国工程物理研究院激光聚变研究中心 Method for improving heat dissipation and output power of terahertz device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112787215A (en) * 2019-11-11 2021-05-11 隆达电子股份有限公司 Vertical cavity surface emitting laser device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0748007A3 (en) * 1995-06-08 1997-12-17 Hewlett-Packard Company Surface-emitting lasers
EP0748007A2 (en) * 1995-06-08 1996-12-11 Hewlett-Packard Company Surface-emitting lasers
JP2000016861A (en) * 1998-06-30 2000-01-18 Inax Corp Easily processable pottery plate and board using the same
JP2002353563A (en) * 2001-05-24 2002-12-06 Rohm Co Ltd Semiconductor light-emitting element and manufacturing method therefor
US7245646B2 (en) 2004-01-20 2007-07-17 Seiko Epson Corporation Surface-emitting type semiconductor laser and its manufacturing method, and optical module
JP2007529910A (en) * 2004-03-19 2007-10-25 アリゾナ ボード オブ リージェンツ High output VCSEL with lateral mode control
JP4704703B2 (en) * 2004-07-07 2011-06-22 株式会社リコー Array type semiconductor laser device
JP2006024665A (en) * 2004-07-07 2006-01-26 Ricoh Printing Systems Ltd Array type semiconductor laser device
JP2007073585A (en) * 2005-09-05 2007-03-22 Ricoh Co Ltd Surface-emitting laser array, electrophotographic system, and optical interconnection system
JP2008311491A (en) * 2007-06-15 2008-12-25 Ricoh Co Ltd Surface emitting laser array, optical scanning apparatus, image forming apparatus, light transmission module, and light transmission system
JP2011520272A (en) * 2008-05-08 2011-07-14 ウニヴェルズィテート・ウルム Fully tuned surface emitting semiconductor laser for surface mounting with optimized properties
JP2010003885A (en) * 2008-06-20 2010-01-07 Rohm Co Ltd Surface-emitting laser
US20130196459A1 (en) * 2012-01-31 2013-08-01 National Tsing Hua University Hybrid optoelectronic device
JP2014135371A (en) * 2013-01-10 2014-07-24 Ricoh Co Ltd Surface emitting laser, surface emitting laser array and optical scanning device
CN110904412A (en) * 2019-12-16 2020-03-24 中国工程物理研究院激光聚变研究中心 Method for improving heat dissipation and output power of terahertz device
CN110904412B (en) * 2019-12-16 2021-11-30 中国工程物理研究院激光聚变研究中心 Method for improving heat dissipation and output power of terahertz device

Also Published As

Publication number Publication date
JP3271291B2 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
US5373520A (en) Surface emitting laser and method of manufacturing the same
US5637511A (en) Vertical-to-surface transmission electro-photonic device and method for fabricating the same
JP2002353563A (en) Semiconductor light-emitting element and manufacturing method therefor
JPH09186400A (en) Fabrication of surface emission semiconductor laser
JP3271291B2 (en) Surface emitting semiconductor laser
US5587335A (en) Method of making surface emission type semiconductor laser
JP2010182973A (en) Semiconductor device
JPH07288362A (en) Vertical resonator surface light-emitting semiconductor laser
JP2001068732A (en) Semiconductor light-emitting element
US20070153863A1 (en) Surface-emitting type semiconductor laser and method for manufacturing the same
US6859476B2 (en) Surface-emitting semiconductor laser and method of manufacturing the same
JP3685541B2 (en) Semiconductor laser device and manufacturing method thereof
JP2002198613A (en) Semiconductor device having salient structure, and method of manufacturing the semiconductor device
JPH11340570A (en) Photoelectric conversion element and its manufacture
JP2003017806A (en) Compound semiconductor light-emitting element, manufacturing method therefor, and the compound semiconductor light-emitting device
JPH1027943A (en) Normal radiation semiconductor laser, method of fabricating the same, and method of varying wavelength
JP3358197B2 (en) Semiconductor laser
JPH11121865A (en) Surface emission laser and its manufacture
JP2921385B2 (en) Surface emitting laser, method for manufacturing the same, and method for manufacturing edge emitting laser
JP2006324582A (en) Plane emissive semiconductor laser and manufacturing method thereof
JP3132445B2 (en) Long wavelength band surface emitting semiconductor laser and method of manufacturing the same
JPH10261830A (en) Surface emitting type semiconductor laser and manufacture thereof
JP3468236B2 (en) Semiconductor laser
JPH0414276A (en) Surface-emitting semiconductor laser element
JP2004158664A (en) Surface-luminescent semiconductor laser device and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees