JPH05264121A - Engine-driven air conditioner - Google Patents
Engine-driven air conditionerInfo
- Publication number
- JPH05264121A JPH05264121A JP4065290A JP6529092A JPH05264121A JP H05264121 A JPH05264121 A JP H05264121A JP 4065290 A JP4065290 A JP 4065290A JP 6529092 A JP6529092 A JP 6529092A JP H05264121 A JPH05264121 A JP H05264121A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- cooling water
- heat exchanger
- engine
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/21—Refrigerant outlet evaporator temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
- Y02A30/274—Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/52—Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、エンジン駆動式空調機
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine driven air conditioner.
【0002】[0002]
【従来の技術】コンプレツサの従来技術としては、例え
ば、特開昭3−286971号公報に開示された「エン
ジン駆動式空気調和機」がある。この従来技術では、暖
房時に冷媒回路上において複数の室内側熱交換器の下流
側に補助熱交換器を配設して冷媒を流すと共に、冷媒回
路のコンプレツサを駆動するエンジンの高温冷却水も先
の補助熱交換器に導くことで、冷媒と高温冷却水との間
で熱交換を行うようにしている。2. Description of the Related Art As a conventional technology of a compressor, there is, for example, an "engine driven air conditioner" disclosed in Japanese Patent Laid-Open No. 386969/1991. In this conventional technique, an auxiliary heat exchanger is arranged downstream of a plurality of indoor heat exchangers on the refrigerant circuit during heating to flow the refrigerant, and the high-temperature cooling water for the engine that drives the compressor of the refrigerant circuit is also first. The heat is exchanged between the refrigerant and the high-temperature cooling water by being guided to the auxiliary heat exchanger.
【0003】この結果、冷媒回路の蒸発器における吸熱
量が低い場合には、高温冷却水から熱エネルギが冷媒へ
と供給されるので暖房能力が向上する。また、停止中の
1つ以上の室内側熱交換器内に滞留した冷媒をコンプレ
ツサへ戻すため、一時的に各室内側熱交換器に配設され
た膨張弁の開度を大きくすることがある。この場合に
は、多量の液状冷媒が一時的にコンプレツサに戻ろうと
するが、補助熱交換器にて蒸発するため、コンプレツサ
にて液圧縮が行われないようになつている。As a result, when the amount of heat absorbed by the evaporator of the refrigerant circuit is low, heat energy is supplied from the high-temperature cooling water to the refrigerant, so that the heating capacity is improved. In addition, since the refrigerant accumulated in one or more indoor heat exchangers that are stopped is returned to the compressor, the opening degree of the expansion valve provided in each indoor heat exchanger may be temporarily increased. .. In this case, a large amount of liquid refrigerant tries to return to the compressor temporarily, but since it is evaporated in the auxiliary heat exchanger, the compressor does not perform liquid compression.
【0004】[0004]
【発明が解決しようとする課題】ところが、複数の室内
側熱交換器を有する場合には、補助熱交換器内を流れる
冷媒量が室内側熱交換器の運転台数に比例して増減す
る。一方、補助熱交換器内を流れる高温冷却水量は一定
であるため、補助熱交換器における冷媒過熱量に過不足
が生じるおそれがあつた。However, when a plurality of indoor heat exchangers are provided, the amount of refrigerant flowing in the auxiliary heat exchanger increases or decreases in proportion to the number of indoor heat exchangers in operation. On the other hand, since the amount of high-temperature cooling water flowing in the auxiliary heat exchanger is constant, there is a possibility that the refrigerant superheat amount in the auxiliary heat exchanger may be excessive or insufficient.
【0005】そこで、本発明では、補助熱交換器におけ
る冷媒過熱量の適正化を、その技術的課題とする。Therefore, in the present invention, the technical problem is to optimize the refrigerant superheat amount in the auxiliary heat exchanger.
【0006】[0006]
【0007】[0007]
【課題を解決するための手段】前述した本発明の技術的
課題を解決するために講じた本発明の技術的手段は、コ
ンプレツサ、複数の室内側熱交換器、膨張弁、室外側熱
交換器および補助熱交換器から構成される冷媒回路と、
コンプレツサを駆動するエンジンと、補助熱交換器と係
合するエンジンの冷却水回路とを有するエンジン駆動式
空調機において、冷却水回路上には補助熱交換器と直列
的に切替弁が挿設され、切替弁は複数の室内側熱交換器
の運転台数に応じてオン/オフ制御され、切替弁のオフ
時には切替弁の両端に接続される冷却水回路を直接接続
し、切替弁のオン時には切替弁の両端に接続される冷却
水回路をオリフイス回路を介して接続するようにしたこ
とである。The technical means of the present invention taken to solve the above-described technical problems of the present invention include a compressor, a plurality of indoor heat exchangers, an expansion valve, and an outdoor heat exchanger. And a refrigerant circuit composed of an auxiliary heat exchanger,
In an engine-driven air conditioner having an engine that drives a compressor and an engine cooling water circuit that engages with an auxiliary heat exchanger, a switching valve is inserted in series with the auxiliary heat exchanger on the cooling water circuit. The switching valve is on / off controlled according to the number of operating indoor heat exchangers. When the switching valve is off, the cooling water circuits connected to both ends of the switching valve are directly connected, and when the switching valve is on, switching is performed. The cooling water circuit connected to both ends of the valve is connected via the orifice circuit.
【0008】[0008]
【作用】上述した本発明の技術的手段によれば、切替弁
の作動状態に応じてオリフイス回路が作用するので、補
助熱交換器を流れるエンジン冷却水量が変化する。According to the above-mentioned technical means of the present invention, since the orifice circuit operates in accordance with the operating state of the switching valve, the amount of engine cooling water flowing through the auxiliary heat exchanger changes.
【0009】[0009]
【実施例】以下、本発明の技術的手段を具体化した実施
例について添付図面に基づいて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the technical means of the present invention will be described below with reference to the accompanying drawings.
【0010】図1に示す本発明実施例のエンジン駆動式
空調機10において、冷媒が流れる冷媒回路11にはエ
ンジン12により駆動されるコンプレツサ13、複数の
室内側熱交換器14(14a,14b,14c)、膨張
弁15(15a,15b,15c)、室外側熱交換器1
6および補助熱交換器17の図示しない冷媒流路が配設
されている。また、補助的な機構,装置として、冷媒回
路11にはオイルセパレータ18、四方切替弁19およ
びアキユムレータ21が配設されている。また、オイル
セパレータ18にて冷媒より分離されたオイルは、オイ
ル戻し管22を介して冷媒回路11上のコンプレツサ1
3上流側に戻される。In the engine-driven air conditioner 10 of the embodiment of the present invention shown in FIG. 1, a compressor 13 driven by an engine 12 and a plurality of indoor heat exchangers 14 (14a, 14b, 14c), expansion valve 15 (15a, 15b, 15c), outdoor heat exchanger 1
6 and the auxiliary heat exchanger 17 are provided with unillustrated refrigerant flow paths. Further, as the auxiliary mechanism and device, the refrigerant circuit 11 is provided with an oil separator 18, a four-way switching valve 19 and an accumulator 21. Further, the oil separated from the refrigerant by the oil separator 18 passes through the oil return pipe 22 and the compressor 1 on the refrigerant circuit 11 receives the oil.
3 Returned to the upstream side.
【0011】一方、エンジン11は冷却水が流れる冷却
水回路23を有し、ポンプ24、冷却水−排気ガス熱交
換器25の図示しない冷却水流路、切替弁26、選択弁
27、補助熱交換器17の図示しない冷却水流路、ラジ
エタキヤツプ28、ラジエタ29が配設されている。こ
こで、図2に示すように、切替弁26は3つのポート2
6a,26b,26cを有し、ポート26a,26bを
介して切替弁26が冷却水回路23に挿設され、ポート
26a,26b間と並列に図示しないオリフイスをその
内部に有するオリフイス回路30が配設されている。ま
た、バイパス回路32は補助熱交換器17の冷却水流路
と並列に配設される。On the other hand, the engine 11 has a cooling water circuit 23 through which cooling water flows, and a pump 24, a cooling water flow path (not shown) of the cooling water-exhaust gas heat exchanger 25, a switching valve 26, a selection valve 27, and an auxiliary heat exchange. A cooling water passage, a radiator cap 28, and a radiator 29, which are not shown, of the container 17 are provided. Here, as shown in FIG. 2, the switching valve 26 has three ports 2
6a, 26b, 26c, the switching valve 26 is inserted into the cooling water circuit 23 via the ports 26a, 26b, and an orifice circuit 30 having an orifice (not shown) therein is arranged in parallel with the ports 26a, 26b. It is set up. Further, the bypass circuit 32 is arranged in parallel with the cooling water flow path of the auxiliary heat exchanger 17.
【0012】尚、室外側熱交換器16およびラジエタ2
9はフアン30,31により熱交換が促進され、室内側
熱交換器14にも図示しないフアンが配設されている。
以上の構成を有するエンジン駆動式空調機10の作用に
ついて説明する。尚、本発明は特にエンジン駆動式空調
機10の暖房運転時に有効に作用するものなので、以下
の実施例においては暖房運転時に限つて説明する。ま
た、冷房運転時におけるエンジン駆動式空調機10の作
用については従来と略同一である。The outdoor heat exchanger 16 and the radiator 2
9, heat exchange is promoted by the fans 30 and 31, and a fan (not shown) is also provided in the indoor heat exchanger 14.
The operation of the engine-driven air conditioner 10 having the above configuration will be described. Since the present invention particularly effectively works during the heating operation of the engine-driven air conditioner 10, only the heating operation will be described in the following embodiments. The operation of the engine-driven air conditioner 10 during the cooling operation is substantially the same as the conventional one.
【0013】冷媒回路11において、エンジン12によ
り駆動されるコンプレツサ13から吐出された高温,高
圧のガス状冷媒は、まずオイルセパレータ18にて冷媒
に混入する潤滑オイルが分離,除去され、四方切替弁1
9を介して運転中の室内側熱交換器14へと流入する。
この室内側熱交換器14にて、冷媒と室内空気との間で
熱交換が行われて図示しない室内空間が暖房され、同時
に高温,高圧のガス状冷媒は凝縮することで高温,高圧
の気液混合状冷媒となる。そして、室内側熱交換器14
から流出する冷媒は膨張弁15にて膨張し、低温,低圧
の気液混合状冷媒となつた後に室外側熱交換器16へ流
入する。この室外側熱交換器16にて、冷媒と外気との
間で熱交換が行われ、低温,低圧の気液混合状冷媒は蒸
発することで低温,低圧の気体存在比の大きい気液混合
状冷媒となる。更に、室外側熱交換器16を流出した低
温,低圧の気体存在比の大きい気液混合状冷媒は、補助
熱交換器17において、冷媒と高温冷却水との間で熱交
換が行われ、低温,低圧の気体存在比の大きい気液混合
状冷媒は蒸発することで低温,低圧のガス状冷媒とな
る。そして、四方切替弁19を介してアキユムレータ2
1を流れた後にコンプレツサ13に吸い込まれる。In the refrigerant circuit 11, the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 13 driven by the engine 12 is separated and removed by the oil separator 18 from the lubricating oil mixed in the refrigerant. 1
Through 9 into the indoor heat exchanger 14 in operation.
In the indoor heat exchanger 14, heat exchange is performed between the refrigerant and the indoor air to heat the indoor space (not shown), and at the same time, the high-temperature and high-pressure gaseous refrigerant is condensed, so that the high-temperature and high-pressure gas is condensed. It becomes a liquid mixed refrigerant. And the indoor heat exchanger 14
The refrigerant flowing out of the expansion valve 15 expands in the expansion valve 15, becomes a low-temperature low-pressure gas-liquid mixed refrigerant, and then flows into the outdoor heat exchanger 16. In the outdoor heat exchanger 16, heat exchange is performed between the refrigerant and the outside air, and the low-temperature low-pressure gas-liquid mixed refrigerant evaporates, so that the low-temperature low-pressure gas-existing gas-liquid mixed state is large. It becomes a refrigerant. Further, the low-temperature, low-pressure gas-liquid mixed refrigerant having a large gas existence ratio flowing out of the outdoor heat exchanger 16 undergoes heat exchange between the refrigerant and the high-temperature cooling water in the auxiliary heat exchanger 17, so that The vapor-liquid mixed refrigerant with a low low-pressure gas abundance ratio becomes a low-temperature, low-pressure gaseous refrigerant by evaporating. Then, the accumulator 2 is passed through the four-way switching valve 19.
After flowing through 1, it is sucked into the compressor 13.
【0014】尚、コンプレツサ13に液状冷媒が流入し
ないように、冷媒回路11のコンプレツサ13吸込側に
配設された図示しない温度センサにより冷媒の過熱度が
チエツクされ、室外側熱交換器16および補助熱交換器
17にて十分に蒸発できるだけの冷媒流量となるように
膨張弁15の開度が適宜調整される。In order to prevent the liquid refrigerant from flowing into the compressor 13, the temperature sensor (not shown) provided on the suction side of the compressor 13 of the refrigerant circuit 11 checks the degree of superheat of the refrigerant, and the outdoor heat exchanger 16 and the auxiliary The opening degree of the expansion valve 15 is appropriately adjusted so that the refrigerant flow rate can be sufficiently evaporated in the heat exchanger 17.
【0015】ところで、冷却水回路23では、ポンプ2
4により圧送される冷却水は、冷却水−排気ガス熱交換
器25およびエンジン12内部にてエンジン12から熱
エンルギを受けて高温化し、切替弁26に至る。ここ
で、室内側熱交換器14の運転台数が多いときには、切
替弁26はオフ状態を保ち、ポート26a,26b間が
連通するので、高温冷却水は選択弁27に至る。ここ
で、冷却水温度が低い時(エンジン始動直後等)には暖
気効率の向上のためバイパス回路32へ冷却水を流し、
冷却水温度が高い時には補助熱交換器17の冷却水流路
へと冷却水を流す。By the way, in the cooling water circuit 23, the pump 2
The cooling water pressure-fed by 4 receives heat energy from the engine 12 inside the cooling water-exhaust gas heat exchanger 25 and the engine 12 to reach a high temperature, and reaches the switching valve 26. Here, when the number of operating indoor heat exchangers 14 is large, the switching valve 26 remains off and the ports 26a and 26b communicate with each other, so that the high-temperature cooling water reaches the selection valve 27. Here, when the cooling water temperature is low (immediately after starting the engine, etc.), the cooling water is caused to flow to the bypass circuit 32 in order to improve the warm-up efficiency.
When the temperature of the cooling water is high, the cooling water is flown to the cooling water passage of the auxiliary heat exchanger 17.
【0016】この補助熱交換器17において、いま、室
内側熱交換器14の運転台数が多いので、多量の冷媒と
多量の高温冷却水間で熱交換が行われる。In this auxiliary heat exchanger 17, since the number of indoor heat exchangers 14 that are operating is large, heat is exchanged between a large amount of refrigerant and a large amount of high-temperature cooling water.
【0017】一方、室内側熱交換器14の運転台数が少
ないときには、切替弁26はオン状態とされ、ポート2
6a,26c間が連通するので、高温冷却水はオリフイ
ス回路30を介して補助熱交換器17に至る。この結
果、オリフイス回路30内のオリフイスにより補助熱交
換器17に流入する高温冷却水量が制限されるので、室
内側熱交換器14の運転台数に応じた冷媒流量に適当な
高温冷却水量となり、冷媒過熱度が最適に調整される。On the other hand, when the number of indoor heat exchangers 14 operating is small, the switching valve 26 is turned on and the port 2
Since the 6a and the 26c communicate with each other, the high temperature cooling water reaches the auxiliary heat exchanger 17 through the orifice circuit 30. As a result, the amount of high-temperature cooling water flowing into the auxiliary heat exchanger 17 is limited by the orifice in the orifice circuit 30, so that the amount of high-temperature cooling water is appropriate for the refrigerant flow rate according to the number of operating indoor heat exchangers 14, Superheat is optimally adjusted.
【0018】この後、冷却水はポンプ24に吸い込まれ
るが、冷却水温度が高いときにはラジエタ29にて冷却
される。After that, the cooling water is sucked into the pump 24, but when the cooling water temperature is high, it is cooled by the radiator 29.
【0019】[0019]
【発明の効果】以上に示した様に本発明では、複数の室
内側熱交換器の運転台数に応じて切替弁が制御され、冷
媒回路中にオリフイス回路が挿設される状態とされない
状態が作りだされる。この結果、室内側熱交換器の運転
台数に応じた冷媒流量に比例して補助熱交換器に流入す
る高温冷却水量が増減されるので、冷媒の過熱度が異常
に高くなることがなく、冷媒の最適な過熱度を保持する
ことが可能となる。As described above, according to the present invention, the switching valve is controlled according to the number of operating indoor heat exchangers, and the state in which the orifice circuit is not inserted in the refrigerant circuit is not set. Be created. As a result, the amount of high-temperature cooling water that flows into the auxiliary heat exchanger is increased / decreased in proportion to the refrigerant flow rate according to the number of operating indoor heat exchangers, so the degree of superheat of the refrigerant does not increase abnormally, and the refrigerant It is possible to maintain the optimum degree of superheat.
【図1】本発明実施例のエンジン駆動式空調機の構成図
を示す。FIG. 1 shows a configuration diagram of an engine-driven air conditioner according to an embodiment of the present invention.
【図2】図1における要部拡大構成図を示す。FIG. 2 shows an enlarged configuration diagram of a main part in FIG.
10 エンジン駆動式空調機、 11 冷媒回路、 12 エンジン、 13 コンプレツサ、 14 室内側熱交換器、 15 膨張弁、 16 室外側熱交換器 17 補助熱交換器、 23 冷却水回路、 26 切替弁、 30 オリフイス回路。 10 engine driven air conditioner, 11 refrigerant circuit, 12 engine, 13 compressor, 14 indoor heat exchanger, 15 expansion valve, 16 outdoor heat exchanger 17, auxiliary heat exchanger, 23 cooling water circuit, 26 switching valve, 30 Orifice circuit.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藪 内 吉 弘 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yabuuchi Yoshihiro 2-chome, Asahi-cho, Kariya city, Aichi Aisin Seiki Co., Ltd.
Claims (1)
膨張弁、室外側熱交換器および補助熱交換器から構成さ
れる冷媒回路と、 前記コンプレツサを駆動するエンジンと、 前記補助熱交換器と係合する前記エンジンの冷却水回路
とを有するエンジン駆動式空調機において、 前記冷却水回路上には前記補助熱交換器と直列的に切替
弁が挿設され、 前記切替弁は前記複数の室内側熱交換器の運転台数に応
じてオン/オフ制御され、 前記切替弁のオフ時には前記切替弁の両端に接続される
前記冷却水回路を直接接続し、 前記切替弁のオン時には前記切替弁の両端に接続される
前記冷却水回路をオリフイス回路を介して接続すること
を特徴とするエンジン駆動式空調機。1. A compressor, a plurality of indoor heat exchangers,
An engine driven type having a refrigerant circuit composed of an expansion valve, an outdoor heat exchanger and an auxiliary heat exchanger, an engine for driving the compressor, and a cooling water circuit for the engine engaging with the auxiliary heat exchanger. In the air conditioner, a switching valve is inserted in series with the auxiliary heat exchanger on the cooling water circuit, and the switching valve is on / off controlled according to the number of operating indoor heat exchangers. When the switching valve is off, the cooling water circuit connected to both ends of the switching valve is directly connected, and when the switching valve is on, the cooling water circuit connected to both ends of the switching valve is connected via an orifice circuit. An engine-driven air conditioner characterized by being connected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4065290A JPH05264121A (en) | 1992-03-23 | 1992-03-23 | Engine-driven air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4065290A JPH05264121A (en) | 1992-03-23 | 1992-03-23 | Engine-driven air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05264121A true JPH05264121A (en) | 1993-10-12 |
Family
ID=13282658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4065290A Pending JPH05264121A (en) | 1992-03-23 | 1992-03-23 | Engine-driven air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05264121A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08100960A (en) * | 1994-08-02 | 1996-04-16 | Yamaha Motor Co Ltd | Engine driven type heat pump apparatus |
JP2003004332A (en) * | 2001-06-26 | 2003-01-08 | Mitsubishi Heavy Ind Ltd | Multiple gas heat pump type air conditioner |
JP2006220351A (en) * | 2005-02-10 | 2006-08-24 | Hitachi Ltd | Freezer |
-
1992
- 1992-03-23 JP JP4065290A patent/JPH05264121A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08100960A (en) * | 1994-08-02 | 1996-04-16 | Yamaha Motor Co Ltd | Engine driven type heat pump apparatus |
JP2003004332A (en) * | 2001-06-26 | 2003-01-08 | Mitsubishi Heavy Ind Ltd | Multiple gas heat pump type air conditioner |
JP2006220351A (en) * | 2005-02-10 | 2006-08-24 | Hitachi Ltd | Freezer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100309975B1 (en) | Capacity control device | |
US7137270B2 (en) | Flash tank for heat pump in heating and cooling modes of operation | |
KR100186526B1 (en) | Defrosting apparatus of heat pump | |
CN100425928C (en) | Engine driven type air conditioner | |
JP2838917B2 (en) | Refrigeration cycle | |
JP2003336927A (en) | Combined refrigerating system | |
JP4380834B2 (en) | Gas heat pump air conditioner | |
JPH05264121A (en) | Engine-driven air conditioner | |
JPH0526522A (en) | Freezing cycle | |
US11326789B2 (en) | Air conditioning system and control method thereof | |
JP2004286240A (en) | Engine drive heat pump | |
KR100398123B1 (en) | Oil-separator for air-conditioning system of automobile | |
JP2000064906A (en) | Engine-drive type heat pump cycle | |
JP4346781B2 (en) | Air conditioner for vehicles | |
JP3617742B2 (en) | Scroll compressor and air conditioner | |
JP3821577B2 (en) | Engine driven compression refrigerator | |
JP4090238B2 (en) | Air conditioner and outdoor heat exchanger switching control method of air conditioner | |
JP2001280764A (en) | Air conditioning system | |
JP3097220B2 (en) | Engine driven air conditioner | |
JP4658395B2 (en) | Multi-type gas heat pump type air conditioner | |
CN210772889U (en) | Heat exchanger system and water chilling unit | |
JP3626927B2 (en) | Gas heat pump type air conditioner | |
JPH06281270A (en) | Air conditioner | |
JPH062963A (en) | Air conditioner | |
KR0151357B1 (en) | Apparatus for controlling cold-degree and absorbing gas of an airconditioner |